A global constraint for graph isomorphism
problems

Sébastien Sorlin, Christine Solnon

LIRIS, CNRS FRE 2672, bat. Nautibus, University of Lyon I
43 Bd du 11 novembre, 69622 Villeurbanne cedex, France
{sebastien.sorlin,christine.solnon}@liris.cnrs.fr

Abstract. The graph isomorphism problem consists in deciding if two
given graphs have an identical structure. This problem can be modeled as
a constraint satisfaction problem in a very straightforward way, so that
one can use constraint programming to solve it. However, constraint pro-
gramming is a generic tool that may be less efficient than dedicated al-
gorithms which can take advantage of the global semantic of the original
problem.

Hence, we introduce in this paper a new global constraint dedicated to
graph isomorphism problems, and we define an associated filtering al-
gorithm that exploits all edges of the graphs in a global way to narrow
variable domains. We then show how this global constraint can be decom-
posed into a set of “distance” constraints which propagate more domain
reductions than “edge” constraints that are usually generated for this
problem.

1 Introduction

Graphs provide a rich mean for modeling structured objects and they are widely
used in real-life applications to represent, e.g., molecules, images, or networks. In
many of these applications, one has to compare graphs to decide if their structure
is identical. This problem is known as the Graph Isomorphism Problem (GIP).

More formally, a graph is defined by a pair (V, E) such that V is a finite
set of vertices and £ C V x V is a set of edges. In this paper, we shall restrict
our attention to graphs without self-loops, i.e., V(u,v) € E, u # v. Two graphs
G = (V,E) and G' = (V', E’) are isomorphic if there exists a bijective function
f:V — V' such that (u,v) € E if and only if (f(u), f(v)) € E’. We shall say
that f is an isomorphism function. The GIP consists in deciding if two given
graphs are isomorphic.

There exists many dedicated algorithms for solving GIPs, such as [21,17,7].
These algorithms are often very efficient (eventhough their worst case complex-
ities are exponential). However, such dedicated algorithms can hardly be used
to solve more general problems, such as isomorphism problems with additional
constraints, or larger problems that include GIPs.

An attractive alternative to these dedicated algorithms is to use Constraint
Programming (CP), which provides a generic framework for solving any kind of

Constraint Satisfaction Problems (CSPs). Indeed, GIPs can be transformed into
CSPs in a very straightforward way [16], so that one can use generic constraint
solvers to solve them. However, when transforming a GIP into a CSP, the global
semantic of the problem is lost and replaced by a set of binary constraints. As a
consequence, using CP to solve isomorphism problems may be less efficient than
using dedicated algorithms which have a global view of the problem.

Outline of the paper. The goal of this paper is to allow constraint solvers
to handle GIPs in a global way so that they can solve them efficiently without
loosing CP’s flexibility. To this aim, we introduce a new global constraint for
modeling GIPs, and we show how one can take benefit of this globality to solve
more efficiently GIPs.

Section 2 gives some complexity results for GIPs and an overview of existing
approaches for solving these problems. Section 3 presents some properties of the
GIP which are used to define our filtering algorithm. In section 4, we introduce a
new global constraint for modeling GIPs on non directed graphs, and we define
filtering technics for this global constraint. In section 5, we discuss the extension
of our work to directed graphs and to the subgraph isomorphism problem.

2 Solving graph isomorphism problems

Complexity. The theoretical complexity of the GIP is not exactly stated: the
problem is in N P but it is not know to be in P or to be N P-complete [10] and its
own complexity class, isomorphism-complete, has been defined. However, some
topological restrictions on graphs (e.g., planar graphs [12], trees [2] or bounded
valence graphs [15]) make this problem solvable in a polynomial time.

Dedicated algorithms. To solve a GIP, one has to find a one to one mapping
between the vertices of the two graphs. The search space composed of all possible
mappings can be explored in a “Branch and Cut” way: at each node of the search
tree, some graph properties (such as edges distribution, vertices neighbourhood)
can be used to prune the search space [7,21]. This kind of approach is rather
efficient and can be used to solve GIPs up to 1000 vertices very quickly (less
than 1 second).

[17] proposes another rather dual approach, which has been originally used to
detect graph automorphisms (i.e., non trivial isomorphisms between a graph and
itself). The idea is to compute for each vertex v; a unique label that characterizes
the relationships between v; and the other vertices of the graph, so that two
vertices are assigned with a same label if and only if they can be mapped by
an isomorphism function. This approach is implemented in the system nauty
which is, to our knowledge, the most efficient solver for the graph isomorphism
problem. The time needed to solve a GIP with nauty is comparable to “Branch
and Cut” methods but nauty is often the quickest for large graphs [9].

