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Abstract. We are designing new data mining techniques on boolean
contexts to identify a priori interesting concepts, i.e., closed sets of
objects (or transactions) and associated closed sets of attributes (or
items). We propose a new algorithm D-Miner for mining concepts under
constraints. We provide an experimental comparison with previous
algorithms and an application to an original microarray dataset for
which D-Miner is the only one that can mine all the concepts.

Keywords: Pattern discovery, constraint-based data mining, closed sets,
formal concepts.

1 Introduction

One of the most popular data mining techniques concerns transactional data
analysis by means of set patterns. Indeed, following the seminal paper [1], hun-
dreds of research papers have considered the efficient computation of a priori
interesting association rules from the so-called frequent itemsets. Transactional
data can be represented as boolean matrices (see Figure 1). Lines denotes trans-
actions and columns are boolean attributes that enable to record item occur-
rences. For instance, in Figure 1, transaction t4 contains the items g5, g6, g7, g8,
g9, and g10.

The frequent set mining problem concerns the computation of sets of at-
tributes that are true together in enough transactions, i.e., given a frequency
threshold. The typical case of basket analysis (huge - eventually millions - num-
ber of transactions, hundreds of attributes, but sparse and lowly-correlated data)
can be handled by many algorithms, including the various Apriori-like algo-
rithms that have been designed during the last decade [2]. When the data are
dense and highly-correlated, these algorithms fail but the so-called condensed
representations of the frequent itemsets can be computed. For instance, efficient
algorithms can compute the frequent closed sets from which every frequent set
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Items
g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

t1 1 1 1 1 0 1 1 0 0 0
t2 1 1 1 1 0 0 0 0 1 1
t3 1 1 1 1 0 0 0 0 1 1
t4 0 0 0 0 1 1 1 1 1 1
t5 1 0 1 0 1 1 1 1 0 0

Fig. 1. Example of a boolean context r1

and its frequency can be derived without accessing the data [10,6,11,3,14]. Other
important applications concern datasets with only a few transactions, e.g., for
typical gene expression data where items denote gene expression properties in
biological situations. It is however possible to use the properties of Galois con-
nection to compute the closed sets on the smaller dimension and derive the closed
sets on the other dimension [12].

In this paper, we consider bi-set mining in difficult cases, i.e., when the data
is dense and when none of the dimensions is quite small. Bi-sets are composed
of a set of lines T and a set of columns G. T and G can be associated by various
relationships, e.g., the fact that all the items of G belong to each transaction of
T (1-rectangles). It is interesting to constrain further bi-set components to be
closed sets (also called maximal 1-rectangles or concepts [13]). Other constraints,
e.g., minimal and maximal frequency, can be used as well.
We propose an original algorithm called D-Miner that computes concepts under
constraints. It works differently from other concept discovery algorithms (see,
e.g., [8,4,9]) and (frequent) closed set computation algorithms. D-Miner can
be used in dense boolean datasets when the previous algorithms generally fail.
Thanks to an active use of the constraints, it enlarges the applicability of concept
discovery for matrices whose none of the dimensions is small. Section 2 contains
the needed definitions and a presentation of D-Miner. Section 3 provides an
experimental validation. Finally, Section 4 is a short conclusion.

2 D-Miner

Let O denote a set of objects or transactions and P denote a set of items or
properties. In Figure 1, O = {t1, . . . , t5} and P = {g1, g2, . . . , g10}. The trans-
actional data is represented by the matrix r of relation R ⊆ O × P. We write
(ti, gj) ∈ r to denote that item j belongs to transaction i or that property j
holds for object i.

The language of bi-sets is the collection of couples from LO × LP where
LO = 2O (sets of objects) and LP = 2P (sets of items).

Definition 1. A bi-set (T, G) is a 1-rectangle in r iff ∀t ∈ T and ∀g ∈ G then
(t, g) ∈ r. A bi-set (T, G) is a 0-rectangle in r iff ∀t ∈ T and ∀g ∈ G then
(t, g) /∈ r.
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Definition 2. (Concept) A bi-set (T, G) is a concept in r iff (T, G) is a 1-
rectangle and ∀T ′ ⊆ O\T, (T ∪ T ′, G) is not a 1-rectangle and ∀G′ ⊆ P\G,
(T, G ∪ G′) is not a 1-rectangle.

