
Some remarks on self-tuning logical database design

Fabien De Marchi1 Mohand-Said Hacid1
1LIRIS, FRE 2672 CNRS

Univ. Claude Bernard Lyon 1
69622 Villeurbanne cedex France

{demarchi|mshacid}@liris.univ-lyon1.fr

Jean-Marc Petit2

2LIMOS, UMR 6158 CNRS
Univ. Clermont-Ferrand II

63173 Aubìere, France
jmpetit@math.univ-bpclermont.fr

Abstract

Whereas self-tuning physical database design has re-
ceived a lot of attention recently, self-tuning logical
database design seems to be under-studied.

Roughly speaking, database administrators (DBA) have
to maintain on a daily basis ”efficient databases”, i.e.
databases for which SQL queries have to perform effi-
ciently for end-users, while keeping ”coherent” databases,
i.e. databases without update problems. Moreover, the huge
number of null values occurring in practice may incur a sig-
nificant overhead on his daily work, either to optimize the
memory layout or to maintain (or design new) SQL queries.

In order to reach a trade-off between the desire to main-
tain efficient databases and coherent databases, we pro-
pose a framework in which a database should be able to
self-tuning its logical database schema with respect to SQL
workloads and the data themselves.

We discuss the main points of this framework, its feasi-
bility and its relationships with some data mining problems.

1. Introduction

Today’s Relational DataBase Management Sys-
tems (RDBMS) require DataBase Administrators (DBA) to
tune more and more parameters for an optimal use of their
databases. Due to the difficulty of such a task and since a
large number of companies cannot justify a full-timeDBA

presence, simplifying administration ofRDBMS is becom-
ing a new challenge for the database community: The idea
is to have databases adjusting themselves to the characteris-
tics of their applications [6]. For example, in the context of

theAutoAdminproject [24], physical database tuning is in-
vestigated to improve performances of the database, e.g. in-
dex definitions or automatic statistic gathering from SQL
workloads [3]. In their latest versions, the main com-
mercial RDBMS integrate auto-administration aspects
[28, 8, 3].

Whereas self-tuning physical database design has re-
ceived a lot of attention recently, self-tuning logical
database design seems to be under-studied.

Roughly speaking, database administrators (DBA)
have to maintain on a daily basis ”efficient databases”,
i.e. databases on which main SQL queries have to per-
form efficiently for end-users, while keeping ”coherent”
databases, i.e. databases without update problems. More-
over, the huge number of null values occurring in practice
may incur a significant overhead on his daily work, ei-
ther to optimize the memory layout or to maintain (or
design new) SQL queries.

In order to reach a trade-off between the desire to main-
tain efficient databases and coherent databases, we propose
in this paper a framework in which a database should be
able to self-tuning (or self-restructuring) its logical database
schema with respect to SQL workloads (i.e. a set of SQL
queries performed over the database server during a pe-
riod of time) and the data themselves. We discuss the main
points of this framework, its feasibility and its relationships
with some data mining problems.

This discussion is a natural extension of our previous
works (see [11] for a survey), in which we proposed a
project called DBA Companion devoted to the understand-
ing of databases at the logical level. A prototype was devel-
oped [18] on top of any database running under Oracle.

Paper organization: Section 2 recalls some principles of



database design and emphasized two opposite goals. Sec-
tion 3 explains the main tradeoffs to be made for logical
database design with respect to either SQL workloads or the
data themselves or both. Section 4 introduces the main is-
sues we are faced with when database restructuring has to
be made. Section 5 concludes the paper and sketches some
perspectives of this work.

2. Motivations

Self-tuning logical database design is a necessary step
when the database has to evolve for instance to better match
user’s requirements or when hardware/software evolution
has to be performed. Many other database applications,
such as database reverse engineering, data interoperability
or semantic query optimization to mention a few could take
advantage of logical self-tuning. Indeed, they assume that
the database schema (tables + constraints) is up to date and
data semantics has not been lost over the time. However,
there is no guarantee at all such kind of knowledge is a pri-
ori known [9, 11].