Hence dedicated algorithms are very efficient to solve GIPs in practice, even-
though their worst case complexities are exponential. However, they are not

suited for solving more general problems, such as GIPs with additional con-
straints. In particular, vertices and edges of graphs may be associated with labels
that characterize them, and one may be interested in finding isomorphisms that
satisfy particular constraints on these labels. This is the case, e.g., in [19] where
graphs are used to represent molecules, or in computer aided design (CAD)
applications where graphs are used to represent design objects [6].

Constraint Programming. CP is a generic tool for solving constraint satis-
faction problems (CSPs), and it can be used to solve GIPs. A CSP [20] is defined
by a triple (X, D, C) such that :

— X is a finite set of variables,

— D is a function that maps every variable z; € X to its domain D(z;), i.e.,
the finite set of values that can be assigned to z;,

— (' is a set of constraints, i.e., relations between some variables which restrict
the set of values that can be assigned simultaneously to these variables.

Binary CSPs only have binary constraints, i.e., each constraint involves two
variables exactly. We shall note C(z;, «;) the binary constraint holding between
the two variables z; and x;, and we shall define this constraint by the set of
couples (v;,v;) € D(x;) x D(z;) that satisfy the constraint.

Solving a CSP (X, D, C) involves finding a complete assignement, which as-
signs one value v; € D(x;) to every variable z; € X, such that all the constraints
in C are satisfied.

CSPs can be solved in a generic way by using constraint programming lan-
guages (such as CHOCO [14], Ilog solver [13], or CHIP [1]), i.e., programming
languages that integrate algorithms for solving CSPs. These algorithms (called
constraint solvers) are often based on a systematic exploration of the search
space, until either a solution is found, or the problem is proven to have no so-
lution. In order to reduce the search space, this kind of complete approach is
combined with filtering techniques that narrow variables domains with respect
to some partial consistencies such as Arc-Consistency [20, 18, 5].

Using CP to solve GIPs. Graph isomorphism problems can be formulated as
CSPs in a very straightforward way, so that one can use CP languages to solve
them [11,19]. Given two graphs G = (V,E) and G’ = (V', E’), we define the
CSP (X, D, C) such that :

— a variable z,, is associated with each vertex u € V, i.e., X = {x,/u € V},
— the domain of each variable z,, is the set of vertices of G’ that have the same
number of entering and leaving edges than u, i.e.,

D(zy,)=4{v' € V" / [{(u,v) € E}| = |{(v/,v") € E'}| and
{(v,u) € E} = [{(v',u') € E'}[}

— there is one binary constraint between every pair of different variables. The
constraint holding between two different variables (z,,z,) € X? is denoted
by Cedge(zy,) and expresses the fact that the vertices of G’ that are as-
signed to x, and z, must be connected by an edge in G’ if and only if the
two vertices v and v are connected by an edge in G, i.e.,

if (ua U) S Ea Cedge(xu; ﬂiv) =F
otherwise Clgge (@, Ty) = {(v/,v") € V? | W/ # v and (v/,0') & E'}

Once a GIP has been formulated as a CSP, one can use constraint programming
to solve it in a generic way, and additional constraints, such as constraints on
vertex and edge labels, can be added very easily.

Discussion. When formulating a GIP into a CSP, the global semantic of the
problem is decomposed into a set of binary “edge” constraints, each of them
expressing locally the necessity either to maintain or to forbid one edge. As a
consequence, using CP to solve GIPs will often be less efficient than using a
dedicated algorithm.

To improve the solution process of CSPs associated with GIPs, one can add
an allDiff global constraint, in order to constrain all variables to be assigned to
different vertices [19]. This constraint is redundant as each binary edge constraint
only contains couples of different vertices, so that it will not be possible to
assign a same vertex to two different variables. However, adding this global
constraint allows a constraint solver to prune the search space more efficiently,
and therefore to solve GIPs quicker. Hence, with respect to the definition of
globality introduced in [4], this allDiff constraint is not semantically global, as
it can be decomposed into a semantically equivalent set of binary constraints,
but it is AC-operationally global, as an AC-filtering on the global constraint is
stronger than an AC-filtering on the equivalent set of binary constraints.

In this paper, we introduce a new global constraint to define GIPs. This
global constraint is not semantically global, as it can be decomposed into a set
of binary edge constraints as described above. However, by considering all edges
of the graphs in a global way, we can prune more efficiently the search space.
Note that this GIP global constraint can be combined with an allDiff constraint
to filter even more values.