Notice that, by construction, both sets of a concept are closed sets and any al-
gorithm that computes closed sets can be used for concept discovery [12].
Given Figure 1, ({t1, t2, t3}, {g1, g2}) is a 1-rectangle in r1 but it is not a con-
cept. Twelve bi-sets are concepts in r1. Two of them are ({t1, t2, t3, t5}, {g1, g3})
and ({t2, t3}, {g1, g2, g3, g4, g9, g10}). Interesting data mining processes on trans-
actional data can be formalized as the computation of bi-sets whose set compo-
nents satisfy combinations of primitive constraints.

Definition 3. (Monotonic and anti-monotonic constraints) Given L a collec-
tion of sets, a constraint C is said anti-monotonic w.r.t. ⊆ iff ∀α, β ∈ L such
that α ⊆ β, C(β) ⇒ C(α). C is said monotonic w.r.t. ⊆ iff ∀α, β ∈ L such that
α ⊆ β, C(α) ⇒ C(β).

In A-priori like algorithms, the minimal frequency constraint (on LP) is used
to prune the search space. This constraint is anti-monotonic w.r.t. ⊆ on LP .
This constraint can be considered as monotonic on LO because when a set of
items is larger, the associated set of transactions is smaller.

Definition 4. (Specialization relation) Our specialisation relation on bi-sets
from L = LO ×LP is defined by (T1, G1) ≤ (T2, G2) iff T1 ⊆ T2 and G1 ⊆ G2.

We generalize the frequency constraints on this partial order ≤.

Definition 5. (Frequency constraints on concepts) A concept (T, G) satisfies a
constraint Ct(r, σ1, T ) (resp. Cg(r, σ2, G)) if |T | ≥ σ1 (resp. |G| ≥ σ2). These
constraints are both monotonic w.r.t. ≤ on LO × LP .

For example, the set of concepts (T,G) satisfying Cg(r1, 4, G)∧Ct(r1, 3, T ) (a
conjonction of monotonic constraints) is {({g1, g2, g3, g4}, {t1, t2, t3})}.

2.1 D-Miner Principle

D-Miner is a new algorithm for extracting concepts (T, G) under constraints.
It builds the sets T and G and it uses monotonic constraints simultaneously on
LO and LP to reduce the search space. A concept (T, G) is such that all its
items and objects are in relation by R. Thus, the absence of relation between
an item g and an object t generates two concepts, one with g and without t,
and another one with t and without g. D-Miner is based on this observation.
Let us denote by H a set of 0-rectangles such that it is a partition of the false
values (0) of the boolean matrix, i.e., ∀g ∈ P and ∀t ∈ O such that (t, g) 	∈ r,
it exists one and only one element (X, Y ) of H such that t ∈ X and g ∈ Y .
The elements of H are called cutters. H must be as small as possible to reduce
the depth of recursion and thus execution time. On another hand, one should
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not waste too much time to compute H. H contains as many elements as lines
in the matrix. Each element is composed of the attribute valued by 0 in this
line. Time complexity for computing H is in O (n × m) where n and m are the
dimensions of the matrix. Computing time is negligible w.r.t. the one of the
cutting procedure. Furthermore, using this definition makes easier the pruning
of 1-rectangles that are not concepts.

D-Miner starts with the couple (O,P) and then splits it recursively using
the elements of H until H is empty and consequently each couple is a 1-rectangle.
An element (a, b) of H is used to cut a couple (X, Y ) if a∩X 	= ∅ and b∩Y 	= ∅.
By convention, one defines the left son of (X, Y ) by (X\a, Y ) and the right son
by (X, Y \b). Recursive splitting leads to all the concepts, i.e., the maximal 1-
rectangles (see Example 1) but also some non-maximal ones (see Example 2).
We consider in Example 3 how to prune them to obtain all the concepts and
only the concepts.

We now provide examples of D-Miner executions. The use of monotonic
constraints on LO and LP is presented later. Notice that for clarity, sets like
{g1, g2} are written g1g2.

Example 1. Assume O = {t1, t2, t3} and P = {g1, g2, g3}. r2 is defined in Ta-
ble 1 (left). Figure 2 (left) illustrates D-Miner execution. We get 4 1-rectangles
that are the 4 concepts for this boolean context.

Table 1. Contexts r2 for Example 1 (left) and r3 for Examples 2 and 3 (right)

g1 g2 g3

t1 0 1 1
t2 1 1 1
t3 1 0 1

g1 g2 g3

t1 0 0 1
t2 1 0 1
t3 0 0 1

Example 2. Assume now r3 as given in Table 1 (right). Computing H provides
{(t1, g1g2), (t2, g2), (t3, g1g2)}. Figure 2 (right) illustrates D-Miner execution.
Some bi-sets are underlined and this will be explained in Example 3.