From a database design perspective, most of existing
databases have been set up using a conceptual approach
for database design (for a survey on conceptual DB de-
sign, the reader is referred to [5]). Once a logical database
schema has been generated from a conceptual data schema,
a physical database schema has to be derived using some
DBMS-dependent language. Physical database design such
as data layout on external storage devices or indexes def-
inition is out of the scope of this paper: rather, we pre-
fer to focus on logical database design, i.e. the actual lay-
out of attributes, tables and constraints of a database. Dur-
ing DB design, the translation from conceptual schema to
relational schema is considered as rather straightforward.
Nevertheless, de-normalization techniques may occur dur-
ing this translation with respect to two main criteria:

• update problems or data redundancies, i.e. breaking
the Boyce-Codd Normal Form (BCNF) or third nor-
mal form (3NF) for some schema. A huge amount of
work has been done in the 80’s to define normal forms
with respect to functional dependencies, inclusion de-
pendencies and multivalued dependencies (see for in-
stance the book [1, 16] for a comprehensive survey).

• null values. The presence of NULL values can be
considered as such as a conceptual database design
problem [5, 23] and their occurrence are often under-
estimated at the database design time. In practice, null
values are quite common in databases since they are
very convenient to express many different kinds of in-
complete information (no less than fourteen interpre-
tations were given in [4]). Moreover, they turn out
to complexify the design of SQL queries, especially
when null values appear on join attributes.

Remark that the more the database is normalized, the
more the lenght ofjoin paths might be large (incurring
costly join operations) and the less null values do appear.

3. Opposite goals

Roughly speaking, a physical database schema without
data redundancy can be either an ”efficient” database at the
cost of having a lot of null values on join attributes or a ”null
free database” at the cost of performing more joins to per-
form equivalent SQL queries.

3.1. Maintaining coherent database

For logical database design, many options do exist within
the spectrum of BCNF: different logical DB schemas may
be free of data redundancy problems – i.e. they comply with
BCNF wrt their FD – while different with respect to null
values or join conditions.

Example 1Let us consider two very simple databases
db1 and db2 depicted in Table 1 and Table 2 respec-
tively. Both are defined over the same attribute set
U = {a1, a2, a3, b1, b2, b3, c1, c2} and comply with the
same constraints (functional dependencies and inclu-
sion dependencies are given in Table 1 and 2).
Note that in our example attribute keys are underlined and
foreign keys correspond to left-hand sides of inclusion de-
pendencies.
At the conceptual level, these two databases implement a
one-to-manybinary relationship-typeC with two attributes
c1, c2 between two entity-typesA and B with attributes
a1, a2, a3 andb1, b2, b3 respectively (cf. Figure 1).
Clearly, db1 and db2 are equivalent with respect to func-
tional dependencies, i.e. they are both in BCNF without lost
of FD. Nevertheless, they differ as follows:

• db1 may involve more join conditions thandb2 but no
null values may arise on duplicated attributesa1 and
b1 of C.

• db2 may be more efficient thandb1, but null values oc-
cur on duplicated attributesb, c1 and c2 of A. Such
null values can never appear indb1 due to its database
structure.

1C

c1, c2

b1
b2
b3

B
a1
a2
a3

A
N

Figure 1. One to many relationship-type

2



A a1 a2 a3

1 0 1
2 0 3
3 1 2
4 2 5

B b1 b2 b3

0 2 2
1 1 1

C a1 b1 c1 c2

1 1 ǫ 1
2 0 1 ǫ

3 1 ǫ ǫ

I = {C[a1] ⊆ A[a1], C[b1] ⊆ B[b1]}
F = {a1 → a2a3b1c1c2, b1 → b2b3}.

Table 1. The database db1

db2

A a1 a2 a3 b1 c1 c2

1 0 1 1 ǫ 1
2 0 3 0 1 ǫ

3 1 2 1 1 1
3 1 2 ǫ ǫ ǫ

4 2 5 ǫ ǫ ǫ

B b1 b2 b3

0 2 2
1 1 1

I = {A[b1] ⊆ B[b1]}
F = {a1 → a2a3b1c1c2, b1 → b2b3}.

Table 2. The database db2

2

We restrict our attention on the problem of null val-
ues. Occurrences of null values are quite common in
real life databases and are known to be a major diffi-
culty for database programmers when they have to write
SQL queries:

• On duplicated attributes (i.e. attributes involved in
join paths): they can be a nightmare when deal-
ing with joins, specific RDBMS functions, etc. Du-
plicated attributes are exactly those attributes which
enable attribute-oriented models such as the rela-
tional model to simulate constructor-oriented models
such as Entity-Relationship models.

• On non-duplicated attributes: Most of the time, null
values were missing at the insertion time of a tuple, but
such values are not used anymore to navigate through
the database schema. These attributes are descriptive
only, they are defined within a relation schema and
convey part of the information or semantics of this re-
lation schema. Null values on such attributes are not
truly challenging for designing SQL queries.

