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Abstract. In the domain of gene expression data analysis, several re-
searchers have recently emphasized the promising application of local
pattern (e.g., association rules, closed sets) discovery techniques from
boolean matrices that encode gene properties. Detecting local patterns
by means of complete constraint-based mining techniques turns to be an
important complementary approach or invaluable counterpart to heuris-
tic global model mining. To take the most from local set pattern mining
approaches, a needed step concerns gene expression property encoding
(e.g., over-expression). The impact of this preprocessing phase on both
the quantity and the quality of the extracted patterns is crucial. In this
paper, we study the impact of discretization techniques by a sound com-
parison between the dendrograms, i.e., trees that are generated by a
hierarchical clustering algorithm on raw numerical expression data and
its various derived boolean matrices. Thanks to a new similarity measure,
we can select the boolean property encoding technique which preserves
similarity structures holding in the raw data. The discussion relies on sev-
eral experimental results for three gene expression data sets. We believe
our framework is an interesting direction of work for the many applica-
tion domains in which (a) local set patterns have been proved useful, and
(b) Boolean properties have to be derived from raw numerical data.

1 Introduction

This volume is dedicated to local pattern detection. It has been motivated by the
need for a better characterization of what is local pattern detection and what
are the main research challenges in this area. We contribute to this objective by
considering the exciting application domain of transcription module discovery
from gene expression data. In this molecular biology context, the goal is to
identify sets of genes which seem to be co-regulated, associated with the sets of
biological situation which seems to trigger the co-regulation.

The state-of-the-art is that global patterns like partitions can provide some
useful information and suggest some of the transcription modules. We are how-
ever interested by the intrinsic limitations of these approaches, e.g., their heuris-
tic nature or the lack of unexpectedness of the findings. We strongly believe
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that complete extractions of local patterns which satisfy a given conjunction of
constraints (e.g., a minimal frequency constraint or a maximality constraint) are
an invaluable and complementary approach to suggest unexpected but relevant
patterns, i.e., putative transcription modules.

Let us now introduce the application domain and our contribution. Thanks
to a huge research effort and technological breakthroughs, one of the challenges
for molecular biologists is to discover knowledge from data generated at very
high throughput. For instance, different techniques (including microarray [1] and
SAGE [2]) enable to study the simultaneous expression of (tens of) thousands of
genes in various biological situations. The data generated by those experiments
can be seen as expression matrices in which the expression level of genes (rows)
is recorded in various biological situations (columns). A toy example of some
microarray data is the matrix in Tab. 1a.

1 2 3 4 5

a -1 6 0 12 9
b 3 -2 3 -3 1
c 0 5 -1 6 6
d 4 -1 2 -2 -1
e -3 9 1 10 6
f 5 -3 3 -6 0
g 4 -4 3 -7 0
h -2 2 -2 8 5

1 2 3 4 5

a 0 1 0 1 1
b 1 0 1 0 1
c 0 1 0 1 1
d 1 0 1 0 0
e 0 1 0 1 1
f 1 0 1 0 1
g 1 0 1 0 1
h 0 0 0 1 1

1 2 3 4 5

a 0 0 0 1 0
b 1 0 1 0 0
c 0 0 0 1 1
d 1 0 0 0 0
e 0 0 0 1 0
f 1 0 0 0 0
g 1 0 0 0 0
h 0 0 0 1 0

(a) (b) (c)

Table 1. A gene expression matrix (a) with two derived boolean matrices (b
and c)

Once large gene expression datasets are available, biologists have to drop the
traditional one-to-one approach to gene expression data analysis and crucially
need for Knowledge Discovery in Databases techniques (KDD). Among the clas-
sical KDD approaches, classification techniques (i.e., learning a classifier from
data which, for example, can predict a cancer diagnosis according to individual
gene expression profiles) have been intensively studied (see, e.g., [3] for a collec-
tion of recent contributions). In this paper, we do not consider such problems.
We are interested in descriptive techniques which provides either global patterns
like partitions (clustering) or local patterns like co-regulated sets of genes and/or
sets of situations.

