
Approximating a set of approximate inclusion
dependencies

Fabien De Marchi1 and Jean-Marc Petit2

1 LIRIS, FRE CNRS 2672, Univ. Lyon 1, 69622 Villeurbanne, France
2 LIMOS, UMR CNRS 6158, Univ. Clermont-Ferrand II, 63177 Aubière, France

Abstract. Approximating a collection of patterns is a new and active area of
research in data mining. The main motivation lies in two observations : the number
of mined patterns is often too large to be useful for any end-users and user-defined
input parameters of many data mining algorithms are most of the time almost
arbitrary defined (e.g. the frequency threshold).

In this setting, we apply the results given in the seminal paper [11] for frequent
sets to the problem of approximating a set of approximate inclusion dependencies
with k inclusion dependencies. Using the fact that inclusion dependencies are ”rep-
resentable as sets”, we point out how approximation schemes defined in [11] for
frequent patterns also apply in our context. An heuristic solution is also proposed
for this particular problem. Even if the quality of this approximation with respect
to the best solution cannot be precisely defined, an interaction property between
IND and FD may be used to justify this heuristic.

Some interesting perspectives of this work are pointed out from results obtained
so far.

1 Introduction

In the relational model, inclusion dependencies (INDs) convey many informa-
tion on the data structure and data semantics, and generalize in particular
foreign keys [1].

Their utility is recognized for many tasks such as semantic query opti-
mization [3], logical and physical database design and tuning [18,2,15,5] or
data integration [21]. In practice, the implementation of these technics is gen-
erally made impossible by the ignorance of satisfied INDs in the database.
One can then be interested in the problem of discovering INDs satisfied in a
database [10].

Some algorithms have been recently proposed for this data-mining task
[4,12,6]. They output either the whole set of satisfied INDs or only the largest
satisfied INDs from which the whole collection of INDs can be inferred. Nev-
ertheless, the interest of discovering only satisfied INDs may be limited in
practice: indeed, algorithms being applied on real-life databases, many of
them can be qualified as ”dirty” databases since constraints may not have
been defined. To take into account some data inconsistencies, algorithms have
been extended to the discovery of approximate inclusion dependencies [4,6].
The idea is to define an error measure from which approximate INDs can be
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rigorously defined with respect to an user-defined threshold. The proposed
algorithms find exactly all INDs having an error measure lower than the
threshold.

Moreover, approximating a collection of patterns is a new and active area
of research in data mining. The motivating remarks done in [11] for approx-
imating a collection of frequent itemsets apply for approximate INDs :

1. the output depends on an user-defined threshold. In general, it is almost
arbitrary chosen by a user and therefore justifies the approximation of
the output.

2. a complete result can be prohibitive in certain cases, since the potential
number of satisfied INDs might be very large. For instance, large set of
constraints are going to be useless for experts and/or database adminis-
trators in order to analyze/maintain the database.

In this paper, we apply the results given in the seminal paper [11] for
frequent sets to the problem of approximating a set of approximate inclu-
sion dependencies in a database. Using the fact that inclusion dependencies
are ”representable as sets” [20,6], we point out how approximation schemes
defined in [11] for frequent patterns also apply in our context. An heuristic
solution is also proposed for this particular problem. Even if the quality of
this approximation with respect to the best solution cannot be precisely de-
fined, an interaction property between IND and FD may be used to justify
this heuristic.

Some interesting perspectives of this work are pointed out from results
obtained so far.

This work is integrated in a more general project devoted to DBA mainte-
nance and tuning, called ”DBA Companion” [5]. We have proposed methods
for discovering functional dependency and keys, inclusion dependencies and
foreign key and for computing small database samples preserving functional
and inclusion dependencies satisfied in the database. A prototype on top of
Oracle RDBMS has been developed from these techniques [16].

Paper organization. Section 2 points out some preliminaries of this work.
Section 3 gives the main result of this paper on the approximation of a set
of approximate INDs. Related works are discussed in section 4. We conclude
in section 5.

2 Preliminaries

We assume the reader is familiar with basic concepts from relational database
theory (see e.g. [19,14]).

An inclusion dependency (IND) over a database schema R is a statement
of the form Ri[X] ⊆ Rj [Y ], where Ri, Rj ∈ R, X ⊆ Ri, Y ⊆ Rj The size (or
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arity) of an IND i = R[X] ⊆ R[Y ], noted |i| is such that |i| = |X| = |Y |. We
call unary inclusion dependency an IND of size 1.

An inclusion dependency is said to be satisfied in a database, if all values
of the left hand-side appears in the right-hand side. If I1 and I2 are two
sets of INDs, I1 is a cover of I2 if I1 |= I2 (this notation means that each
dependency in I2 holds in any database satisfying all the dependencies in I1)
and I2 |= I1.