Moreover, the presence of NULL values is very often a
big issue in a knowledge discovery in database process [13],
often considered by the expert during the pre-processing
phase. Obviously, such treatments might have a significant
impact on the discovered knowledge and on the efficiency
of the data mining algorithms being used.

Let us consider the following example to show how the
database structure influences the number of null values.

Example 2From the previous example, let us assume that
the size ofA,B andC are as follows:106 tuples inA, 104

in B and102 in C.

If we focus on the number of null values betweendb1 and
db2, we get thatdb2 has much more null values thandb1

has.
Let nulldbi

be the overall number of null values occurring
on dbdbi

, i = 1, 2. From our example, we get the following
relationship between these two numbers:

nulldb2
= nulldb1

+ 3(106 − 100)

since null values onb1, c1, c2 automatically appears in the
relationA of db2. In this setting, we say thatdb1 is a null
free databaseon duplicated attributes. 2

Clearly, to get a null free database on duplicate attributes
as db1 does, the price to pay is that the length of join
paths tends to be maximized, i.e. the performances of SQL
queries may suffer.

As shown in the previous example, the overall number
of null values in a database might be dominated by null val-
ues occurring on such attributes. We plan to conduct experi-
ments on publicly available databases to assess this remark.

Clearly, the choice between these different solu-
tions is difficult to be done at the database design time.
A challenging issue for self-tuning databases is to make
a RDBMS able to guide a DBA for self-tuning logi-
cal database schemas.

3.2. Maintaining efficient databases

In that case, there are two main options:

• Reducing length join paths without sacrificing normal
form based on functional dependencies such as BCNF
or third normal form (as shown in previous examples).

• Reducing length join paths by introducing data redun-
dancy (2NF, 1NF)

3



3.2.1. Efficient DB without data integrity prob-
lems The aim of this alternative is to maintain BCNF or
3NF schemas whileminimizing the lenght of join paths.

Example 3 From our previous example, the database
db2 complies with this principle. As expected, the num-
ber of relation schemas and inclusion dependencies de-
creases, whereas null values arise on attributesb1, c1, c2 in
A. 2

To sum up, such kind of logical database schemas is of-
ten chosen to produce physical database schemas at DB de-
sign time, its main advantage being to minimize the length
of join paths, and thus to be rather efficient. The often mis-
understood problem of such schemas concerns the number
of null values which can be generated once the database is
operational (cf Example 2). For database designers, it might
not be an important issue at database design time but that
could become a nightmare for database programmers who
have to devise SQL queries in presence of null values on du-
plicated attributes.

3.2.2. Efficient DB with data integrity problems One
may be tempted to go a step beyond in order to avoid costly
join operations: in that case, data integrity problems willin-
evitably occur due to update anomalies.

Example 4
The Table 3 shows a fully denormalized databases in which
all kind of updates anomalies may occur due to data redun-
dancy.

2

4. How to reach a compromise?

We argue that many choices made at the DB design time
may be wrong once the database is operational. In order to
perform the self-tuning of logical database schema, a com-
promise has to be reached between opposite goals.

In the spirit of [26], we argue that a good design cannot
be obtained at database design time: too many parameters
have to be taken into account at an early stage of the design,
specifically those related to application programs accessing
the database. Nevertheless, an ”optimal design” could be
defined and obtained with respect to the database accesses
as given by SQL workloads and the data themselves.

We argue thatSQL workloads could be used to tune
the database design of operational databases since they of-
fer a nice setting in which logical database tuning can be
treated objectively - with respect to SQL workloads - in-
stead of subjectively - with respect to the database designer
expertise.

Another key information freely available to reach a good
compromise is thedata themselves. In this setting, new data

mining applications arise such that key or foreign key dis-
covery in databases [9, 11].

4.1. From SQL workloads

4.1.1. Gathering SQL workloads SQL workloads repre-
sent a set of SQL accesses performed over the database
during some periods of time. They should be representa-
tive of the database activity, either Select From Where SQL
queries or update SQL queries (insert/delete/update). Re-
cently, SQL workloads can be easily gathered from opera-
tional databases by means of advanced functions available
on top of major RDBMS products: a representative work-
load can be generated by logging activity on the server and
filtering the events we want to monitor [3].