The use of hierarchical clustering (see, e.g., [4]) is indeed quite popular among
practitioners. Genes are grouped together according to similar expression pro-
files. The same can be done on biological situations. Thanks to the appreciated
vizualization component introduced with [4], biologists can identify some puta-
tive transcription modules. Practitioners do not use only hierarchical clustering
but also most of the classical clustering techniques. A common characteristic of
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these techniques is that global patterns like partitions are extracted by means of
a heuristic search. They provide “global pictures” of similarity structures. Not
only the heuristic nature can lead to different results for different experiments
but also, the fact we get global patterns, i.e., which hold in the whole data, leads
to rather expected findings. Our thesis is that unexpected patterns are a priori
interesting and that they are typically local ones, i.e., they hold in only a part of
the data. Therefore, looking for collections of local patterns in gene expression
data appears as a promising and complementary approach. The last 5 years, a
major research sub-domain in data mining has concerned the design of efficient
and complete constraint-based mining tools on boolean data, also called trans-
actional data by some authors. The completeness assumption means that every
pattern from the pattern language which satisfies the defined constraints has to
be returned (e.g., every frequent set, every closed set, every frequent and closed
set which does not contain a given item). In general, and this is the case for our
work, non heuristic methods are used.

To apply these techniques for gene expression data analysis, we have to en-
code boolean gene expression properties, e.g., over-expression, strong variation,
co-regulation. Tab. 1b and Tab. 1c are two data sets derived from the toy mi-
croarray data from Tab. 1a. Once such boolean data sets are available, it is possi-
ble to look for putative synexpression groups (see [5]) by computing the popular
frequent sets (frequent sets of situations in a matrix Genes × Situations and
frequent sets of genes in its transposition). Given the number of genes, we can
alternatively compute condensed representations of the frequent sets, e.g., the
frequent closed sets [6,7,8]. Deriving association rules from synexpression groups
has been studied as well [9,10]. Furthermore, putative transcription modules can
be provided by computing the so-called formal concepts (see, e.g., [11,12,13]).
Also, constraint-based mining of concepts has been considered [14,15]. Notice
that the collection of every formal concept which can be extracted from large
real gene expression matrices can be considered as a collection of overlapping
clusters on either the genes or the situations. The global picture is not there but
every locally strong association (associated closed sets, see Section 3) has been
captured.

So far, very few studies have concerned the quality of gene expression prop-
erty encoding, i.e., a kind of feature construction phase. This is a critical step
because its impact on both the quantity and the quality of the extracted patterns
is crucial.

If S denotes the set of biological situations and P denotes the set of genes,
the expression properties can be encoded into r ⊆ P×S. (gi, oj) ∈ r denotes that
gene i has the encoded expression property in situation j. Different expression
properties might be considered. Without loss of generality, we consider that
only one expression property is encoded for each gene, which means that we can
talk indifferently of genes or gene expression properties. Generally, encoding is
performed according to some discretization operators that, given user-defined
parameters, transform each numerical value from raw gene expression data into
one boolean value per gene property. Many operators can be used that typically



118 Ruggero G. Pensa and Jean-François Boulicaut

compute thresholds from which it is possible to decide wether the true or the false
value must be assigned. For instance, in Tab. 1b, an over-expression property
has been encoded and, e.g., Genes a, c, and e are over-expressed together in
Situations 2, 4 and 5.

In [16], we have proposed a method which supports the choice for a discretiza-
tion technique and an informed decision about its parameters. The idea was to
study the impact of discretization by a sound comparison between the dendro-
grams (i.e., binary trees) that are generated by the same hierarchical clustering
algorithm applied to both the raw expression data and various derived boolean
matrices. This paper is a significant extension of [16]. The framework has been
revisited and the experimental validation have been considerably extended.

In Section 2, we refine the similarity measure introduced in [16]. It is level
independent, and it depends for each node on its subtree structure. It can be
applied on gene and/or situation dendrograms and we introduce an aggregated
measure for considering both simultaneously. Section 3 is dedicated to the use of
this similarity measure on three real gene expression data sets in order to select
an adequate discretization technique. The robustness of the approach is also
emphasized by an a posteriori analysis of the extracted patterns in the various
boolean contexts. For this purpose, we adapt the similarity measure between
collections of patterns introduced in [17]. In Section 4, we study further the
robustness of our approach by comparing several clustering results in the raw
data. Section 5 is a short conclusion.

