
ABS: Adaptive Borders Search of frequent itemsets

Frédéric Flouvat1, Fabien De Marchi2, Jean-Marc Petit1

1 Laboratoire LIMOS, UMR CNRS 6158
Université Blaise Pascal - Clermont-Ferrand II,

24 avenue des Landais, 63 177 Aubière cedex, France
flouvat@isima.fr, jmpetit@math.univ-bpclermont.fr

2 Laboratoire LIRIS, FRE CNRS 2672
Université Claude Bernard Lyon 1

8, boulevard Niels Bohr, 69 622 Villeurbanne cedex France
fabien.demarchi@liris.cnrs.fr

Abstract

In this paper, we present an ongoing work to discover
maximal frequent itemsets in a transactional database. We
propose an algorithm called ABS for Adaptive Borders
Search, which is in the spirit of algorithms based on the
concept of dualization. From an abstract point of view, our
contribution can be seen as an improvement of the basic
APRIORI algorithm for mining maximal frequent itemsets.
The key point is to decide dynamically at which iteration, if
any, the dualization has to be made to avoid the enumera-
tion of all subsets of large maximal itemsets. Once the first
dualization has been done from the current negative border,
APRIORI is no longer used and instead, another dualiza-
tion is carried out from the positive border known so far.
The process is repeated until no change occurs anymore in
the positive border in construction.

Experiments have been done on FIMI datasets from
which tradeoffs on adaptive behavior have been proposed
to guess the best iteration for the first dualization. Far
from being the best implementation wrt FIMI’03 contribu-
tions, performance evaluations of ABS exhibit better per-
formance than IBE, the only public implementation based
on the concept of dualization.

1 Introduction

In this paper, we present an ongoing work to discover
maximal frequent itemsets in a transactional database. We
propose to adapt an algorithm originally devised for mining

inclusion dependencies in databases [8]. This algorithm is
called ABS for Adaptive Borders Search, and is in the spirit
of algorithms based on the concept of dualization [14, 21].

The basic idea of our proposition is to combine the
strength of both levelwise algorithm [1, 18] and Dualize and
Advance algorithm [14] in such a way that:

• "small" maximal frequent itemsets are efficiently gen-
erated with levelwise strategies.

• "large" maximal frequent itemsets may be found effi-
ciently by dualization.

The dualization performed is quite similar to that pro-
posed in the Dualize and Advance algorithm. Nevertheless,
instead of starting from some subset of maximal frequent
itemsets as Dualize and Advance algorithm does, we use
infrequent itemsets to perform the dualization. As a conse-
quence, we obtain the so-called optimistic positive border of
maximal frequent itemsets. The set of such candidates cor-
responds exactly to k-uniform hypergraph clique proposed
in [22]. As a consequence, our proposition contributes to
clarify some related contributions [22, 17, 3, 12, 7]) since
it gives an exact characterization of the optimistic positive
border of maximal frequent itemsets from some subset of
infrequent itemsets.

From an abstract point of view, our contribution can be
seen as an improvement of the basic APRIORI algorithm
for mining maximal frequent itemsets. The key point is to
decide dynamically at which iteration, if any, the dualiza-
tion has to be made to avoid the enumeration of all subsets
of large maximal itemsets. Once the first dualization has
been done from the current negative border available at that

iteration, APRIORI is no longer used and instead, another
dualization is carried out from the positive border known so
far. The process is repeated until no change occurs anymore
in the positive border in construction.

Experiments have been done on FIMI datasets [10]. The
adaptive behavior of our algorithm has been tuned from
results gathered from these experiments. For the tested
dataset, we were able to guess dynamically the best iteration
for the first dualization, a key parameter of our algorithm.

Far from being the best implementation wrt FIMI’03
contributions [11], performance evaluations of ABS exhibit
better performance than IBE [21], the only public imple-
mentation based on the concept of dualization.