From Figure 2 (right), we can see that (t2, g2) and (t3, g1g2) from H are not
used to cut (t1t2t3, g3) because {g2} ∩ {g3} = ∅ and {g1g2} ∩ {g3} = ∅. The
computed collection of bi-sets is:

{(t1t2t3, g3), (t2, g1g3), (∅, g1g2g3), (t3, g3), (t2t3, g3)}

We see that (t3, g3) ≤ (t1t2t3, g3) and (t2t3, g3) ≤ (t1t2t3, g3) and thus these
1-rectangles are not concepts.

To solve this problem, let us introduce a new notation. Let r[T, G] denote the
reduction of r on objects from T and on items from G. When a couple (X, Y )
is split by a cutter (a, b) ∈ H, then (X\a, Y ) (the left son) and (X, Y \b) (the
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(t1t2t3, g1g2g3)

(t1, g1)

(t2t3, g1g2g3)

(t3, g2)

(t2, g1g2g3) (t2t3, g1g3)

(t1t2t3, g2g3)

(t3, g2)

(t1t2, g2g3) (t1t2t3, g3)

(t1t2t3, g1g2g3)

(t1, g1g2)

(t2t3, g1g2g3)

(t2, g2)

(t3, g1g2g3)

(t3, g1g2)

(∅,g1g2g3) (t3, g3)

(t2t3, g1g3)

(t3, g1g2)

(t2,g1g3) (t2t3, g3)

(t1t2t3, g3)

(t2, g2)

(t1t2t3, g3)

(t3, g1g2)

(t1t2t3, g3)

Fig. 2. Concept construction on r2 (left) and on r3 (right)

right son) are generated. By construction of H (a, Y \b) is a 1-rectangle which
is not necessarily maximal. If a concept (CX , CY ) exists in r[X\a, Y ] such that
CY ∩ b = ∅ then (CX ∪a, CY ) is a concept in r[X, Y ]. However (CX ∪a, CY ) is a
concept in r[X, Y \b] and consequently would be a son of the right son of (X, Y )
(see Figure 3). To avoid these non-maximal 1-rectangles, we have to enforce that
the property b ∩ Y 	= ∅ is always satisfied for all the previously used left-cutters.

0

b

X \ a

a

Y \ b

(Cx , Cy)

1

Fig. 3. Non-maximal 1-rectangle occurrence

Property 1: Let (X, Y ) be a leaf of the tree and HL(X, Y ) be the set of
cutters associated to the left branches of the path from the root to (X, Y ). Then
(X, Y ) is a concept iff it contains at least one item of each element of HL(X, Y ).
It means that when trying to build a right son (X, Y ) (i.e., to remove some
elements from Y ), we must check that ∀(a, b) ∈ HL(X, Y ), b ∩ Y 	= ∅. This is
called later the left cutting constraint.
This has been formally studied in [5] that contains correctness and completeness
proofs for D-Miner.

Example 3. We take the context used for Example 2 (see Table 1 on the right).
1-rectangles (t3, g3) and (t2t3, g3) are pruned using Property 1. (t3, g3) comes
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from the left cutting of (t1t2t3,g1g2g3) and then the left cutting of (t3, g1g2g3).
The items of (t3, g3) must contain at least one item of {g1, g2} and of {g2}, i.e.,
the precedent left cutter set of items. It is not the case and thus (t3, g3) is pruned.
(t2t3, g3) comes from just one left cutter: (t1,g1g2). It contains neither g1 nor g2.
Nodes that are underlined in Figure 2 (right) are pruned.

2.2 Algorithm

Before cutting a couple (X, Y ) by a cutter (a, b) in two couples (X\a, Y ) and
(X, Y \b), two types of constraints must be checked, first the monotonic con-
straints and then the left cutting constraint. Closeness property (maximality) is
implied by the cutting procedure.

D-Miner is a depth-first method which generates couples ordered by relation
≤. Monotonic constraints w.r.t. either O or P are used to prune the search
space: if (X, Y ) does not satisfy a monotonic constraint C then none of its sons
satisfies C and it is unnecessary to cut (X, Y ). For instance, we can push the
constraint C((T, G)) ≡ Ct(T ) ∧ Cg(G) where (T, G) is a bi-set, Ct(T ) ≡ |T | ≥ 5,
and Cg(G) ≡ |G| ≥ 4.