2 Boolean Encoding Assessment

2.1 Comparing Binary Trees

The problem of tree comparison has motivated a lot of research. Designing sim-
ilarity measures between trees is difficult because it has to be defined according
to the semantics of trees and similarities which are generally application domain
dependant. For instance, considering the analysis of phylogenies, distance mea-
sures between both rooted and unrooted trees have been designed to compare
different phylogenetic trees concerning the same set of individuals (e.g., different
species of animals having a common ancestor). Various distance metrics between
trees have been proposed. The nni (nearest neighbor interchange) and the mast
(maximum agreement subtree) are two of the most used metrics. nni has been
introduced independently in [18] and [19] and its NP-completeness has been
recently proved [20,21]. mast has been proposed in [22], and [23] describes an
efficient algorithm for computing this metrics on binary trees. These two ap-
proaches are tailored for the problem of comparing phylogenies where the goal is
to measure some degree of isomorphism between two dendrograms representing
the same species of biological organisms.

In our data mining problem, we have sets of objects (vectors of expression
values for genes in various biological situations), that we want to process with a
hierarchical clustering algorithm. Depending on the different discretization oper-
ations on raw expression data, a same clustering algorithm working on encoded
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boolean gene expression data can return (very) different results. We are look-
ing for a method that supports the comparison of these various gene and/or
situation dendrograms obtained on boolean data w.r.t. the common reference
dendrogram that has been computed from the raw data. We need to measure
both the degree of similarity of their structures and the similarity between the
contents of their associated collections of clusters. We introduced in [16] a simple
measure which is also easy to compute. Intuitively, it depends on the number of
matching nodes between the two trees we have to compare.

2.2 Definition of Similarity Scores

Let O = {o1, . . . , on} denote a set of n objects. Let T denote a binary tree built
on O. Let L = {l1, . . . , ln} denote the set of n leaves of T associated to O for
which, ∀i ∈ [1 . . . n] , li ≡ oi. Let B = {b1 . . . bn−1} denote the set of the n − 1
nodes of T generated by a hierarchical clustering algorithm starting from L. By
construction, we consider bn−1 = r, where r denotes the root of T . We define
the two sets:

δ (bi) = {bj ∈ B | bj is a descendent of bi} ,
τ (bi) = {lj ∈ L | lj is a descendent of bi} .

An example of a tree for the genes from Tab. 1a is given in Fig. 1. Here,
τ (b3) = {b, d, f, g} and δ (b3) = {b1, b2}.

Fig. 1. An example of binary tree

We want to measure the similarity between a tree T and a reference tree Tref

built on the same set of objects O. For each node bi of T , we define the following
score (denoted SB and called BScore):
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SB (bi, Tref ) =
∑

bj∈δ(bi)

aj

aj =






1
|τ(bj)| , if

∃bk ∈ Tref | τ (bj) = τ (bk)
0, otherwise

(1)

In other terms, for a node b in T , its score depends both on the number of its
matching nodes in Tref (bk ∈ Tref is a matching node for b if τ (b) = τ (bk))
and |τ(b)|. To obtain the similarity score of T w.r.t. Tref (denoted ST and called
TScore), we consider the BScore value on the root, i.e.:

ST (T, Tref) = SB (r, Tref ) (2)

As usually, it is interesting to normalize the measure to get a score between
0 (for a tree which is totally different from the reference) and 1 (for a tree which
is equal to the reference). For the TScore measure, since its maximal value
depends on the tree morphology, we can normalize by ST (Tref , Tref ):

ST (T, Tref) =
ST (T, Tref)
ST (Tref , Tref )

(3)

ST (T, Tref) = 0 means that T is totally different from Tref , i.e., there are no
matching node between T and Tref . Indeed, ST (T, Tref) = 1 means that T is
totally similar to Tref , i.e., every node in T matches with a node in Tref . Given
two trees T1 and T2 and a reference Tref , if ST (T1, Tref ) < ST (T2, Tref), then
T2 is said to be more similar to Tref than T1 according to TScore.