2 Preliminaries

Let R be a set of symbols called items; a line is a subset
of R, and a binary relation r over R is a multiset of lines.
We suppose the reader is familiar with the notions of item-
sets, support, and with the main aspects of frequent item-
sets mining problem in a binary relation, given a threshold
minsup (see e.g. [1] for details). We recall the notion of
borders of a set of itemsets [18]. Given F a set of item-
sets over R, the positive border of F denoted by Bd+(F) is
defined by Bd+(F) = max⊆{X ∈ F}. The negative bor-
der of F is defined by Bd−(F) = min⊆{Y ⊆ R | ∀X ∈
F, Y �⊆ X}. If FI is the set of all itemsets frequent in r,
then Bd+(FI) is called the set of maximal frequent itemsets
in r.

We will use the concepts of hypergraph and minimal
transversal of a hypergraph, whose definition is pointed out
here (see for example [4] for more details). Given V a
finite set of elements. A subset E of V defines a hyper-
graph H = (V, E), where elements of V are called ver-
tices of H and elements of E edges of H. A transversal T
of H = (V, E) is a subset of V that intersect all the ele-
ments of E. T is minimal if no other transversal of H are
included in T. The set of all minimal transversals of H is
noted Tr(H).

The relationship between the notion of borders and min-
imal transversals of hypergraph has been exhibited in [18].
Indeed, any set of itemsets can be seen as a hypergraph; if
FI is the set of frequent itemsets in a binary relation r, we
have: Tr(FI) = Bd−(FI), where FI = {R − X | X ∈
FI}.

3 Method description

3.1 Starting with a levelwise algorithm

The algorithm Apriori [1] was initially devoted to fre-
quent itemset mining; Nevertheless, it has been proved to

be still competitive for maximal frequent itemsets mining
in many cases [11], when the size of elements to discover
remain small.

Our goal is to exploit the efficiency of Apriori, but to
automatically detect when it will fall into troubles and stop
its execution. Then we propose to exploit the knowledge
mined so far to initialize a different search, based on the
concept of dualization between positive and negative bor-
ders; each border is updated and used to compute the corre-
sponding dual border, until a fix point is reached.

3.2 From negative to positive border

In the sequel, let r be a binary database over a set of
items R, minsup a minimum support, and FI the set of
frequent itemsets in r. After the levelwise part, our method
is still iterative; at each iteration i, new elements of the posi-
tive and negative borders are expected to be discovered. We
denote by Bd+

i (resp. Bd−
i) the subset of Bd+(FI) (resp.

Bd−(FI)) discovered until the ith iteration. In other words,
∀i < j,Bd+

i ⊆ Bd+
j and Bd−

i ⊆ Bd−j . Roughly speaking,
candidates for Bd+

i are obtained from elements of Bd−
i , and

candidates for Bd−
i+1 are obtained from elements of Bd+

i .
The following definitions and results have been proposed

in [8] for inclusion dependency discovery problem in rela-
tional databases. We recall them in the context of maximal
frequent itemsets mining, only the proofs are omitted.

We first define the notion of Optimistic positive border.

Definition 1(Optimistic positive border) Given a set F of
itemsets, the optimistic positive border of F is: Fopt(F) =
max⊆{X ⊆ R | ∀Y ∈ F, Y �⊆ X}.

The next theorem gives a constructive characterization
of Fopt(F).

Theorem 1[8] Fopt(F) = Tr(F)

Therefore, the idea is to compute the optimistic positive
border for Bd−

i to obtain exactly the largest itemsets which
do not contain any infrequent itemset discovered so far.

Proposition 1 Let X ∈ Fopt(Bd−
i). If sup(X) ≥

minsup, X ∈ Bd+(FI).

Proof Since X is maximal in the definition of Fopt(Bd−
i),

each of its superset contains at least one element of Bd−
i ,

and is infrequent by anti-monotonicity. �

Then, Bd+
i is exactly made up of all the frequent itemsets

in Fopt(Bd−
i).

3.3 From positive to negative border

In a dual way, the set Bd+
i is then used to compute its

negative border Bd−(Bd+
i), to finally update the negative

border in construction and obtain Bd−
i+1.