3 Some properties of the GIP

When looking for an isomorphism function between two given graphs, one can
use vertex properties to reduce the search space. For example, one can compute
the degree of each vertex, or the number of adjacent triangles to each vertex,
and use these “vertex invariants” to prune every mapping which violates them.
More generally, a vertex invariant is a label /(v) assigned to each vertex v such
that if there exists an isomorphism function which links v to v’ then I(v) = I(v")
(but the converse is not necessary true). The most famous exemple of vertex

invariants is the degree of a vertex (i.e., the number of incoming and outgoing
edges) : if f is an isomorphism function between G =(V, E) and G' = (V', E’),
then for each vertices v € V, the vertices v and f(v) have the same degree.

We introduce in this section some definitions and theorems that will be used
to define a new vertex invariant based on distances. We shall restrict our atten-
tion to undirected graphs, i.e., graphs with undirected edges so that (u,v) and
(v, u) are considered to be the same edge. The extension of our work to directed
graphs is discussed in section 5.1. We shall assume that graphs are connected,
so that every vertex is reachable from any other vertex.

3.1 Definitions and theorems

Definition 1. Given a graph G = (V, E), a path between two vertices u and v
is a sequence <wvg,v1, Vs, ..., Vx> of vertices such that vg =u, vy =v and for all
i € [1,k], (vi—1,v;) € E. The length of a path 7, noted |r|, is the number of its
edges.

Definition 2. Given a graph G = (V, E), a shortest path between two vertices
u and v is a path between u and v the length of which is minimal. The length of
the shortest path between u and v is noted dg(u,v). We shall say that dg(u,v)
is the distance between u and v.

Fele D [ABCOEFICHEN]
0]1]1]1({2(1(2|2]3|2

= o Q- E| O Q W] >

NN DN DN ==
NN W R W N NS
W WIN(NN PO N
WIN NN O
WIN[N O[N] =W
N =W O NN =
NN W N W
N = O N =] =] NN
= O = = NN DN W N
O =[N DN = o W] W

Fig.1. A graph G = (V, E) and distances between any pair of its vertices.

Theorem 1. Given two graphs G = (V,E) and G' = (V' E’) such that |V| =
[V'|, and a bijective function f : V. — V', the two following properties are
equivalent

[is an isomorphism function, i.e., (u,v) € E < (f(u), f(v)) € E’ (1)
Y(u,v) € V2,06 (u,v) = dar (f(u), f(v)) (2)

Proof. (1) = (2): if f is an isomorphism function, then (u,v) is an edge of
G iff (f(u), f(v)) is an edge of G' so that < vi,vs,...,v, > is a path in G iff
< f(v1), f(v2), ..., f(vn) > is a path in G', and therefore < vi,va,...,v, > 18 a
shortest path in Gy iff < f(v1), f(v2),..., f(vn) > is a shortest path in G2, and
property (2) holds.

(2) = (1): For any pair of vertices (u,v) € V XV, if (u,v) is an edge of G, then
< u,v > is the shortest path between u and v so that ¢ (u,v) =1, and therefore
dcr(f(u), f(v)) =1, so that (f(u), f(v)) is an edge of G’ (and vice versa).

Theorem 1 will be used to define “distance” constraints for propagating do-
main reductions when solving GIPs. We now introduce some more definitions
that will be used to define a partial consistency and a filtering algorithm for
GIPs.

Definition 3. Given a graph G = (V,E), a vertex u € V, and a distance
i € [0,|V| — 1], we note Ag(u,i) the set of vertices that are at a distance of ¢
from w, and #Ag(u,i) the number of vertices that are at a distance of ¢ from
U, 1.€.,

Ag(u,i) ={v € V/ig(u,v) =i} and #Ag(u,i)=|Ag(u,i)]

For example, for the graph G of Fig. 1, we compute:

Ac(4,0) = {A} #Aa(A,0) =1
Ac(A1) = {B,C,D,F} #Aa(A,1) =4
D(A2) = (E.G.H.J} #Ag(A2) =1
AG(Av 3) = {I} #AG(Av 3) =1
Ac(A,i) =0 HAG(A i) =0, Vi>4

Definition 4. Given a graph G = (V, E) and a vertex u € V, we note #A¢g(u)
the sequence composed of | V| numbers respectively corresponding to the number
of vertices that are at a distance of 0, 1, ... |[V| — 1 from u, i.e.,

#AG(U’) = < #AG(uaO)7#AG(u7 1)a ey #AG(uv |V| - 1) >

We shall omit zeros at the end of sequences.
For example, the sequences of the vertices of the graph G of Fig. 1 are