An important property (missing from [16]) is the following:

Property 1. The measure 1 is asymmetric, i.e. given a reference tree Tref , ∃T
such that ST (T, Tref) �= ST (Tref , T ).

As a consequence of this property, such a measure makes sense when one wants to
compare different binary trees with the same reference. If a symmetric measure
is needed, one can consider the mean of the two possible measures for a couple
of trees:

ST (T1, T2) + ST (T2, T1)
2

.

2.3 Comparison Between Gene Dendrograms

Tab. 1a is a toy example of a gene expression matrix. Each row represents a gene
vector, and each column represents a biological sample vector. Each cell contains
an expression value for a given gene and a given sample. In this example, we have
O = {a, b, c, d, e, f, g, h}. A hierarchical clustering using the Pearson’s correlation
coefficient and the average linkage method (see, e.g., [4]) on the data from Tab. 1a
leads to the dendrogram in Fig. 1.

Assume now that we discretize the expression matrix by applying two differ-
ent methods used for over-expression encoding [9]. The first one, the so-called
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“Mid-Ranged” method, considers the mean between the maximal and minimal
values for each gene vector. Values which are greater than the average value are
set to 1, 0 otherwise (Tab. 1b). A second method, the so-called “Max - X% Max”
method, takes into account the maximal value for each gene vector. Values that
are greater than (100−X)% of the maximal value are set to 1, 0 otherwise. We
set X to 10 deriving the matrix in Tab. 1c.

Assume now that we use the same clustering algorithm on the two derived
boolean data sets. The resulting dendrograms are shown in Fig. 2. Fig. 2a (resp.
Fig. 2b) represents the gene dendrogram obtained by clustering the boolean
matrix in Tab. 1b (resp. Tab. 1c).

a) b)

Fig. 2. Gene trees built on two differently discretized matrices

We can now use the similarity score and decide which discretization is better
for this gene expression data set, i.e., the one for which ST (T, Tref) has the
largest value. The common reference (Tref ) is the tree in Fig. 1. Let Ta and Tb

denote the trees in Fig. 2a and 2b respectively. Using Equation 3, we obtain:

ST (Ta, Tref) = 0.77 ST (Tb, Tref ) = 0.23.

Since ST (Ta, Tref ) > ST (Tb, Tref ), the first discretization method is consid-
ered better for this data set w.r.t. the performed hierarchical clustering. In fact,
in Ta, only node b1 does not match (i.e., it does not share the same set of leaves)
with any node in Tref , while in Tb, there are only two nodes (b3 and b6) that
match with some nodes in Tref .

The same process can be applied to situation dendrograms by considering
now that the objects are the situations. In practice, we perform both processes to
support the choice of a discretization technique as illustrated in the next section.

2.4 Average Similarity Score

When we compare both situation and gene trees, we have different results for
each comparison. According to our practice of gene expression data analysis, we
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often have thousands genes and a few tens or hundreds of situations. It means
that, the similarity scores computed for situations tree are usually greater than
those computed for gene dendrograms. This can be explained by the fact that sit-
uation dendrograms have more probabilities to be identical, since they contains
less leaves, and the correlation coefficients (during the hierarchical clustering
process) are computed on vectors of thousands components (the genes whose
expression is measured in each situation). As a result, if we compare differently
discretized gene expression matrix, the discretization thresholds for which we get
the highest similarity score can be different for gene and situation dendrograms.

If we are interested in a unique similarity score, different solutions can be
adopted. For example, we can consider the average between the gene and the
situation similarity scores. A problem is that if one of the trees is totally dis-
similar from the reference (relative score is equal to zero), the average value will
not be zero. We can solve this problem by simply considering the square root of
the product between the two similarity scores:

SAT (T, Tref) =
√
SGT (T, Tref) · SST (T, Tref) (4)

where SGT and SST and denote respectively the normalized similarity score for
genes and situation, and SAT denotes the average similarity score.

Following this definition, SAT is always between the gene and the situation
similarity score values. Furthermore, when at least one of the two similarity
scores is equal to zero, also the average similarity score is zero.