4.1.2. Using SQL statements to tune the logical
database designThe key idea is to tune the design
with respect to three main goals: minimizing the occur-
rence of null values, maximizing both the efficiency of
cost-sensitive SQL queries performed against the database
and data integrity of the database.

Example 5Let us consider two SQL workload scenarios for
databasedb2 (cf. Table 2), i.e. they represent cost-sensitive
SQL queries. The first scenario leads to a workloadW1 con-
sisting of a join betweenA.b1 andB.b1 plus some condi-
tions on attributes{a1, b2, c2}. The second scenario extends
the workloadW1 with new conditions onA.a2. Let W2 be
this workload.
For the databasedb2, these two scenarios can be interpreted
as follows:

• with W1, the databasedb1 could be used instead ofdb2

with the following gain:

– better performances of SQL queries can be ex-
pected since the number of joins does not change
with respect toW1 and the size of the involved
relations could be dramatically reduced.

– the number of null values will decrease as already
explained (cf example 2).

• with W2, the decision is more difficult since at least
one SQL query ofW2 has to be rewritten with an ad-
ditional join if db1 is chosen instead ofdb2 (due to the
presence ofa2 in W2).

2

4.2. From the data themselves

Data semantics in relational databases is mainly con-
veyed by two kind of dependencies: functional and inclu-
sion dependencies. These two dependencies lead to the def-
inition of key and foreign key in practice, two very popular
constraints supported by most of major RDBMS software.

4



db3

A a1 a2 a3 b1 c1 c2 b2 b3

1 0 1 1 ǫ 1 1 1
2 0 3 0 1 ǫ 2 2
3 1 2 1 ǫ ǫ 1 1
3 1 2 ǫ ǫ ǫ ǫ ǫ

4 2 5 ǫ ǫ ǫ ǫ ǫ

F = {a1 → a2a3b1c1c2, b1 → b2b3}.

Table 3. The denormalized database db3

Nevertheless, if these constraints in a particular database
have never been defined or have been lost over the time, it
seems quite reasonable to have a look at the data themselves
to recover them.

Example 6Since no duplicated attributes do exist in the
databasedb3 in Table 3, SQL workloads are useless to cope
with the logical database structure of this database whereas
data mining techniques can still be applied to understand
the structure ofdb3. 2

In this setting, challenging data mining tasks can been
define to discover these dependencies from the database.
Algorithms do exist for functional dependency dis-
covery [14, 25, 19] and inclusion dependency discov-
ery [20, 10] and despite the intrinsic complexity of these
tasks, they work well for medium-size databases.

Due to the absence of constraints, inconsistencies may
occur in the database and thereforeapproximate dependen-
cies, i.e. dependencies that ”almost hold” into database are
worth considering. For instance, the confidence threshold of
association rules is a parameter to deal with approximate as-
sociation rules [2]. In the same way, approximate dependen-
cies can be taken into account for funcionnal and inclusion
dependencies [14, 25, 19, 20, 10].

From a data mining point of view, discovering FD and
IND in databases is far from being realistic yet on large-size
databases due to their inherent intractability. Therefore, the
applicability of these propositions is questionable in a real-
life setting. Nevertheless, we believe that this issue raises
interesting research problems, such as theapproximationof
the two data mining problems mentioned above in such a
way that the their discovery and the maintenance of the dis-
covered FD and IND become easier, as partially done in [9].

The full integration of data-mining algorithms – or at
least main data-centric steps – into query processing engine
of RDBMS is also a wonderfull challenge [27, 7].

5. Issues in DB restructuring

When a restructuration has to be performed onto an oper-
ational database, one needs to define a new database schema
and then to migrate the data, keeping in mind that applica-
tion programs accessing the database must still be working

once the new database would have been set up. We are faced
with two main cases:

• Adding new constraints without changing the database
schema : One needs to take care of application pro-
grams since new constraints may change theorder
in which SQL insert/update/delete statements are per-
formed in application programs. The problems can be
dealt with different options within specific options of
RDBMS, as the ENABLE NOVALIDATE option un-
der Oracle.

• Adding new constraints and changing the database
schema : data migration has to be performed within
the same RDBMS and applications programs have to
be upgraded.

Not surprisingly, the more complicated issue arises
whenever application programsaccessing the database
schema have to be upgraded.

One simple approach is to define a set of views over
the new database schema to ”simulate” the old database
schema. Nevertheless, updating relational views is a diffi-
cult problem which is weakly supported by majorRDBMS

yet.
This is a major problem in practice on which we believe

a lot of research remains to be done. In the sequel, we detail
further the definition of constraints over existing databases.