#Ac(A) = #Ac(D) = #Ac(F)= <1,4,4,1>

#Ag(B) = #Ag(C) = #AG(E) = #Ag(G) = #AG(I) = < 1,374,2 >
#AG(H)= <1,4,5,0>

#Aq(J)= <1,3,3,3>

Each sequence # A (u) characterizes the relationships of the vertex u with the
other vertices of G by means of distances. Hence, when looking for a graph
isomorphism, one can use these sequences as a vertex invariant to reduce the
search space by pruning all mappings that associate two vertices with different

sequences. However, many different vertices within a same graph may have a
same sequence so that this criterion will not narrow much the search space. For
example, on the graph example of Fig. 1, there are five different vertices the
sequence of which is < 1, 3,4,2 >. Definition 6 will go one step further in order
to characterize more precisely the relationships of a vertex u with the other
vertices of the graph.

Definition 5. Given a graph G = (V, E), we note # A the set of all different
sequences associated with the vertices of G, i.e.,

#Ac ={s|Fu e V,s =#Ag(u)}
For example, the set of all different sequences for the graph G of fig 1 is
#Ac=1{<1,3,3,3>,<1,3,4,2>,<1,4,4,1>,<1,4,5,0>}

Definition 6. Given a vertex u € V, we note labelg(u) the set of all tuples
(i, s, k) such that ¢ is a distance, s is a sequence, and k is the number of vertices
that are at a distance of 7 from u and the sequence of which is s, i.e.,

labelg(u) = {(i,s,k) / i €[0,|V]—1],
s € #Ag, and
k={v e Ag(u,i)/#Ac(v) = s}}

We shall omit the tuples (i, s, k) such that k£ = 0.
For example, for the graph G of Fig. 1, we compute

labelg(A) = { (0,< 1,4,4,1>,1),
(1,<1,3,4,2>,2),(1,< 1,4,4,1 >,2),
(2,<1,3,3,3>,1),(2,<1,3,4,2>,2),(2,< 1,4,5,0 >, 1),
(3,<1,3,4,2>,1)}

as there is one vertex (A) that is at a distance of 0 from A and which sequence
is < 1,4,4,1 >, two vertices (B and C) that are at a distance of 1 from A and
which sequence is < 1,3,4,2 >, two vertices (D and F') that are at a distance
of 1 from A and which sequence is < 1,4,4,1 >, etc...

Theorem 2. Given two graphs G = (V,E) and G' = (V' E’), if there exists an
isomorphism function f : V — V' that matches the two graphs then, for each
vertez u € V, labelg(u) = labelg (f(u)).

Proof. f is a bijection, and the distance between two vertices u and v in G is
equal to the distance between their associated vertices f(u) and f(v) in G’ (see
theorem 1). Therefore, the number of vertices of G that are at a distance of i from
u s equal to the number of vertices of G’ that are a distance of i from f(u), so
that #Ag(u) = #Aq (f(u)). As a consequence, the set of sequences of the two
graphs are equals, i.e., #Ac = #Aq. Then, for each sequence s € #Aq, and for
each vertex u € V, the number of vertices that are at a distance of i from u and
which sequence is s is equal to the number of vertices that are at o distance of i
from f(u) and which sequence is also s, and therefore labelg(u) = labelg: (f(u))-

3.2 Algorithms and complexities

We discuss in this section time and space complexities required to compute the
different values introduced in 3.1. These complexities are given for a non directed
connected graph G = (V, E) such that |V| =n and |E| = p withn—1 < p < n?.

dc(u,v). All definitions introduced in section 3.1 are based on distances be-
tween couples of vertices. A Breadth First Search (BFS) [8] from each vertex of
G is needed to compute them all: n BFS are needed, each of them performing
O(p) operations, so that the time complexity is in @(np). The space needed to
store these informations is in O(n?).

Ag(u,i), #Ac(u,i) and #Ag(u). All these values can be computed in an
incremental way while computing shortest paths: each time a distance dg(u,v)
is computed, the vertex u (resp. v) is added to the set Ag(v,dg(u,v)) (resp.
Ag(u,dg(u,v))), both #Ag(u, ¢ (u,v)) and #Ag (v, ¢ (u, v)) are incremented,
and the sequences #Ag(u) and #Ag(v) are updated by incrementing their
0c (u, v)th component. All these operations can be done in constant time. The
space needed to store these informations is in O(n?).

labelg(u). To compute and compare labels efficiently, we first sort the set of
all sequences, so that a unique integer is associated with each different sequence.
This is done in O(n2.log(n)) operations as there is at most n different sequences,
and the comparison of two sequences is in O(n). Then, the computation of all
labels can be done in O(n?) operations (as there are n labels to compute, each of
them containing at most n different triples), and requires O(n?) space. Finally,
the comparison of two labels can be done in O(n) operations, provided that the
set of triples (i, s, k) contained in each label is sorted.