3 Using Similarity Scores

Many discretization techniques can be used to encode gene expression properties
from expression values that are either integer values (case for SAGE data [2])
or real values (case for microarray data [1]). In this paper, we consider for our
experimental study only three techniques that have been used for encoding the
over-expression of genes in [9]:

– “Mid-Ranged”. The highest and lowest expression values are identified for
each gene and the mid-range value is defined. For a given gene, all expression
values that are strictly above the mid-range value give rise to value 1, 0
otherwise.

– “Max - X% Max”. The cut off is fixed w.r.t. the maximal expression value
observed for each gene. From this value, we remove a percentage X of this
value. All expression values that are greater than the (100−X)% of the Max
value give rise to value 1, 0 otherwise.

– “X% Max”. For each gene, we consider the situations in which its level of
expression is in X% of the highest values. These genes are assigned to value
1, 0 otherwise.

We want to evaluate the relevancy of a discretization algorithm and its pa-
rameters according to the preserved properties w.r.t. a hierarchical clustering of
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the raw data. So, we have to compare the dendrograms obtained from the three
different boolean matrices with the reference dendrogram.

We have considered three gene expression data sets: two microarray data sets
and a SAGE data set. The first data set (CAMDA [24]) concerns the transcrip-
tome of the intraerythrocytic developmental cycle of the plasmodium falciparum,
a parasite that is responsible for a very frequent form of malaria. We have the
expression values for 3 719 genes in 46 different time points, i.e., biological sit-
uations. The second data set (Drosophila [25]) concerns the gene expression of
drosophila melanogaster during its life cycle. We have the expression values for
3 030 genes and 81 biological situations. The third one (human SAGE data from
NCBI, see also [26,13]) contains the expression values for 5 327 human genes in
90 different cancerous and not cancerous cellular samples belonging to different
human organs.

One indicator of the differences between derived boolean contexts is their
density, i.e., the number of true values divided by the total number of cells in
the matrices. In Fig. 3, we provide the density curves for the three data sets and
depending on different thresholds for the “Max - X% Max” method. Notice that
densities for the “X% Max” method are equal to X.

Fig. 3. Density values for different “Max - X% Max” thresholds

We processed all the computed boolean matrices with a hierarchical clus-
tering algorithm based on the centered Pearson’s correlation coefficient and the
average linkage method. The same algorithm with the same options has been ap-
plied to the three original matrices. Finally, for each data set, we have compared
all the genes and situations trees derived from the boolean matrices with the ref-
erence trees. The results in terms of TScore (Equation 1) for the “Mid-Ranged”
method, are summarized in Fig. 4.
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Fig. 4. Similarity scores for clustering trees on Mid-Ranged discretized matrices

For the “Max - X% Max” and “X% Max” methods, we summarize the results
depending on the variation of the threshold X for the gene dendrograms in Fig. 5a
and Fig. 6c, for the situation dendrograms in Fig. 5b and Fig. 6d. It is important
to observe that, for each data set, we obtained the highest values of similarity
scores for both the genes and the situations for almost the same discretization
thresholds.

We have used the definition of average similarity score (Equation 4), to iden-
tify a unique measure of similarity for each boolean context. Results are sum-
marized in Fig. 7.

We have also applied the same clustering algorithm on various randomly
generated boolean matrices based on the same sets of objects. Then, we have
compared the resulting dendrograms with the reference. In the first two data
sets (CAMDA and Drosophila), the similarity scores of the randomly generated
boolean matrices are always very low or equal to 0. In the SAGE data set, given
a density value, the gene scores resulting from randomly generated matrices
are always lower than the ones obtained by any discretization method (while
the situation scores are always negligible). One explanation could be that the
discretized matrices are here very sparse compared to the ones we derive from
the first two data sets (see Fig. 3). Using a low threshold to discretize such a
matrix does not make sense: obtained scores are similar to the scores which are
computed on random boolean matrices. Moreover, using a high threshold value
X for the “X% Max” discretization method leads to similarity scores that are
close to those obtained for randomly generated matrices, though still higher. We
can observe the behavior of this particular SAGE data set in Fig. 8.