The next theorem gives a constructive characterization
of Bd−(F), for any set F of frequent itemsets.

Theorem 2[18] Bd−(F) = Tr(F)

Proposition 2 Let X ∈ Bd−(Bd+
i). If sup(X) <

minsup, X ∈ Bd−(FI).

Proof Let X be an element of Bd−(Bd+
i). By the definition

of the negative cover of a set, each subset of X is included
in an element of Bd+(FI) and then is frequent. �

Then, Bd−
i+1 is exactly made up of all the infrequent

itemsets in Bd−(Bd+
i).

3.4 The Algorithm ABS

Algorithm 1 computes the positive and negative borders
of frequent itemsets in a given binary database. Within
the framework of levelwise algorithms, ABS decides at
each level whether or not the levelwise approach has to
be stopped. In that case, the levelwise approach is halted,
and the two borders are incrementally updated as de-
scribed previously. The functions GenPosBorder and
GenNegBorder compute respectively the optimistic pos-
itive and negative borders, using characterizations in theo-
rems 1 and 2. The algorithm terminates when all elements
of the optimistic positive border currently computed are fre-
quent. It is worth noting that no dualization may occur at all:
in this case, ABS is reduced to APRIORI . The proposi-
tion 3 ensures the correctness of ABS.

The behavior of the function IsDualizationRelevant
is described in section 3.5.

Proposition 3 The algorithm ABS returns Bd+(FI) and
Bd−(FI).

Proof If the test performed by IsDualizationRelevant()
is never true, the demonstration is obvious.
If not, in line 15, from propositions 1 and 2, we haveBd+

i ⊆
Bd+(FI) and Bd−

i−1 ⊆ Bd−(FI)
Moreover, the termination condition ensures that Bd+

i =
GenPosBorder(Bd−i−1); all elements in Bd+

i are frequent
and all elements in Bd−

i−1 are infrequent. Suppose that
∃X ∈ Bd−(FI) | X �∈ Bd−i−1. Then:

• if ∃Y ∈ Bd−i−1 | Y ⊂ X , since Y is infrequent, X �∈
Bd−(FI) and there is a contradiction

• if � ∃Y ∈ Bd−i−1 | Y ⊆ X , then from the definition of
the optimistic positive border ∃Z ∈ Bd+

i | X ⊆ Z ,
which contradict the fact that X is infrequent.

Thus Bd−
i−1 = Bd−(FI). An identical reasoning leads to

Bd+
i = Bd+(FI).

�

Algorithm 1 ABS: Adaptive Border Search
Require: a binary database r, a integer minsup
Ensure: Bd+(FI) and Bd−(FI)

1: F1 = {A ∈ R | sup(A) ≥ minsup}
2: C2 = AprioriGen(F1)
3: i = 2; Bd−1 = R − F1; Bd+

0 = ∅
4: while Ci �= ∅ do
5: Fi = {X ∈ Ci | sup(X) ≥ minsup}
6: Bd−i = Bd−i−1 ∪ (Ci − Fi)
7: Bd+

i−1 = Bd+
i−2 ∪ {X ∈ Fi−1 | ∀Y ∈ Fi, X �⊆ Y }

8: if IsDualizationRelevant(i, |Bd−i |, |Fi|, |Ci|) =
TRUE then

9: Bd+
i = {X ∈ GenPosBorder(Bd−i) | |X | ≥

minsup}
10: while Bd+

i �= Bd+
i−1 do

11: Bd−i = {X ∈ GenNegBorder(Bd+
i) | |X | ≤

minsup}
12: Bd+

i+1 = {X ∈ GenPosBorder(Bd−i) |
|X | ≥ minsup}

13: i = i + 1
14: end while
15: Return Bd+

i and Bd−
i−1 and exit

16: end if
17: Ci+1 = AprioriGen(Fi)
18: i = i + 1
19: end while
20: Bd+

i−1 = Bd+
i−2 ∪ Fi−1

21: Return Bd+
i−1 and Bd−

i−1

3.5 Adaptive aspects of ABS

The main adaptive aspect of ABS is conveyed by the
function IsDualizationRelevant, line 8 of algorithm 1.
As mentioned, its goal is to estimate if it is interesting to
dualize the current negative border to the optimistic positive
border.