As a consequence, the computation of all values introduced in section 3.1 for
a graph G = (V, E) requires O(|V|.|E| + |V |?.log(|V])) operations and O(|V|?)
space.

4 A global constraint for GIPs

We now introduce a new global constraint for tackling GIPs efficiently. Syntac-
tically, this constraint is defined by the relation gip(V, E, V' E’, L) where

— V and V' are 2 sets of values such that |V| = |V’|,

— E CV xV is a set of pairs of values from V,

— E' C V' x V'is a set of pairs of values from V',

— L is a set of couples which associates one different variable of the CSP to
each different value of V, i.e., L is a set of |V| couples of the form (x,,,u)
where z,, is a variable of the CSP and u is a value of V', and such that for
any pair of different couples (z,,u) and (z,,v) of L, both z, and z, are
different variables and u # v.

Semantically, the global constraint gip(V, E, V', E’, L) is consistent if and only
if there exists an isomorphism function f : V' — V' such that for each couple
(Ty,u) € L there exists a value v’ € D(z,) so that v’ = f(u).

This global constraint is not semantically global as it can be represented
by a semantically equivalent set of binary constraints as described in section 2.
However, the gip constraint allows us to exploit the global semantic of GIPs to
solve them more efficiently. We now define a partial consistency, and an associ-
ated filtering algorithm (section 4.1); we shall then describe how to propagate
constraints (section 4.2).

4.1 Label-consistency and label-filtering for gip constraints

Theorem 2 establishes that an isomorphism function always maps vertices that
have identical labels. Hence, we can define a partial consistency for the gip
constraint, called label-consistency, that ensures that for each couple (z;,v) € L,
each value u in the domain of x; has the same label than v.

Definition 7. The global constraint gip(V, E, V' E’ L) is label-consistent iff
V(2zu,u) € L, Yu' € D(xy), labely,g)(u) = label v pry(u')

To achieve label-consistency, one just has to compute the label of each vertex of
the two graphs, as described in section 3.2, and remove from the domain of each
variable z, associated with a vertex u € V every value v’ € D(z,) such that
label(y,gy(u) # label v gry(u').

This label-filtering often drastically reduces variable domains. Let us consider
for example the graph G of Fig. 1. The first three triples (sorted by increasing
distance, and then by increasing sequence number) of the label of each vertex
are:

labelg(A) = {(0,<1,4,4,1 >,1),(1,< 1,3,4,2 >,2),(1,< 1,4,4,1 >,2),...}
labelg(B) = {(0,< 1,3,4,2>,1),(1,< 1,3,3,3>,1),(1,< 1,4,4,1 >,2), ...}
labelg(C) = {(0,< 1,3,4,2 >,1),(1,< 1,3,4,2 >,1),(1,< 1,4,4,1 >,2), ...}
labela(D) = {(0,< 1,4,4,1>,1),(1,< 1,3,4,2>,2),(1,< 1,4,4,1 >,1), ...}
labelg(E) = {(0,< 1,3,4,2 >,1),(1,< 1,3,4,2 >,2),(1,< 1,4,5,0 >,1), ...}
labelg(F) = {(0,< 1,4,4,1>,1),(1,< 1,3,3,3>,1),(1,< 1,3,4,2>,1), ...}
labela(G) = {(0,< 1,3,4,2 >,1),(1,< 1,3,4,2 >,2),(1,< 1,4,4,1 >,1), ...}
labelg(H) = {(0,<1,4,5,0 >,1),(1,< 1,3,4,2>,2),(1,< 1,4,4,1 >,2), ...}
labelc(I) = {(0,<1,3,4,2>,1),(1,<1,3,3,3>,1),(1,< 1,3,4,2 >,1),...}
labelg(J) = {(0,<1,3,3,3>,1),(1,< 1,3,4,2 >,2),(1,< 1,4,4,1 >,1),...}

Actually, all vertices of G have different labels. As a consequence, for any gip
constraint between G and another graph G’, label-filtering will allow one either
to detect an inconsistency (if some label of G is not in G’), or to reduce the
domain of each variable to a singleton so that global consistency can be easily
checked.