As we can see, each discretization method has a set of threshold values for
which it produce relatively high results in terms of similarity scores. Obviously,
depending on the analysis task, one method can be more adapted than the
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a)

b)

Fig. 5. Similarity scores w.r.t. different thresholds for “Max - X%Max”

other ones. For instance, even if both the “Max - X% Max” and the “X% Max”
methods encode over-expression, the first one produces a boolean context whose
density is strictly dependent on the maximal expression value for each gene.
Instead, with the second method, we are sure that the density of the resulting
boolean context is near to the X threshold. Does it mean that we are able to
extract different kinds of patterns?

Clearly, the collections of patterns we can extract when using two differ-
ent discretization techniques for over-expression encoding, will be different. We
consider however that if we extract in proximity of the thresholds which pro-
duced the highest similarity scores for both methods, the intersection between
the extracted collections will have a significant size. Patterns belonging to this
intersection will also inform about rather strong associations.
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c)

d)

Fig. 6. Similarity scores w.r.t. different thresholds for “X%Max”

We have analyzed such intersections between different collections of formal
concepts ([11]) which have been extracted from the boolean SAGE data set.

Definition 1. (G, T ) ∈ P × S is a formal concept in r ⊆ P × S when T =
ψ(G, r) and G = φ(T, r). ψ and φ are the classical Galois operators, i.e., we
have φ(T, r) = {g ∈ P | ∀o ∈ S, (g, o) ∈ r} and ψ(G, r) = {o ∈ S | ∀g ∈
G, (g, o) ∈ r}. (φ, ψ) is the so-called Galois connection between S and P. Notice
that, by construction, when (G, T ) is a formal concept, G and T are closed sets.

We used the D-Miner algorithm [14] to extract formal concepts under con-
straints: to avoid problems with outliers, we have considered formal concepts
with at least 2 biological situations and at least 10 genes (i.e., |G| ≥ 10 and
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a)

b)

Fig. 7. Average similarity scores w.r.t. different thresholds for “Max - X%Max”
(a) and “X%Max” (b)

|T | ≥ 2). The mined boolean contexts have been obtained by the “Max - X%
Max” and the “X% Max” over-expression encoding methods. We used the X
threshold values which have produced the highest similarity scores (see Fig. 7).
Then we compared all the collections extracted from each boolean context ob-
tained with the first method, with all the collections related to the second
method.

To compare pattern collections, we adapted the interactive self-similarity
metrics introduced in [17]. Such a measure has been studied for comparing two
collections of frequent itemsets extracted from two samples of a same data set.
We modified it to work on formal concepts extracted from different boolean
instances of a same data set.
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Fig. 8. Similarity scores w.r.t. density for “Max - X%Max”, “X%Max” and
random discretization methods on SAGE data

Given two boolean contexts r1 and r2 our pattern collection similarity mea-
sure is defined as follows:

Sim (C1, C2) =

∑
x∈{T1}∩{T2}

|φ(x,r1)∩φ(x,r2)|
|φ(x,r1)∪φ(x,r2)|

|{T1} ∪ {T2}| (5)

where C1 = {(G1, T1) | (G1, T1) is a concept} and C2 = {(G2, T2) | (G2, T2) is a
concept} are the collection of concepts extracted respectively from r1 and r2.

To better understand the meaning of this measure, we can see a toy example
based on the tables Tab. 1b and Tab. 1b. Let Cb and Cc denote the collection
of formal concepts extracted respectively from the boolean matrices in Tab. 1b
and Tab. 1c (with a non empty set of genes and a non empty set of situations).
The list of concepts contained in the two collections is:

Cb Cc

(Gb1, Tb1) = {a, c, e}, {2, 4, 5} (Gc1, Tc1) = {c}, {4, 5}
(Gb2, Tb2) = {b, f, g}, {1, 3, 5} (Gc2, Tc2) = {b}, {1, 3}
(Gb3, Tb3) = {b, d, f, g}, {1, 3} (Gc3, Tc3) = {b, d, f, g}, {1}
(Gb4, Tb4) = {a, c, e, h}, {4, 5} (Gc4, Tc4) = {a, c, e, h}, {4}
(Gb5, Tb5) = {a, b, c, e, f, g, h}, {5}