We have identified four parameters specific to a given
iteration of the levelwise algorithm, which can be obtained
dynamically without any overhead:

• The current level i. No jump is allowed until a given
integer threshold; we set the threshold equal to 4, since
Apriori is very efficient in practice to explore the lev-
els 1 to 4. In our experiments, dualizing before this
level incurs no improvement.

• |Bd−i |, the size of the current negative border. A sim-
ple remark can be made here: if this parameter is very
large (more than 100000) the minimal transversals
computation become prohibitive. We are not aware
of existing implementations of minimal transversals

computation able to handle such input hypergraphs 1.
Moreover, such cases are likely to correspond to best
scenario for Apriori.

• |Fi|, the number of frequent i-itemsets and |Bd−
i | have

to be compared. Indeed, a small value of |Bd−
i | wrt

|Fi| is likely to give a successful dualization.

• |Fi| and |Ci|, the number of candidates in level i, can
also be compared. If |Fi|/|Ci| is close to 1, we can
suspect to be in a "dense" part of the search space, and
thus the levelwise search should be stopped.

3.6 Practical aspects

3.6.1 Candidate generation from the current positive
border

From [18], candidate generation of a levelwise algorithm
for a problem representable as sets can be formulated using
dualization: At the ith iteration, we have

Ci+1 = Tr(∪j≤iFj) − ∪j≤iCj

It is shown in [18] that candidate itemsets of Ci+1 are ex-
actly of size i + 1, which allows to improve candidate gen-
eration.

In the setting of this paper, we can see Ci+1 as the set
Bd−i+1 − Bd−i , and thus we get:

Ci+1 = Tr(Bd+
i) − ∪j≤iCj

Here, the major difference with a pure levelwise ap-
proach is that Bd+

i may contain some elements of size
greater than i + 1.

One may question about the size of the largest elements
of Ci+1: does there exist elements of size strictly greater
than i + 1 ? The answer is yes as shown in the following
non trivial example.

Example 1
Let r be the binary relation over a schema R =
{A, B, C, D, E, F, G, H, I} represented in Table 1. For a
minsup equals to 1, the borders of frequent itemsets in r
are Bd− = {AE, BF, CG, DH, ABCDI} and Bd+ =
{ABCHI, ABDGI, ABGHI, ACDFI, ACFHI,
ADFGI, AFGHI, BCDEI, BCEHI, BDEGI,
BEGHI, CDEFI, CEFHI, DEFGI, EFGHI,
ABCD}.
After a levelwise pass until level two, the four NFI
of size two have been discovered, i.e. Bd−

2 =
{AE, BF, CG, DH}. Suppose the algorithm decides here
to stop the pure levelwise search. Then, these sets are used

1Experiments conducted in [16, 2] only consider hypergraphs with not
more than 32000 edges.

A B C D E F G H I
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1

Table 1. Example database

to compute the optimistic positive border from level 2. It
is made up of 16 itemsets of size 5, among which the only
non frequent itemset is ABCDI . Thus, at this time, Bd+

2 =
{ABCHI, ABDGI, ABGHI, ACDFI, ACFHI,
ADFGI, AFGHI, BCDEI, BCEHI, BDEGI,
BEGHI, CDEFI, CEFHI, DEFGI, EFGHI}. We
obtain Bd−(Bd+

2) = {ABCD} of size 4, being understood
that no elements of size 3 does exist.

In our first implementation, computing the set
Bd−(Bd+

i) using minimal transversals had a quite
prohibitive cost on large hypergraph instances. Therefore,
we made the choice to restrict Bd−(Bd+

i) to its (i + 1)-
itemsets for efficiency reasons. This choice has no effect
on the correctness of the algorithm, since the termination
condition is always the same2.

