Fast distance computation between a point and cylinders, cones, line swept
spheres and cone-spheres

Aurélien Barbier and Eric Galin
LIRIS — CNRS
Université Claude Bernard Lyon 1
69622 Villeurbanne Cedex, France
e-mail: eric.galin@liris.cnrs.fr

Abstract

This paper presents algorithms for computing the minimal
distance between a point and a cylinder, a cone, a line swept
sphere and a cone-sphere. Some optimizations are provided
when queries are performed along a line which may be use-
ful for voxelization applications. Source code is available
online.

1 Introduction

Cones, cylinders as well as cone-spheres and line swept
spheres [3], which will be refered to as tubular primitives,
can be considered fundamental primitives as they can be as-
sembled to model generalized cylinders that can produce a
variety of organic shapes such as trees [2].

Distance computations may be used to generate level set
models as well as adaptive distance fields models [1], or to
create implicit surfaces from skeletal elements [5]. Figure 1
shows some implicit surface models created from cylinders
and cone-spheres skeletal elements.

Figure 1: Skeletal implicit surface characters created with
cone, cylinder and cone-spheres skeletons

Several accelerated distance computation algorithms have
been proposed for a variety of primitives such as line
segments, circles, triangles or polyhedra: [4] present an
overview as well as an implementation of those algorithms.

This paper presents some efficient algorithms to compute
the distance between a point and a cylinder, a cone, a line
swept sphere or a cone-sphere, which are missing in exist-
ing textbooks. Optimizations are provided when queries are
performed along a line, which is useful for voxelization ap-
plications. C++ code is available on the web site listed at
the end if this paper.

2 Notations

Cylinders, cones and cylinder spheres and cone-spheres are
revolution primitives whose axis will be characterized by two
supporting vertices denoted as a and b. Let u denote the
unit axis vector u = (b —a)/||b — a|.

Since we are dealing with surfaces of revolution, the com-
putation of the distance from a point p in space to a primi-
tive will be performed in the plane of a, b and p. The point
h will denote the orthogonal projection of p onto the axis.
I =||b — a|| will refer to the length of the axis.

3 Cylinder

Cylinders are characterized as follows: let a and b denote the
end vertices of the axis, let r denote the radius of the cylinder
and rounded cylinder. The point ¢ will denote the center of
the segment [a, b]. Computing the distance between a point
p in space and a cylinder requires the classification of this
point in the Voronoi regions of the cylinder. The signed
distance along the axis will be denoted as ¢ = (¢ — p) - u.
The squared distance to vertex ¢ will be denoted as n? =
(c — p)?. The squared distance to the axis will be denoted
as y> = ||p — h||> = n® — 2. Figure 2 represents a cut view
of the Voronof regions of the cylinder.

Figure 2: Voronoi regions of a cylinder

Within the plane defined by the three vertices a, b and
p, we can identify six different regions. Processing may be
simplified by taking advantage of the symetry properties of
the cylinder, which limits the classification of a point p in the
Voronoi regions of the cylinder to four cases. The algorithm
proceeds as follows:

1. If |z| < 1/2, then h is on the line segment [ab].

1.1 If y? < 2 then p is inside the cylinder and the
distance is 0.

1.2 Otherwise the squared distance to the cylinder is
(y —r)™.

2. Otherwise, |z| > [/2 then we need to compute the dis-
tance to a disc.

2.1 If 4% < r? then p projects onto the disc and the
squared distance is simply (|z| —1/2)”.

2.2 Otherwise p projects onto a circle and the squared
distance is (y —r)* + (Jz| — 1/2)°.

The order of tests have an influence over the overall per-
formance of the algorithm. Experiments demonstrate that it
is better to perform tests over the x coordinate before test-
ing if y> < r2. The computational cost in the worst case as
well as timings are reported in Table 1.

4 Line swept sphere

Line swept spheres are specific cylinders with half sphere
ends with radius r. Figure 3 represents a cut view of the
Voronoi regions of the line swept sphere primitive.

Figure 3: Voronol regions of a line swept sphere

In this case, the algorithm may be optimized so that it
should resemble the cylinder’s in many aspects. If the pro-
jected point h lies on the line segment [ab], the computations
are the same as in step 1. Otherwise, we need to compute
the distance to a sphere as follows:

2. If |z| > /2, then we need to compute the distance to a
sphere. Let n*> =y + (|| — 1/2)? denote the squared
distance to the end vertex of the cylinder. If n? <
r? then p is inside the sphere, otherwise the squared
distance is (n —r)2.

5 Cone

Let a and b denote the end vertices of the axis, let ra and rp
denote the corresponding radii. Without loss of generality,
we will assume that ra > rp, and 6 = ra — rp will refer to
the difference between the two radii. The leng;th of the side
of the cone will be denoted as s = (I* + 6%)/7.