Clearly, only two sets of situations are shared by the two collections. They are
Tb3 = Tc2 = {1, 3} and Tb4 = Tc1 = {4, 5}. We get the following result:

Sim (Cb, Cc) =
|Gb3∩Gc2|
|Gb3∪Gc2| + |Gb4∩Gc1|

|Gb4∪Gc1|
7

=
1
4 + 1

4

7
= 0.07

Applying such a measure to our different collections gives the results collected
in Tab. 2.
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Max -X%Max

X %Max 40 45 50 55 60 65

2 0.009456 0.004353 0.001392 0.000412 0.000095 0.000016
5 0.147644 0.082908 0.028939 0.008899 0.002057 0.000334
8 0.093602 0.149451 0.146705 0.062045 0.017565 0.003033
10 0.033129 0.0663 0.131817 0.10268 0.039822 0.007915
15 0.003442 0.008034 0.026383 0.06342 0.097521 0.03868
20 0.000337 0.000792 0.0028 0.009689 0.035462 0.082248

Table 2. Self-similarity measures on different collections of concepts in SAGE
data

Interestingly, the self-similarity values are relatively high in the intersection
between the X values for which the ”X% Max” method takes the highest simi-
larity scores (TScore), and the X values for which the “Max -X% Max” method
has the same behavior (see Fig. 7). We notice how the measures are usually very
low (the highest one is about 0.15). It emphasizes the impact of the choice of
a relevant discretization method. The relevancy of the extracted patterns is not
only related to the preservation of some properties of the raw data set, but also
tightly related to the specific biological problem at hand.

Comparing dendrograms resulting from the clustering of different types of
derived boolean matrices enables to choose the “best” discretization method
and parameters for a given data set. When looking at the average similarity
scores for “Max - X% Max” and “X% Max” methods (see Fig. 7), we observe
either an optimal value or an asymptotic behavior. It could mean that the best
choice for the discretization threshold is a trade-off between the value for which
we get the best similarity score and the value for which the data mining tasks
remain tractable.

4 Robustness of the Measure

In Section 2, we proposed a method to assess gene expression property encoding.
We refined the measure presented in [16] by defining an average similarity score
which can take into account both gene and situation similarity scores. We now
discuss the choice of the reference tree, and thus the choice of the clustering
algorithm. Our idea is simple. If we apply a clustering algorithm with differ-
ent parameters to the same gene expression matrix, and then compare all the
resulting dendrograms using our method, the measures should be quite similar.

Even if there are methods that produce very similar results, and others that
produce totally different results, the overall behavior of the measures should be
identical, i.e., for each particular configuration of the clustering algorithm, the
mean of the similarity scores obtained by comparing its resulting dendrogram
with the dendrograms related to all the other configuration, should be high and
should not differ too much from the means computed in the same way for the
other configurations.
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To perform the experiments, we have used the three datasets described
in Section 2.3. Hierarchical clustering has been performed with the free soft-
ware HCE 2.0 (Hierarchical Clustering Explorer) available on-line on the site of
the Human-Computer Interaction Laboratory (University of Maryland)1. The
used clustering metrics have been the classical Euclidean distance and the cen-
tered/uncentered Pearson’s coefficients ([4]). Moreover, we used the four classi-
cal linkage methods (i.e., single, complete, average, average group linkage) and
Shneiderman’s 1-by-1 linkage method as well. For each data set, once the cluster-
ing process was completed, we have compared each of the resulting dendrograms
with all the other dendrograms. This has been done for both gene and situation
dendrograms. Due to space limitations, we provide only the average similarity
scores for the Pearson’s uncentered coefficient in the SAGE data set (see Tab. 3).

Average Similarity Scores - Pearson’s Uncentered

Metrics Linkage Average Avg.Group Complete Single Shneid.