On this example, we can compare label-consistency of a gip constraint with
arc consistency of the CSP defined in section 2. Let us define another graph
G’ = (V' E') that is isomorphic to the graph G = (V, E) of Fig. 1, and such
that each vertex u € V' is renamed into ' in G’. Let us consider the CSP which
modelizes the problem of finding an isomorphism between these two graphs, as
defined in section 2. For this CSP, the domain D(z,,) of each variable z,, contains
every vertex u’ € V'’ such that v and u’ have a same number of incident edges,
so that :

D(za) = D(zp) = D(zr) = D(zy) ={A, D', F',G'}
D(QJB) = D(xc) = D(J}E) = D(J}G) = D(Jf[) = D(J}J) = {B/, OI,E/, GI,I/, J/}

This CSP already is arc consistent so that an AC-filtering will not reduce any
domain. Note also that, on this example, adding an allDiff constraint does not
allow to filter more domains.

4.2 Propagating constraints

Label-filtering does not always reduce every domain to a singleton so that it
may be necessary to explore the search space. Let us consider for example the
graph displayed in Fig. 2. This graph has many symetries (it is isomorphic to
any graph obtained by a circular permutation of its vertices), so that all vertices
are associated with a same sequence and a same label. In this case, label-filtering
does not narrow any domain.

c For each vertex u € V,
e e #Ag(u) = <1,2,2,1> and
labelg(u) ={ (0,< 1,2,2,1 >, 1),

()
(1,<1,2,2,1>,2),
© © (< 1,2211512)
()

3,<1,2,2,1>,1)}

Fig. 2. A circular graph G = (V, E) and vertex sequences and labels

When label-filtering does not reduce the domain of each variable to a single-
ton, one has to explore the search space composed of all possible assignments by
constructing a search tree. At each node of this search tree, the domain of one
variable is splitted into smaller parts, and then filtering technics are applied to
narrow variable domains with respect to some local consistencies. These filtering
technics iteratively use constraints to propagate the domain reduction of one
variable to other variable domains until either a domain becomes empty (the

node can be cut), or a fixed-point is reached (a solution is found or the node
must be splitted).

To propagate the domain reductions implied by a gip constraint, a first pos-
sibility is to use the set of Ceq4e constraints as defined in section 2. However,
we can take advantage of results obtained while achieving label-consistency to
define “tighter” constraints. By tighter, we mean that each constraint is defined
by a smaller (or equal) number of allowed couples of values so that propagating
them may narrow domains more strongly.

The idea is to constrain each pair of variables (z.,, z,) associated with a pair
of vertices (u,v) of the first graph to take their values within the set of pairs
of vertices (u’,v’) of the second graph such that the distance between v and v
is equal to the distance between v’ and v’. Indeed, Theorem 1 proves that a
bijective function between two graphs is an isomorphism function if and only if
this function preserves the distances between every pair of vertices in each graph.
Therefore, the global constraint gip(V, E, V', E’, L) is semantically equivalent to
a set of “distance” constraints defined as follows: for all ((x,u), (x,,v)) € L X L
such that u # v,

Odistance (xuaxv) = {(u/vvl) € V/ X V/ | 5(V,E) (U'a U) = 5(V’7E’)(U'/7U/)}

One can easily show that each binary constraint Cy;stance (T, T,) is tighter
than (or equal to) the corresponding binary constraint Cegge(zy, z,) defined in
section 2:

— if the vertices of GG associated with the variables z,, and x, are connected by
an edge in G, then Clistance (Tu, Tv) = Cedge(u, x) = E',

— otherwise, Cuistance(Tu,Zv) € Cedge(Tu,Ty) a8 Cedge(Tu, zy) contains all
pairs of vertices of G’ that are not connected by an edge whereas Cyistance-
(24, x,) only contains the pairs of vertices of G’ such that the distance be-
tween them is equal to the distance between the vertices of G associated
with z, and z,.

As a consequence, propaging a Clyisiance constraint will always remove at least
as many values as propaging the corresponding Ccqq4e constraint, and in some
cases it will remove more values.