3.6.2 Dealing with "almost frequent" large candidate
itemsets

Let us consider the case of a candidate itemset obtained af-
ter a dualization from the current negative border. Let X
be this candidate. Two main cases do exist: either X is
frequent, or X is infrequent. In that case, we propose to
estimate a degree of error in order to "qualify the jump".

Given a new user-defined threshold δ, and a
minimal support minsup, an error measure, noted

2We suspect the algorithm PincerSearch [17] to be not complete.
Indeed, the search strategy of PincerSearch is very close to our propo-
sition: if we only consider (i + 1)-itemsets in Bd−(Bd+

i), they cor-
respond exactly to the candidate set Ci+1 of PincerSearch. Since
PincerSearch stops as soon as Ci+1 = ∅, some elements could be for-
gotten. From the example 1, after the level 2, C3 is empty, and therefore
the maximal set ABCD seems to be never generated by PincerSearch.

error(X, minsup), can be defined as the ratio between the
minsup minsup and the support of the infrequent itemset
X , i.e. error(X, minsup) = 1 − support(X)

minsup .
Two sub-cases are worth considering:

• either error(X, minsup) ≤ δ : the "jump" was not
successful but solutions should exist among the nearest
subsets of X .

• or error(X, minsup) > δ : In that case, the jump
was over-optimistic and probably, no solution does ex-
ist among the nearest generalizations of X .

Note that this error measure is decreasing, i.e. X ⊂
Y ⇒ error(X, minsup) ≤ error(Y, minsup)

In our current implementation, these almost frequent
large itemsets are first considered as frequent to enable more
pruning in subsequent passes. Afterward, they are consid-
ered at the very end of our algorithm. A pure top-down
levelwise approach has been implemented to find out their
subsets which can be maximal frequent itemsets.

4 Implementation details and experimental
results

4.1 Implementation details

An implementation of the algorithm has been performed
in C++/STL. Two existing implementations available from
the FIMI repository website [10] were borrowed: the
Apriori code of C. Borgelt [5] and the prefix-tree imple-
mentation of B. Goethals using C++/STL [10].

To keep coherence with this implementation, we use a
similar data structure for the new parts of the algorithm.
The itemsets and the transactions are stored in a prefix-tree
[1, 6].

Minimal Transversals computation For the minimal
transversals computation, we implemented the algorithm
proposed in [9] using a prefix-tree in order to handle rel-
atively large hypergraph instances. Its incremental aspect
is very interesting in our case, since the negative border is
itself incremental. Note that improvements have been per-
formed by exploiting the knowledge of previous dualiza-
tions. We do not give more details here.

4.2 Experimental results

We conducted experiments on a pentium 4.3GHz Pro-
cessor, with 1Go of memory. The operating system was
Redhat Linux 7.3 and we used gcc 2.96 for the compilation.
We used four datasets available on the FIMI’03 repository.

We first evaluate the influence of the level from which
the levelwise approach is stopped on the performances of
ABS. Then, the impact of "almost frequent" large itemsets
is studied for different threshold values for the error mea-
sure. Finally, we compare ABS with four maximal frequent
itemsets mining algorithms: Apriori and Eclat [12] imple-
mented by C.Borgelt [5], Fpmax [13] based on FP−trees
[15] and IBE [21].

 20

 40

 60

 80

 100

 120

 140

 160

 180

 3 4 5 6 7 8 9 10

To
ta

l T
im

e
(s

ec
)

level

Connect Minsup 60%

 10

 20

 30

 40

 50

 60

 70

 80

 3 4 5 6 7 8 9 10

To
ta

l T
im

e
(s

ec
)

level

Pumsb* Minsup 30%

Figure 1. Forcing the first dualization at level
k for connect (top) and pumsb* (bottom)

In figure 1, we forced the first dualization for different
levels (from 3 to 8), on the connect dataset with a minsup
of 80 % and the pumsb* dataset with a minsup of 30%.
The results confirm the necessity to fix dynamically this pa-
rameter, and then justify an adaptive approach. Second, for
all tested datasets, our function IsDualizationRelevant
has dynamically determined the best level to begin dualiza-
tion.