5.1. Adding new constraints

Quite easily, one may suggest to a DBA to enforcekey
constraints (either primary key or unique and not null con-
straints),foreign keyconstraints,not nullconstraints ortrig-
gersdefinition for more complicated cases.

In the sequel, we will focus on foreign key, the treatment
is rather similar for other constraints. Let us just recall that
a foreign key is a special case of an inclusion dependency1:

1 Such IND are also calledkey-basedinclusion dependencies (i.e. the
right-hand side is a key) and are the most interesting inclusion depen-
dencies in data modeling [21, 15, 12]. For example, they allow to rep-
resent foreign keys or isa-relationships. Furthermore, an inclusion de-
pendencyR[X] ⊆ S[Y ], whereX is a key andY is not a key but is
a foreign key, allows modeling of cardinality constraints [12]. For an
in-depth discussion on the use of inclusion dependencies indatabase
design and the interaction between functional dependencies and inclu-
sion dependencies, the reader is referred to [21, 22, 17, 16].

5



X is a foreign key ofR (to Y of S) iff R[X] ⊆ S[Y ] holds
andY is a key ofS.

Clearly, a discovered inclusion dependency – exact or
approximate – may indicate a missing foreign key or a
schema misconception. Once a sequence of attributes is
known to be a foreign key, it could be enforced to prevent
invalid data entry into the database.

More precisely, given an INDR[X] ⊆ S[Y ], three cases
are relevant for self-tuning logical database:

• Y is a key ofS: a foreign keycan be defined onX of
R.

• Y is not a key but is a foreign key ofS: a trigger can
be defined to enforce this constraint.

• Y is neither a key nor a foreign key ofS: anormaliza-
tion can be performed on the database, i.e. the database
structure may be changed.

In addition, the discovered foreign keys can be used to
improve performance of joins over multiple relations. In-
deed, foreign keys constitute good candidates for indexing
or for creating clusters.

6. Conclusion

Considerations introduced in this paper for self-tuning
the logical database design are simple though very impor-
tant in practice. Between the desire to maintain efficient
databases for end-users and the desire to maintain coher-
ent databases for database programmers and end-users, we
have pointed out how SQL workloads and the data them-
selves could be used to reach a compromise among contra-
dictory objectives.

Through the notion ofassistant2, one could envision the
self-tuning of logical database design from both SQL work-
loads and the data themselves.

Along the paper, we have pointed out some challenges
that remain to be addressed to cope with self-tuning logical
database design.

References

[1] S. Abiteboul, R. Hull, and V. Vianu.Fondements des bases
de donnes. Addison Wesley, 2000.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules in large databases. InProceedings of the20

th

International Conference on Very Large Databases, Santi-
ago de Chile, Chile, pages 487–499, 1994.

[3] S. Agrawal, S. Chaudhuri, L. Kollár, A. P. Marathe, V. R.
Narasayya, and M. Syamala. Database tuning advisor for
microsoft SQL Server 2005. In M. A. Nascimento, M. T.

2 Assistants or advisor tools are now very common as an aid for main
DBA tasks such as database set up, index tuning . . .

Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B.
Schiefer, editors,International Conference on Very Large
Data Bases, Toronto, Canada, pages 1110–1121. Morgan
Kaufmann, 2004.

[4] ANSI/X3/SPARC. Interim report: Ansi/x3/sparc study group
on data base management systems.FDT - Bulletin of ACM
SIGMOD, 7(2):1–140, 1975.

[5] C. Batini, S. Ceri, and S. Navathe.Conceptual Database
Design: an Entity-Relationship Approach. Benjamin Cum-
mings, 1992.

[6] P. Bernstein and al. The ASILOMAR report on database re-
search.ACM Sigmod Record, 27(4):74–80, 1998.

[7] S. Chaudhuri. Data mining and database systems: Where
is the intersection?Data Engineering Bulletin, 21(1):4–8,
1998.

[8] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zaı̈t, and
M. Ziauddin. Automatic SQL tuning in ORACLE 10g. In
M. A. Nascimento, M. T.Özsu, D. Kossmann, R. J. Miller,
J. A. Blakeley, and K. B. Schiefer, editors,International
Conference on Very Large Data Bases, Toronto, Canada,
pages 1098–1109. Morgan Kaufmann, 2004.