To evaluate approximate INDs, an error measure called g′
3 has been de-

fined in [17]:

g′
3(R[X] ⊆ S[Y ],d) = 1− max{|πX(r′)| | r′ ⊆ r, (d − {r}) ∪ {r′} |= R[X] ⊆ S[Y ]}

|πX(r)|

Intuitively, g′
3 is the proportion of distinct values one has to remove from

X to obtain a database d′ such that d′ |= R[X] ⊆ S[Y ]. An INDs i is said
to be approximately satisfied if g′

3(i) is lower than a given threshold.
Given i = R[X] ⊆ S[Y ] and j = R[X ′] ⊆ S[Y ′] two INDs over a database

schema R, we say that i generalizes j (or j specializes i), denoted by i � j,
if X ′ =< A1, ..., An >, Y ′ =< B1, ..., Bn >, and there exists a set of index
k1 < ... < kl ∈ {1, ..., n} with l ≤ n such that X =< Ak1 , ..., Akl

> and Y =<
Bk1 , ..., Bkl

> [20,4]. For example, R[AC] ⊆ S[DF ] � R[ABC] ⊆ S[DEF ],
but R[AB] ⊆ S[DF ] 6� R[ABC] ⊆ S[DEF ].

Let d be a database over R, the approximate satisfaction of INDs is
monotone with respect to � since i � j ⇒ g′

3(i) ≤ g′
3(j) [6].

For an precise definition of ”problem representable as sets”, the reader is
referred to the theoretical framework defined in [20]. In [6], we detailed how
an isomorphism can be defined between a set of IND under the partial order
� and a set of unary INDs under the partial order ⊆. In other words, INDs
are said to be representable as sets.

Basically, given an IND i, the representation as sets of i is defined by
f(i) = {j|j � i, |j| = 1}, the function f being bijective.

A set I of INDs is downwards closed if ∀i ∈ I, we have j � i ⇒ j ∈ I.
A downwards closed set I can be expressed by its positive border or border,
denoted by Bd+(I), which is the set of the most specialized elements in I.

3 Approximating a set of INDs

The data mining problem underlying this work can be stated as follows:

[All-ApproxIND problem] Given a database d and a user-specified
threshold ε, find the set of approximate INDs i such that g

′

3(i) ≤ ε.

Algorithms do exist to perform this task [4,6] and we assume that such a
set of approximate INDs is available.

In this paper, we are only interested in the approximation problem of such
a set, denoted by Approx-All-ApproxIND, and defined as follows:
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[Approx-All-ApproxIND problem] Given a downwards closed set I of
approximate INDs, find a set S of k INDs approximating I as well as
possible.

We only consider as input the whole set I of INDs answering the All-ApproxIND
problem. Note that the positive border of I could have been considered in-
stead of I itself [11].

We extend the propositions made in [11] in our context: First, a natural
way of representing a set of INDs is to consider k INDs from which all more
general INDs are generated. Before going into much details, the following
notations will be needed: Let i be an IND. The downwards closed set of i,
denoted by ρ(i), is defined by ρ(i) = {j|j � i}.

Let I1, . . . Ik be a set of k INDs from I. An approximation of I can be
represented with S(I1, . . . Ik) (or simply S whenever I1, . . . Ik is clear from
context) defined by

S(I1, . . . Ik) =
k⋃

i=1

ρ(Ii)

S(I1, . . . Ik) is said to be a k-spanned set of INDs.
Second, we have to decide how to define S with respect to I. Two main

alternatives exist: either elements of S have to belong to I or can be chosen
outside I. For the problem of approximating a set of approximate INDs, a
natural choice seems to be the first alternative, i.e. S ⊆ I or more accurately,
S ⊆ Bd+(I). This choice is justified by the ”global structure” of a set I
answering the All-ApproxIND problem, leading from an interaction property
between FD and IND. This point is discussed in much details in the following
subsection.

Third, in order to define the approximation made between I and S, we
borrow the coverage measure C(S, I) [11] defined as the size of the intersection
between S and I. Since S ⊆ I, maximizing the coverage measure is equivalent
to maximazing the size of S.

Describing approximatively the downwards closed set I of approximate
INDs with a set S of k INDs can be defined as follows:

• the size of S is equal to k, usually much smaller than the size of Bd+(I),
• for some i ∈ I,∃j ∈ S such that i � j, i.e. S is a succinct representation

of I,
• for some i ∈ I, 6 ∃j ∈ S such that i � j, i.e. some information is lost,

With the assumptions made, the problem Approx-All-ApproxIND can
now be re-formulated as follows:

Given a downwards closed set I of approximate INDs, find a k-
spanned set S of INDs such that C(S, I) is maximized.

Theorem 1. Approx-All-ApproxIND is NP-hard.
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Proof. This problem is shown to be NP-hard for frequent itemsets [11]. Since
INDs are representable as sets of unary INDs, there is a bijective function
between a set of INDs and a set of set of unary INDs. The transformation
is clearly polynomial. Now, if we see unary INDs as items, and set of unary
INDs as itemsets, any set of INDs can be transformed into a set of itemsets.
In the same way, any set of itemsets can be transformed into a set of unary
INDs. The Approx-All-ApproxIND problem is thus equivalent to the same
problem for frequent itemsets.