Algorithms 1 and 2 contain the pseudo-code of D-Miner. First, the set H
of cutters is computed. Then the recursive function cutting() is called.

Function cutting cuts out a couple (X, Y ) with the first cutter H[i] that sat-
isfies the following constraints. First, (X, Y ) must have a non empty intersection
with H[i]. If it is not the case, cutting is called with the next cutter. Before
cutting (X, Y ) in (X\a, Y ), we have to check the monotonic constraint on X\a
(denoted Ct(X\a)) to try to prune the search space. (a, b) is inserted into HL,
the set of cutters in the left cutting. Then cutting is called on (X\a, Y ) and
(a, b) is removed from HL. For the second cutting of (X, Y ), two constraints
have to be checked. First the monotonic constraint on Y \b (denoted Cg(Y \b)) is
checked. Therefore, d-miner constructs first an element (X, Y ) and then reduces
simultaneously X and Y to have the collection of concepts derived from (X, Y ).
Secondly, monotonic constraints can be applied on X and Y to prune the search
space: if α ≤ β and ¬ C(β) then ¬ C(α).

It is possible to optimize this algorithm. First, the order of the elements
of H is important. The aim is to cut as soon as possible the branches which
generate non-maximal 1-rectangles. H must be sorted by decreasing order of size
of the object components. Moreover, to reduce the size of H, the cutters which
have the same items are gathered: ∀(a1, b1), (a2, b2) ∈ H, if b1 = b2 then H =
H\{(a1, b1), (a2, b2)} ∪ (a1 ∪ a2, b1). If |P| > |O|, we transpose the data matrix
to obtain a set H of minimum size. The symmetry of our extractor on LO and
LP allows to transpose the matrix without loosing the possibility of using the
constraints. Indeed, in some contexts where there are few objects and many
items, we first perform a simple transposition like in [12].
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Algorithm 1: D-Miner

Input : Database r with n lines and m columns, O the set of objects, P
the set of items, Ct and Cg are monotonic constraints on O and P.
Output : Q the set of concepts that satisfy Ct and Cg

HL ← empty()
H and Hsize = |H| are computed from r;
Q ← cutting((O, P), H, 0, Hsize, HL);

Algorithm 2: cutting

Input: (X, Y ) a couple of 2O × 2P , H the list of cutters, i the number
of iterations, Hsize the size of H, HL a set of precedent cutters in left
cuttings, Ct monotonic constraint on O, Cg monotonic constraint on P.
Output: Q the set of concepts that satisfy Ct and Cg

(a, b)← H[i]
If (i ≤ Hsize − 1) // i-th cutter is selected

If ((a ∩X = ∅) or (b ∩ Y = ∅))
Q ← Q∪ cutting((X, Y ), H, i + 1, Hsize, HL)

Else
If (Ct(X\a) is satisfied)

HL ← HL ∪ (a, b)
Q ← Q∪ cutting((X\a, Y ), H, i + 1, Hsize, HL)
HL ← HL\(a, b)

If (Cg(Y \b) is satisfied ∧ ∀(a′, b′) ∈ HL, b′ ∩ Y \b 	= ∅)
Q ← Q∪ cutting((X, Y \b), H, i + 1, Hsize, HL)

Else
Q ← (X, Y )

Return Q

3 Experimental Validation

We compare the execution time of D-Miner with those of Closet [11], Ac-
Miner [6] and Charm [14] in three datasets. Closet, Charm and Ac-Miner
compute closed sets under a minimal frequency constraint, i.e., the frequent
closed sets. Due to Galois connection, in a given dataset, the number of closed
sets in LO is the number of closed sets in LP . For a fair comparison, we trans-
pose the matrices to have a smaller number of columns for Closet, Ac-Miner
and Charm and to have a smaller number of lines for D-Miner. In the three
first experiments, we compare the effectiveness of the four algorithms when com-
puting the collection of closed sets under a minimal frequency constraint. We
used Zaki’s implementation of Charm and Bykowski’s implementations of Ac-
Miner and Closet [7]. In all the following figures, the minimal frequencies are
relative frequencies.
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First, we have studied the performance of D-Miner for computing the fre-
quent closed sets from benchmark datasets available on line at IBM Almaden1

and the UCI repository. All extractions have been performed on a Pentium III
(450 MHz, 128 Mb). We have used the benchmark “Mushroom”. Its derived
boolean context contains 8 124 lines and 120 columns. The needed execution
time (in seconds) to obtain the frequent closed sets is shown on Figure 4 (left).
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Fig. 4. Mushroom (left) and Connect4 (right)

The four algorithms can compute every closed set and thus all concepts
(minimum frequency 0.0001) within a few minutes. Indeed, the lowest frequency
threshold corresponds to at least 1 object. Once every closed set on one dimension
is computed, the associated concept is obtained easily. The execution time of
Closet increases very fast compared to the three others.