The optimization based on the error measure is evalu-
ated on figure 2. From pumsb dataset (on the top), this op-
timization appears to be interesting with a threshold value
near 0.002. Nevertheless, on the connect dataset (bottom)
no improvements is achieved. This comes from the fact that
the proposed error measure is not strictly decreasing; and
the equivalence classes induced by closed frequent itemsets
are large. Our top down levelwise approach is prone to fail
on this kind of databases .

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.01 0.02 0.03 0.04 0.05 0.06

To
ta

l T
im

e
(s

ec
)

Error

Minsup 60%
Minsup 65%
Minsup 70%
Minsup 75%

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.01 0.02 0.03 0.04 0.05 0.06

To
ta

l T
im

e
(s

ec
)

Error

Minsup 50%
Minsup 60%
Minsup 70%

Figure 2. Exec. times for pumsb (top) and
connect (down) wrt different error measure
thresholds

From figures 3, 5 and 6, ABS is far to compete with
best known implementations but tends to outperform IBE
for most of our experimentations. Recall that IBE is the
unique implementation based on the concept of dualization
available from FIMI’03. We believe that this is due to the
number of dualization performed by IBE, which is in the
size of the positive border.

 0.1

 1

 10

 100

 1000

 50 55 60 65 70 75 80 85 90 95

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

Apriori
Eclat

FPmax
IBE

ABS

Figure 3. Execution times for database
Pumsb

From figure 4, IBE exhibits better performances than
ABS for low support thresholds (less than 20%). This is
due to the fact that while the size of the positive border re-
mains small (less than 5000 elements) the size of the neg-
ative border exceeds 106 elements, where some elements
appear to have a very large size. This seems to be the worst
case for ABS.

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

Apriori
Eclat

FPmax
IBE

ABS

Figure 4. Execution times for database
Pumsb*

From figure 5, ABS behaves like Apriori as expected.
Indeed, the positive border of retail is made up of "small"
itemsets, and Apriori turns out to be the best implementa-
tion for this kind of datasets.

 0.1

 1

 10

 100

 1000

 0 0.02 0.04 0.06 0.08 0.1

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

Apriori
Eclat

FPmax
IBE

ABS

Figure 5. Execution times for database Retail

From figure 6, ABS is not as efficient as best known
implementations (e.g. fpmax), but improves Apriori by a
factor of ten and beats Eclat and IBE.

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

Apriori
Eclat

FPmax
IBE

ABS

Figure 6. Execution times for database Con-
nect

To sum up, two main reasons explain our mitigate re-
sults: 1) the cost of dualization remains high on very large
hypergraph instances and 2) candidate generation and sup-
port counting seems to be not enough efficient in our current
implementation.

The main parameter influencing performance of ABS
turns out to be around the negative border. If for a given
minsup, the negative border does not become too huge
and its largest element remains "small" with respect to the
largest maximal frequent itemset, ABS should have good
performance.

5 Related works

Several algorithms exist for discovering maximal fre-
quent itemsets mining in a transactional database (see
FIMI’03). The goal is always to avoid an exponential search
by characterizing as fast as possible largest frequent item-
sets without exploring their subsets. MaxMiner [3] uses a
levelwise approach to explore the candidate itemsets, using
the Rymon’s enumeration system [20] - in which itemsets
are arranged in a non redundant tree. But when a candi-
date X is counted over the database, the greatest candidate
in the subtree of X is also counted; if it is frequent, then
all the subtree can be pruned by anti-monotony of the "is
frequent" property. Jumps done by MaxMiner depend on
the ordering of items used to build the tree and are therefore
quiet different from jumps proposed in this paper. The al-
gorithms Mafia [7] and GenMax [12] use the same prin-
ciple as MaxMiner with efficient optimizations, e.g. ver-
tical bitmaps.