[9] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk.
Mining database structure; or, how to build a data quality
browser. InACM SIGMOD Conference 2002, pages 240–
251, Madison, Wisconsin, USA, 2002.

[10] F. De Marchi, S. Lopes, and J.-M. Petit. Efficient algorithms
for mining inclusion dependencies. InProceedings of the
7

thInternational Conference on Extending Database Tech-
nology, volume 2287 ofLecture Notes in Computer Science,
pages 464–476, Prague, Czech Republic, 2002. Springer-
Verlag.

[11] F. De Marchi, S. Lopes, J.-M. Petit, and F. Toumani. Analy-
sis of existing databases at the logical level: the dba compan-
ion project.ACM Sigmod Record, 32(1):47–52, 2003.

[12] C. Fahrner and G. Vossen. A Survey of Database Design
Transformations Based on the Entity-Relationship Model.
Data and Knowledge Engineering, 15:213–250, 1995.

[13] J. Han and M. Kamber.Data Mining: Concepts and Tech-
niques. Morgan Kaufmann Publishers, first edition, 2000.

[14] Y. Huhtala, J. Krkkinen, P. Porkka, and H. Toivonen. Tane:
An efficient algorithm for discovering functional and approx-
imate dependencies.The Computer Journal, 42(3):100–111,
1999.

[15] P. Johannesson. A Method for Transforming Relational
Schemas into Conceptual Schemas. InProceedings of the
10

th IEEE International Conference on Data Engineering,
pages 190–201, Houston, Texas, February 1994. IEEE Com-
puter Society.

[16] M. Levene and G. Loizou.A Guided Tour of Relational
Databases and Beyond. Springer-Verlag, 1999.

[17] M. Levene and G. Loizou. Guaranteeing no interaction be-
tween functional dependencies and tree-like inclusion depen-
dencies. Theoritical Computer Science, 254(1-2):683–690,
2001.

[18] S. Lopes, F. De Marchi, and J.-M. Petit. DBA companion: A
tool for logical database tuning (demo). In20

th Proceedings
of the IEEE International Conference on Data Engineering,
page 859, Boston, USA, 2004. IEEE Computer Society.

6



[19] S. Lopes, J.-M. Petit, and L. Lakhal. Functional and ap-
proximate dependencies mining: Databases and FCA point
of view. Special issue of Journal of Experimental and Theo-
retical Artificial Intelligence, 14(2/3):93–114, 2002.

[20] S. Lopes, J.-M. Petit, and F. Toumani. Discovering interest-
ing inclusion dependencies: Application to logical database
tuning. Information Systems, 17(1):1–19, 2002.

[21] H. Mannila and K.-J. R̈aihä. Design by example: An appli-
cation of Armstrong relations.Journal of Computer and Sys-
tem Sciences, 33(2):126–141, 1986.

[22] H. Mannila and K.-J. R̈aihä. Algorithms for Inferring Func-
tional Dependencies from Relations.Data and Knowledge
Engineering, 12:83–99, 1994.

[23] H. Mannila and K.-J. R̈aihä. The Design of Relational
Databases. Addison-Wesley, second edition, 1994.

[24] Microsoft. ,http://www.research.microsoft.c-
om/dmx/autoadmin.

[25] N. Novelli and R. Cicchetti. Fun: An efficient algorithm for
mining functional and embedded dependencies. InProceed-
ings of the International Conference on Database Theory,
London, UK, volume 1973 ofLecture Notes in Computer Sci-
ence, pages 189–203. Springer-Verlag, 2001.

[26] R. Ramakrishnan and J. Gehrke.Database Management Sys-
tems. Mc Graw-Hill, third ed. edition, 2003.

[27] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating min-
ing with relational database systems: Alternatives and im-
plications. In L. M. Haas and A. Tiwary, editors,SIGMOD
1998, Proceedings ACM SIGMOD International Conference
on Management of Data, June 2-4, 1998, Seattle, Washing-
ton, USA, pages 343–354. ACM Press, 1998.

[28] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. Storm,
C. Garcia-Arellano, and S. Fadden. DB2 Design Advisor: In-
tegrated automatic physical database design. In M. A. Nasci-
mento, M. T.Özsu, D. Kossmann, R. J. Miller, J. A. Blake-
ley, and K. B. Schiefer, editors,International Conference on
Very Large Data Bases, Toronto, Canada, pages 1087–1097.
Morgan Kaufmann, 2004.

7