For example, let us consider the graph G of Fig. 2 and let us define another
graph G’ = (V’, E’) that is isomorphic to G and such that each vertex u € V
is renamed into v’ in G’. We note z, the variable associated with each vertex
u € V. The edge constraint between x; and x4 contains every pair of vertices of
G’ that are not connected by an edge, i.e.,

Oedgﬁ(xlv $4) = { (1I7 3I)7 (1I7 4I)7 (1I7 5I)7 (2I7 4I)7 (2I7 5I)7 (2I7 6I)7

(3/7 5/)7 (3/7 6/)7 (3/7 1/)7 (4/7 6/)7 (4/7 1/)7 (4/7 2/)7

(5,1, (5",2),(5",3'),(6',2"), (6", 3"), (6",4') }
whereas the distance constraint between x; and x4 only contains pairs of vertices
of G’ that are at a distance of 3 one from each other as the distance between 1

and 4 is 3, i.e.,
Cdistance (xl, CE4) = {(]-/7 4/)7 (2/7 5/)7 (3/7 6/)7 (4/7 1/)7 (5/7 2/)7 (6/7 3/)}

As the distance constraint between x; and x4 is tighter than the corresponding
edge constraint, it can propagate more domain reductions. For example, if z; is
assigned to 1, a forward-checking propagation of Cyistance (1, 24) reduces the
domain of z4 to the singleton {4'}, whereas a forward-checking propagation of
Cledge(z1,24) only reduces the domain of z4 to {3’,4’,5'}, that is, the set of
vertices that are not connected to 1’ by an edge.

Also, after the suppression of value 1’ from the domain of z;, an AC propaga-
tion of Cyistance (71, 24) Will remove the value 4’ from the domain of x4, whereas
an AC propagation of Cegge(x1,z4) will not remove any value.

5 Extensions to directed graphs and subgraph
isomorphism problems

5.1 Directed graphs.

All definitions and theorems introduced in section 3 actually hold for directed
graphs, provided that paths respect edge directions. However, in this case, there
may exist many couples of vertices which are not connected by a path respecting
edge directions, so that the sequences describing vertices may be very short. In
this case, label-filtering may not reduce much the search space.

Another way to extend our work to directed graphs is to first consider the
corresponding non-directed graph (by ignoring edge directions), and to compute
sequences and labels on this non-directed graph. Then, constraints can be added
to express edge directions.

Finally, a last way to extend our work to directed graphs is to consider to-
gether several kinds of paths, each one having a corresponding kind of distance,
e.g. directed paths, which respect edge directions, non directed paths, which ig-
nore edge directions... We can then use these different kinds of paths to compute,
for each vertex as many labels as defined distances. Two vertices can then be
linked together if and only if, for each defined distance, the two vertices have
the same label.

Obviously, the third possibility should allow one to narrow more tightly do-
mains. However, it is also more expensive to achieve. Hence, we shall experimen-
tally compare these three different possibilities.

5.2 Subgraph isomorphism problems

A graph G = (V| E) is a subgraph of another graph G’ = (V’, E’), denoted by
GCG,ifVCV'and E=E'N(V xV). A graph G = (V, E) is an isomorphic
subgraph of another graph G’ = (V/, E’) if there exists a subgraph G’ C G’
that is isomorphic to G. The Subgraph Isomorphism Problem (SGIP) consists

in deciding if a graph G = (V, E) is an isomorphic subgraph of another graph
G' =(V',E".

If the theoretical complexity of the GIP is not yet completely stated, the
SGIP clearly is an N P-complete problem [11]. Actually, the SGIP is a more
challenging problem for which rather small instances still cannot be solved within
a reasonable amount of time.

One can modelize a SGIPs as CSPs, in a very similar way than for GIPs. How-
ever, like for GIPs, one could take benefit of the global semantic of the problem
to define more powerful filtering algorithms. However, a subgraph isomorphism
function f : V' — V' does not preserve distances between vertices like a graph
isomorphism function, as stated in Theorem 1: for every path < vy, v, ..., v, >
in G, there exists a path < f(v1), f(v2), ..., f(v,) > in G’ but the opposite is not
always true (f is not a bijection and it may exist some vertices of V' which are
not linked to a vertex of V). As a consequence, the distance d¢ (u, v) between two
vertices u and v of G may be greater than the distance dg/(f(u), f(v)) between
f(u) and f(v).

Hence, filtering technics for handling efficiently SGIPs, could be based on the
following property: given two undirected graphs G = (V, E) and G' = (V', E’),
if f is an isomorphism function between G and a subgraph of G’, then

Y(u,v) €V x V, dg(u,v) > dcr(f(u), f(v))

This property could be used to define a partial consistency, and an associated
filtering algorithm. The idea would be to check that, for every vertex u of G,
the domain of the variable z, associated with u only contains vertices u’ such
that, for every distance k € 1..|V;| — 1, the number of vertices v € G for which
dc(u,v) < k is lower or equal to the number of vertices v' € G’ for which
der (v, v") < k.

We could also use this property to define distance constraints for propagating
domain reductions while exploring a search tree.