The Pincer − Search Algorithm [17] uses a search
strategy very close to ours. After a levelwise initialization,
the principle is also to look at the largest not yet eliminated
candidates. However, these large candidates are not charac-
terized in a formal way.

In [14], the authors propose the Dualize and Advance
algorithm. In their approach, the positive border in con-
struction is always a subset of the positive border to be dis-
covered. At each step, from some elements of the positive
border already discovered, they generate the correspond-
ing negative border. If one element of the negative border
appears to be satisfied, they generate a specialization of it
which belongs to the positive border and they re-iterate the
process until each element of the negative border is indeed
not satisfied. An implementation of a variant of Dualize and
Advance has been proposed in [21] with an irredundant du-
alization. Their code is available from the FIMI’03 website.

Some algorithms like Mafia [7] or DCI [19] can adapt
themselves to mine frequent itemsets, with respect to the
dataset density and some architectural characteristics (e.g.
available memory). Even if these aspects improve perfor-
mances, it only concerns choices for data structures; the
mentioned algorithms do not really adapt their strategy to
explore the search space.

6 Conclusion and future works

In this paper, we have proposed an ongoing effort to-
ward the discovery of maximal frequent itemsets. Our con-
tribution takes its roots from the algorithm ZigZag devised
for inclusion dependency discovery in databases. Even if
this two data mining problems fit into the same theoretical
framework [18], they widely differ in practice which is not
a surprise. Indeed, while ZigZag performed very well in
our experiments3, ABS does not exhibit such a good behav-
ior for maximal frequent itemsets mining. Many reasons
explain this result, for instance the availability of public
datasets allowing thorough experimentations, the intrinsic
properties of each problem, and may be the more impor-
tant reason lies in the cost of a database access, in-memory
resident data vs data stored into a DBMS.

Many improvements can be brought to our current im-
plementation. Some are specific to our algorithm like for
instance minimal transversal computation on large hyper-
graph instances or taking into account large equivalence
classes induced by closed frequent itemsets during candi-
date generation from "almost frequent" itemsets. Some oth-
ers belong to "the state of the art" of maximal frequent item-
sets implementation : managing huge set of set, support
counting... Complexity issues need also to be addressed.

To end up, we want to quote a personal note on the main
objective of the FIMI workshop. We believe that frequent,
closed and maximal itemsets mining are key data mining
tasks since algorithms devised to solve these tasks are likely
to be used in other contexts under some conditions [18].
Roughly speaking, for every problem representable as sets

3Note that dynamic parameters were quiet different, e.g. the first dual-
ization was always performed at the second level.

with an anti-monotone predicate as for instance with func-
tional dependency inference or simply anti-monotone pred-
icates on itemsets other than "is frequent", the algorithms
devised for FIMI should be useful to answer these tasks.
Nevertheless, it seems rather optimistic to envision the ap-
plication of many FIMI’03 [11] implementations to another
data mining problem representable as sets. Indeed, even if
the development of efficient data structures for managing
huge sets of set is definitely useful, loading the database in
main memory using sophisticated data structure specially
devised for the anti-monotone predicate to be mined turns
out to give very efficient algorithms but deserve other data
mining tasks.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining as-
sociation rules in large databases. In J. B. Bocca, M. Jarke,
and C. Zaniolo, editors, International Conference on Very
Large Data Bases (VLDB’94), Santiago de Chile, Chile,
pages 487–499. Morgan Kaufmann, 1994.

[2] J. Bailey, T. Manoukian, and K. Ramamohanarao. A fast
algorithm for computing hypergraph transversals and its ap-
plication in mining emerging patterns. In International Con-
ference on Data Mining (ICDM’03), Floride, USA, pages
485–488, 2003.

[3] R. J. Bayardo. Efficiently mining long patterns from
databases. In L. M. Haas and A. Tiwary, editors, ACM SIG-
MOD Conference, Seattle, USA, pages 85–93, 1998.