Pearson’s Average 1 0.67314383 0.67284944 0.80330149 0.73423766
Uncentered Average Group 0.52915848 1 0.46868204 0.74420618 0.57334442

Complete 0.72280557 0.64047742 1 0.76910562 0.65782797
Single 0.37379950 0.44053048 0.33315260 1 0.38401040
Shneiderman 0.69095298 0.68635693 0.57626332 0.77659575 1

Pearson’s Average 0.73765387 0.63184005 0.57791403 0.76935144 0.63659514
Centered Average Group 0.51583859 0.71440599 0.71471718 0.73727445 0.58849284

Complete 0.63213575 0.60668335 0.71471718 0.73727445 0.58849284
Single 0.34417977 0.40501553 0.30670888 0.84271541 0.35339934
Shneiderman 0.60198327 0.64004493 0.51441451 0.75143098 0.7112918

Euclidean Average 0.22302538 0.26032110 0.21204947 0.34910165 0.22825697
Average Group 0.22822833 0.26402535 0.20887047 0.34531201 0.23794469
Complete 0.30246296 0.33102761 0.29277610 0.39226471 0.29859425
Single 0.15444260 0.18272967 0.14310903 0.28929635 0.15970716
Shneiderman 0.02970444 0.03884745 0.02795342 0.07367044 0.03641223

Table 3. Average similarity scores for clustering using Pearson’s uncentered
coefficient

Obviously, obtained values can be quite different. As expected, comparisons
between “Pearson’s coefficient” and “Euclidean distance” lead to rather low
similarity scores. It is interesting to notice that comparisons with the single
linkage method as reference leads to very high similarity scores. The same linkage
method, compared with other references, give rise to rather low similarity scores.
Our measure is indeed asymmetric.

We can compute the mean of the similarity scores obtained for each reference
(see Fig. 9). The scores are always higher than the computed scores we got when
comparing the dendrograms from the boolean matrices (see Section 2.3).

1 http://www.cs.umd.edu/hcil/hce/
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Fig. 9. Computed means of the average similarity scores for the three datasets

Finally, we have also considered the robustness of our metrics by looking
at the overall behavior. For each data set, we have computed the mean of the
measures shown in Fig. 9. To explain the content of this figure, let us remind all
the steps of our analysis. First we have computed the similarity scores between
all couples of computed dendrograms. Let Ti denotes the dendrogram resulting
of a particular combination of clustering parameters (i = 1..15). Let Sij denotes
the similarity score computed between each couple of dendrograms Ti and Tj

(Ti being the reference). Notice that in general Sij �= Sji. In Fig. 9 we have the
following values:

Si =

∑15
j=1 Sij

15
.

Let S
p

i denote the mean computed only on the dendrograms obtained by using
the two Pearson’s coefficient, i.e.,

S
p

i =

∑10
j=1 Sij

10
.

For each data set, we are interested in the following measures:

S =
∑15

i=1 Si

15
and S

p
=

∑10
i=1 S

p

i

10
.

Finally, we need to compute the standard deviations of the Si and S
p

i values:

σ =

√∑15
i=1

(
Si − S

)2

15
and σp =

√√√√
∑10

i=1

(
S

p

i − S
p
)2

10
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Fig. 10. Values of S and S
p

and related standard deviations σ and σp

The final results are summarized in Fig. 10. Notice that the values of the means
(S and S

p
) are near to 0.5 for every dataset, while the standard deviation is

generally small. Both these observation make us conclude that the dendrogram
resulting from the hierarchical clustering algorithm is a valid reference for our
problem of comparing different method of gene expression property encoding.
Moreover, the choice of the Pearson’s correlation coefficient for the execution of
the comparison (see Section 2.3), is shown to be adequate by the fact that the
means computed only on the dendrograms obtained through this metrics (S

p
)

are greater than the general means (S), while the related standard deviations
(σp) are similar or smaller than the general ones (σ).

5 Conclusion

We defined a new pre-processing technique that supports the evaluation and
assessment of different discretization techniques for a given gene expression data
set. The evaluation is based on the comparison of dendrograms obtained by clus-
tering various derived boolean matrices with the one obtained on the raw matrix.
The defined metrics is simple and we have validated its relevancy on different real
data sets. A validation on a biological problem has been considered in [16]. This
is a step towards a better understanding of a crucial pre-processing step when
we want to apply the very efficient techniques based on set pattern mining from
boolean data. Thanks to the exhaustive search for every pattern which satisfy
the user-defined constraints, set pattern mining techniques like constraint-based
mining of formal concepts appear to be complementary approaches to global
pattern heuristic mining techniques like clustering.
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