Let I be a downwards closed set of approximate INDs and let S∗ be an
optimal solution for the problem Approx-All-ApproxIND.

Theorem 2. A k-spanned set S of INDs can be found in polynomial time
such that

C(S, I) ≥ (1− 1
e
)C(S∗, I)

Proof. Since INDs are isomorphic to the set of unary INDs, the problem
can be posed in term of set theory. Within the framework of set theory,
the problem turns out to be an instance of the Max k-Cover, from which a
greedy algorithm does exist and provide a (1 − 1

e ) approximation ratio to
Max k-Cover [9]. A solution can be computed with the greedy algorithm and
translated back to INDs since the function is bijective.

To sum up, despite the NP-hardness result, polynomial-time approxima-
tion algorithms can be used effectively to answer our Approx-All-ApproxIND
problem.

3.1 A heuristic

Since spanners of a set I of INDs are chosen within the border of I, one may
be tempted to select the k first IND whose arity is larger in the border of I.

We now point out that, in practice, a set I of (approximatively) satisfied
INDs has a particular structure. This consideration leads from a well-known
interaction between INDs and functional dependencies, given in Table 1.

R[XY ] ⊆ S[UV ]
R[XZ] ⊆ S[UW ] ⇒ R[XY Z] ⊆ S[UV W ]

S : U → V

Table 1. An interaction between FD and IND

Intuitively, consider two INDs i and j of large arity. Let U be the set of
common attributes in the right-hand sides of i and j. The more large |U |
is, the more U is likely to be a left hand side of functional dependencies. In
other words, a new IND is likely to be satisfied from the property given in
Table 1, and i and j are not anymore in the border of I.
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As already discussed, this reasoning has a very strong impact on the
global structure of the downwards closed set I of INDs to be approximated.
It cannot be compared with the global structure of a downwards closed set of
frequent sets where no similar property (of that given in Table 1) does exist.
We derive two points from this consideration:

• There is no need to define S outside I. Indeed, an IND i 6∈ I would be
interesting if it covers a great number of elements of I and only a few
number of elements not in I. But we argue that, from property in Table 1,
i has great chances to belong to I in this case.

• We suggest the following very simple heuristic:
Let Sk be a subset of I made up of the k largest INDs of I

Such a set is straightforward to compute from I and offers an approximate
solution of I.

Hopelessly, the solution Sk cannot be compared with other solutions ob-
tained so far. Nevertheless, due to the property 1, we conjecture that the
solution Sk is also a good approximation of I.

Remark also that this heuristic gives the best solution, i.e. Sk = S∗,
whenever the border of I is made up of ”disjoint” INDs, i.e. no attribute
appears in more than one IND of Bd+(I). Nevertheless, this case seems to be
a very constrained one in practice.

Another justification comes from experiments performed on two data min-
ing problems: IND discovery [6] and maximal frequent item set discovery [7].
From our experimental tests, we have studied the global structure by doing a
quantitative analysis of the positive and the negative borders of the result. In
all cases, the global structure was quite different, justifying both our choice
to define S from I and our heuristic.

4 Related works

In [11], authors introduce a framework for approximating a collection of fre-
quent sets by a set of k sets. They consider two cases for choosing their
approximation: either from the collection, or outside the collection. More-
over, they extend their results by considering the positive border of their
collection of frequent sets instead of the whole collection.

Another point of view for approximating frequent sets consists in com-
puting the top-k most frequent sets, as proposed in [8] for frequent closed
sets.

In the setting of approximate IND discovery, [13] proposed a set of heuris-
tics. The basic idea is to improve the pruning by considering some criteria
from which interestingness of INDs can be evaluated, for example using the
number of distinct values. In [17], approximation is seen with respect to
SQL workloads, i.e. join path expressions reveal ”interesting” INDs. These
approaches are rather empirical though.
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5 Conclusion and perspectives

We studied in this paper approximating techniques of a set of approximate
inclusion dependencies in the following setting: what are the k INDs that
best approximate the whole set of INDs ? From results given in [11] for
frequent itemsets, we focus on two of them : 1) the problem of finding the
best approximation spanned by k sets is NP-hard and 2) an approximation
can be computed in polynomial time within a factor of (1− 1

e ) with respect
to the best solution. We mainly show in this paper how these results may
apply for approximating a set of INDs with k INDs. These results follow from
the fact that INDs are ”representable as sets”, i.e. the search space of IND
is isomorphic to a subset lattice of some finite set.
We proposed also an heuristic exploiting the global structure of a set of
approximate INDs satisfied in a database. Since no formal comparison can
be made with respect to the best solution as we did before, we plan to do in
future work experiments in order to evaluate the quality of this heuristic.

An interesting corollary may be also easily deduced since any problem
representable as sets can indeed re-used the propositions made in [11] as for
example functional dependencies or learning boolean functions.

¿From a data mining point of view, algorithms for discovering approx-
imation of discovered patterns from the data have to be designed, instead
of discovering first the set of all patterns and then applying approximation
schemes.