[4] C. Berge. Graphs and Hypergraphs. North Holland, Ams-
terdam, 1973.

[5] C. Borgelt. Efficient implementations of apriori and eclat. In
FIMI’03 Workshop on Frequent Itemset Mining Implemen-
tations, November 2003.

[6] C. Borgelt and R. Kruse. Induction of association rules :
Apriori implementation. 2002.

[7] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal
frequent itemset algorithm for transactional databases. In
International Conference on Data Engineering (ICDE’01),
Heidelberg, Germany, pages 443–452. IEEE CS, 2001.

[8] F. De Marchi and J.-M. Petit. Zigzag : a new algorithm
for discovering large inclusion dependencies in relational
databases. In International Conference on Data Mining
(ICDM’03), Melbourne, Florida, USA, pages 27–34. IEEE
Computer Society, 2003.

[9] J. Demetrovics and V. Thi. Some remarks on generating
armstrong and inferring functional dependencies relation.
Acta Cybernetica, 12(2):167–180, 1995.

[10] B. Goethals. Frequent itemset mining implementations
repository, http://fimi.cs.helsinki.fi/, 2003.

[11] B. Goethals and M. Zaki, editors. Workshop on Fre-
quent Itemset Mining Implementations. CEUR Workshop
Proceedings, 2003.

[12] K. Gouda and M. J. Zaki. Efficiently mining of maximal fre-
quent itemsets. In N. Cercone, T. Y. Lin, and X. Wu, editors,
International Conference on Data Mining (ICDM’01), San
Jose, USA. IEEE Computer Society, 2001.

[13] G. Grahne and J. Zhu. Efficiently using prefix-trees in min-
ing frequent itemsets. In FIMI’03 Workshop on Frequent
Itemset Mining Implementations, November 2003.

[14] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivo-
nen, and R. S. Sharma. Discovering all most specific sen-
tences. ACM Transaction on Database System, 28(2):140–
174, 2003.

[15] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In ACM SIGMOD’00, Dallas, Texas,
USA, 2000.

[16] D. J. Kavvadias and E. C. Stavropoulos. Evaluation of an al-
gorithm for the transversal hypergraph problem. In J. S. Vit-
ter and C. D. Zaroliagis, editors, Algorithm Engineering, In-
ternational Workshop, WAE ’99, London, UK, volume 1668,
1999.

[17] D.-I. Lin and Z. M. Kedem. Pincer search: A new algo-
rithm for discovering the maximum frequent set. In H.-J.
Schek, F. Saltor, I. Ramos, and G. Alonso, editors, Extend-
ing Database Technology (EDBT’98), Valencia, Spain, vol-
ume 1377 of Lecture Notes in Computer Science, pages 105–
119. Springer, 1998.

[18] H. Mannila and H. Toivonen. Levelwise Search and Bor-
ders of Theories in Knowledge Discovery. Data Mining and
Knowledge Discovery, 1(1):241–258, 1997.

[19] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adap-
tive and resource-aware mining of frequent sets. In Inter-
national Conference on Data Mining (ICDM’02), Maebashi
City, Japan, pages 338–345, 2002.

[20] R. Rymon. Search through systematic set enumeration. In
B. Nebel, C. Rich, and W. R. Swartout, editors, International
Conference on Principles of Knowledge Representation and
Reasoning (KR’92), Cambridge, USA, pages 539–550. Mor-
gan Kaufmann, 1992.

[21] T. Uno and K. Satoh. Detailed description of an algorithm
for enumeration of maximal frequent sets with irredundant
dualization. In B. Goethals and M. Zaki, editors, ICDM
2003 Workshop on Frequent Itemset Mining Implementa-
tions (FIMI ’03), Melbourne, Florida, USA, volume 90 of
CEUR Workshop Proceedings, 2003.

[22] M.-J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New
algorithms for fast discovery of association rules. In In-
ternational Conference on Knowledge Discovery and Data
Mining (KDD-97), Newport Beach, California, USA, pages
283–286. AAAI Press, 1997.