As for cylinders and line swept spheres, we need to com-
pute the coordinates of the point p in a frame attached to
the primitive. The signed distance along the axis will be
denoted as £ = (a — p) - u. The squared distance to vertex
a will be denoted as n? = (a— p)2. The squared distance to

the axis will be denoted as y* = ||p — h||> = n® — 2.

Figure 4 represents a cut view of the Voronoi regions of
the cone which are more complex than the cylinder’s. The
classification of a point in space p is performed as follows:

Side

Circle ;

Figure 4: Voronofi regions of a cone

1. If £ < 0 then two cases may occur:

1.1 if y* < 2 then p projects on the large cap of the
cone and the squared distance is z2.

1.2 Otherwise we compute the squared distance to the
circle is (y — ra)® + 2.

2. If y? < ri, then there are two cases:

2.1 if x > | then p projects onto the small disc and
the squared distance is (x —).

2.2 Otherwise, p is inside the cone and the distance
is 0.

Further computations require computing the coordinates of
p in a new frame system whose origin is located at point c
and whose orthonormal vectors, denoted as (i, j), are com-
puted as follows (Figure 4):

. (5 l) . (l 5)
1=\|— - J=\-"——
s S S S

Let 3’ and z’ denote the coordinates of point p in the new
frame. The algorithm proceeds as follows:

3. Compute the coordinates denoted as 4y’ and z’ of the
point p in the new frame.

3.1 If ' < 0, then p projects onto the circle of the
large cap and the squared distance is (y—ra)>+2>.

3.2 Otherwise, if ' > s, then p projects onto the
circle of the small cap and the squared distance is
y12 + (.’IJI _ 8)2.

3.3 Otherwise, p projects onto the side of the cone
and the result is 3%

As for the cylinder, the order of the tests has an influ-
ence over the overall performance of the algorithm as well.
Although the overall complexity remains the same, timings
may change according to the shape of the primitive and to
the location of distance queries. It is worth pointing out that
some cases overlap. In the second step of this algorithm, we
do not need to check the case z < 0 since it has already been
processed in the first step. Our experiments suggest that it is
better to perform tests of the x coordinate to check the caps
before computing the 3’ and z’ coordinates which requires
expensive square roots evaluations. The computational cost
in the worst case as well as timings are reported in Table 1.

6 Cone-sphere

Cone-spheres deserve a special case as the computation of
the squared distance differs significantly from cones. Let a
and b denote the centers of two spheres with radii denoted
as ra and r,. Without loss of generality, we will assume that
ra > 1b and § will refer to the difference ra — rp.

a a b b

Figure 5: Voronofi regions of a cone-sphere

A cone smoothly joins the two spheres if and only if [> §.
In that case, the length of the side of the cone will be denoted
as s = (I — 6%)"/%. The cone is characterized by two end
vertices denoted as a’ and b’ with the corresponding radii
rh and r,. Let ha and hy denote the distance between the
vertices a and a’, and b and b’ respectively. We have:

a0 50

ha = — h = —
1 T

o _ Tas T
a — l b — l

Figure b represents a cut view of the three Voronoi regions
of the cone-sphere. Distance computations require comput-
ing the coordinates of p in a rotated frame system whose
origin is located at point ¢ and whose orthonormal vectors
j=(—4/l,s/1) and i = (s/l,4/1) are set as depicted in Fig-
ure 5. Let 3’ and z’ denote the coordinates of point p in the
new frame. The algorithm proceeds as follows:

1. If ' < 0, then we need to compute the distance to a
sphere: let n® denote the distance to vertex a, if n® >
r2, then the squared distance is (n — ra)?, otherwise p
is inside the cone-sphere and the distance is 0.

2. If ' > s, then we need to compute the distance to
the other sphere: let n> denote the distance to vertex
b, if n? > rZ, then the squared distance is (n —)2,
otherwise p is inside the cone-sphere and the distance
is 0.

3. If 4’ > 0, the point p projects onto the side of the cone-
sphere and the result is 3’2, otherwise p is inside the
cone-sphere.

As is, the algorithm always involves the computation of
y’ and x’ which is computationally demanding. It may be
greatly optimized by adding the following big sphere and
small cylinder pre-processing steps (Figure 6) that only re-
quire the computation of y and =:

1. If x < ha, then we need to compute the distance to a
sphere: let n? denote te distance to vertex a, if n? > r2,
then the squared distance is (n — ra)?, otherwise p is
inside the cone-sphere and the distance is 0.

Complex case

Sphere

Figure 6: Regions of influence of a cone-sphere that can be
directly processed with y and z coordinates

2. If y? < r{2, then two cases arise:

2.1 If £ > [+ hyp, then we compute the distance to the
other sphere: let n® = y*+(z—1—hp)? denote the
distance to vertex b, if n> > r, then the squared
distance is (n — 7p)>.