Next, we considered the benchmark “Connect4”. The derived boolean context
contains 67 557 lines and 149 columns. The execution time to obtain frequent
closed sets is shown on Figure 4 (right). Only Charm and D-Miner can extract
concepts with minimal frequency equals to 0.1 (10%). D-Miner is almost twice
faster than Charm on this dataset.

We now provide an experimental validation on an original biological dataset
that contains 104 lines and 304 columns. For the purpose of this paper, an
important information is that its density is high: 17 % of the cells contain the
value true. This is a gene expression dataset that can not be described further
due to space limitation (see [5] for details). The execution time (in seconds) for
computing frequent closed sets with Closet, Ac-Miner, Charm and D-Miner
is shown on Figure 5 (left).

D-Miner is the only algorithm which succeeds in extracting all the con-
cepts. These data are in fact very particular: there are very few concepts before
the frequency 0.1 (5 534 concepts) and then the number of concepts increases
very fast (at the lowest frequency threshold, there are more than 5 millions of
concepts). In this context, extracting putative interesting concepts needs for a
1 See www.almaden.ibm.comcsquestdemos.html.



Constraint-Based Mining of Formal Concepts in Transactional Data 623

 0

 200

 400

 600

 800

 1000

0.010.020.030.040.050.060.070.080.090.1
Minimal frequency

closet
ac-miner
d-miner
charm

 0
 0.01

 0.02
 0.03

 0.04
 0.05

 0.06
 0.07

sigma_2 on G

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

sigma_1 on T

 1
 10
 100
 1000
 10000
 100000
 1e+06

nb. concepts

Fig. 5. A microarray dataset analysis

very low frequency threshold, otherwise almost no concept is provided. Conse-
quently D-Miner is much better than the other algorithms because it succeeds
to extract concepts when the frequency threshold is lower than 0.06 whereas it
is impossible with the others.

End users, e.g., biologists, are generally interested in a rather small subset of
the extracted collections. These subsets can be specified by means of user-defined
constraints that can be checked afterwards (post-processing) on the whole col-
lection of concepts. It is clear however that this approach leads to tedious or even
impossible post-processing phases when, e.g., more than 5 millions of concepts
are computed (almost 500M bytes of patterns). It clearly motivates the need for
constraint-based mining of concepts.

Let us consider the computation of the bi-sets that satisfy two minimal fre-
quency constraints on LO and LP : one on item (gene) sets and the other one on
objects (biological situations). In Figure 5 (right), we plot the number of con-
cepts obtained using both Ct(r, σ1, T ) and Cg(r, σ2, G) when σ1 and σ2 vary. It
appears that using only one of the two constraints does not reduce significantly
the number of extracted concepts (see values when σ1 = 0 or σ2 = 0). However,
when we use simultaneously the two constraints, the size of the concept collec-
tion decreases strongly (the surface of the values forms a basin). For example,
the number of concepts verifying |G| ≥ 10 and |T | ≥ 21 is 142 279. The number
of concepts verifying |G| ≥ 10 and |T | ≥ 0 is 5 422 514. The number of concepts
verifying |G| ≥ 0 and |T | ≥ 21 is 208 746. The gain when using simultaneously
both constraints is significant.

4 Conclusion

Computing formal concepts has been proved useful in many application domains
but remains extremely hard from dense boolean datasets like the one we have
to process nowadays for gene expression data analysis. We have described an
original algorithm that computes concepts under monotonic constraints. First,
it can be used for closed set computation and thus concept discovery. Next, for
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difficult contexts, i.e., dense boolean matrices where none of the dimension is
small, the analyst can provide monotonic constraints on both set components of
desired concept and the D-Miner algorithm can push them into the extraction
process. Considering one of our applications that is described in [5], we are now
working on the biological validation of the extracted concepts. We have also to
compare D-Miner with new concept lattice construction algorithms like [4].
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