2.2 Otherwise, p is inside the cone-sphere and the dis-
tance is 0.

Although the overall computational cost in the worst case
increases by two tests, timings are considerably reduced as
reported in Table 1. Without optimizations, timings yield
23.38 seconds for 10® random queries, whereas the optimized
algorithm completed in only 13.02 seconds.

7 Accelerations

The distance computations may be accelerated so as to take
advantage of spatial coherence whenever queries are per-
formed along a line, which is often the case in voxelization
applications.

All the previous algorithms are based on the evaluation of
y?, & and 2® which are computed as follows: first we evaluate
the vector n = p — ¢ between a point in space p and a vector
of the axis ¢. Then, we compute £ = n - u and y is defined
as y? = n? — 22, The overall number of operations involved
is 7 multiplies and 8 additions.

Let p(t) = o+dt denote the parameterization of the line,
with [|d|| = 1. The distance along the axis may be written as
a linear polynomial denoted as z(t) and the squared distance
to the axis y2(t) is a quadric polynomial in t. Let n = o —c,
leta=d-u, =n-uandy=d:n, we have:

') =(1-a)t +2(y—ap)t+n’ -5
z(t)=at+ 3
Those polynomials may be computed during a pre-
processing step. The cost of the pre-processing step is only
14 multiplies and 12 additions, which becomes negligible if
more than 4 distance queries are performed. The evaluation

of y2?, x and z? for a given point on a line only requires 4
multiplies and 3 additions.

8 Implementation and performance

The algorithms have been implemented in C++4 as mem-
ber functions of cylinder, cone, line swept spheres and cone-
sphere classes. We tried not only to reduce the overall num-
ber of operations in the worst case scenario, but also to iden-
tify specific cases that can be processed very efficiently.

The algorithms are robust and do not involve divisions by
small numbers which could produce floating point overflows.
Robustness problems may arise when cone and cone-spheres
have almost the same end radii. To handle these cases in
a reasonable way, it is preferable to check radii and create
cylinders or line swept spheres if 7o — r, < € where ¢ is a
user defined threshold.

Primitive + | x v [[17?7 | Time
Cylinder 11 1 1|3 3.74
Cone 14 | 14 1 0|4 9.36
Cone-sphere 12 |11 | 2 0|5 13.02
Line swept sphere | 11 | 9 1 112 3.67

Table 1: Number of operations involved in the distance com-
putation in the worst case and timings (in seconds) for per-
forming 10® random queries

Timings were measured for several scenarios by generat-
ing 10* random shapes in a unit cube and performing 10*
random distance queries for every case. Table 1 reports the
number of operations performed in the worst case situation
as well as timings on a Pentium IV 2.4GHz workstation using
g++ -0 -s as compiler command and options.

Primitive + | x v [| | 7| Time
Cylinder 7 1 |1]3| 292
Cone 9 |11 1 0|4 6.14
Cone-sphere 71 8 2 0|5 8.19
Line swept spheres | 6 | 6 1 112 3.07

Table 2: Number of operations involved in the distance com-
putation in the worst case and timings (in seconds) for per-
forming 10® random queries using the optimized algorithms

Table 2 reports the corresponding number of operations
and timings for the optimized algorithms. Figures do not
take into account the pre-processing step. Timings were
measured for several scenarios by generating 10* random
shapes in a unit cube and performing 10 random distance
queries along a random ray for every case.

Our optimized algorithms were used in an implementa-
tion of the BlobTree [5] modeling and animation system.
Ray tracing skeletal implicit surface models involves hun-
dreds of thousands distance queries for every image and the
proposed optimizations proved to speed up renderings sig-
nificantly compared to the non-optimized variant.

Web information

A C'++ implementation of the algorithm and tests are avail-
able online at:

http://www.acm.org/jgt/papers/GalinBarbier04.

References

[1] S. Frisken, R. Perry, A. Rockwood, Jones. Adaptively
Sampled Distance Fields: A General Representation
of Shape for Computer Graphics. Siggraph Proceedings,
249-254, 2000.

[2] J. Hart and B. Baker. Implicit modeling of tree surfaces.
Proceedings of Implicit Surfaces’96, 143-152, 1996.

[3] N. Max. Cone-spheres. Siggraph Proceedings, 59-62,
1990.

[4] P. Schneider and D. Eberly. Geometric Tools for Com-
puter Graphics. Morgan Kaufmann, 2003.

[6] B. Wyvill, A. Guy and E. Galin. Extending the CSG
Tree (Warping, Blending and Boolean Operations in an
Implicit Surface Modeling System). Computer Graphics
Forum, 18(2), 149-158, 1999.