6 Conclusion

We have introduced in this paper a new global constraint for defining graph
isomorphism problems. To tackle efficiently this global constraint, we have first
defined a partial consistency, called label-consistency, and an associated filtering
algorithm, that can be used to narrow variable domains before solving the CSP.
This label-consistency is based on the computation, for each vertex u, of a label
which characterizes the global relationship between « and the other vertices
of the graph by means of shortest paths and which can be viewed as a vertex
invariant. In many cases, achieving label-consistency will allow a constraint solver
to either detect an inconsistency, or reduce variable domains to singletons so that
the global consistency can be easily checked.

Then, for cases such that label-consistency does not allow to solve the graph
isomorphism problem, we have defined a set of distance constraints that is se-
mantically equivalent to the global GIP constraint and that can be used to

propagate domain reductions. We have shown that these distance constraints
are tighter than edge constraints, that simply check that edges are preserved
by the mapping, so that propagating distance constraints remove more (or as
many) values than propagating edge constraints. Note that this set of distance
constraints can be combined with a global allDiff constraint to propagate even
more domain reductions.

Both label-filtering and the generation of distance constraints can be done
in O(np + n%log(n)) operations for graphs having n vertices and p edges (such
that n — 1 < p < n%. As a comparison, achieving arc consistency with AC2001
on a CSP describing an isomorphism problem with edge constraints will require
O(ed?) operations [3] where ¢ is the number of constraints, i.e., e = n(n —1)/2,
and d is the size of the largest domain, i.e., d = n. Hence, the complexity
of achieving label-consistency on the global constraint is an order lower than
the complexity of achieving AC-consistency on a semantically equivalent set
of edge constraints. However, one should note that these two consistencies are
not comparable: for some graphs, such as the graph of Fig. 1, label-consistency
is stronger and actually solves the problem, whereas AC-consistency on edge
constraints does not reduce any domain; for some other graphs, such as the
graph of Fig. 2, label-consistency does not reduce any domain, whereas AC-
consistency on edge constraints can reduce some variable domains as soon as
one variable is assigned to a value.

Further work will first concern the integration of our filtering algorithm into
a constraint solver (such as CHOCO [14]), in order to experimentally validate
and evaluate it. A distance constraint can be seen like an invariant of a couple
of vertices : it is a label {(u,v) assigned to a couple (u,v) of vertices such that,
if there exists an isomorphism function which links vertices (u,v) to vertices
(u',v") then I(u,v) = I(v',v"). One could choose stronger invariants i.e., defining
more “tighter” constraints than the one based on the distance between the two
vertices. For example, one could choose a label [(u, v) of a couple (u, v) of vertices
of a graph G which describes the distances between u, v and all vertices of the
graphs more than only the distance between v and v. The label {(u,v) should
be then a set of triples (d,,d,,n), each one expressing the fact that there is
n vertices of G which are respectively at distance of d, from vertex v and at
distance of d,, from vertex v. Using stronger invariants can prune more efficiently
the search space but can also be more expensive to compute and to compare. One
has to find the best compromise between the time needed to compute it and the
efficiency of the filtering, and experiments should be performed to determine
this. Finally, we shall clarify relationships between different levels of partial
consistencies on Cyistance and Cegqe constraints. In particular, for all examples
we have experimented, we have noticed that after the assignment of a variable,
a forward checking propagation of Cy;siance constraints always reduces domains
as much as an AC propagation of C.q4. constraints. Hence, we shall try to prove
this property, or find a counter example to it.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to solve
complex and scheduling and placement problems. In Actes des Journées Franco-
phones de Programmation et Logique, Lille, France, 1992.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis
of computer algorithms. Addison Wesley, 1974.

Christian Bessiére and Marie-Odile Cordier. Arc-consistency and arc-consistency
again. In Proceedings of the 11th National Conference on Artificial Intelligence,
pages 108-113, Menlo Park, CA, USA, July 1993. AAAI Press.

Christian Bessiére and Pascal Van Hentenryck. To be or not to be... a global
constraint. CP’03, Kinsale, Ireland, pages 789-794, 2003.

Christian Bessiére and Jean-Charles Régin. Refining the basic constraint propa-
gation algorithm. In Bernhard Nebel, editor, Proceedings of the seventeenth In-
ternational Conference on Artificial Intelligence (IJCAI-01), pages 309-315, San
Francisco, CA, August 4-10 2001. Morgan Kaufmann Publishers, Inc.
Pierre-Antoine Champin and Christine Solnon. Measuring the similarity of labeled
graphs. 5th International Conference on Case-Based Reasoning (ICCBR 2003),
Lecture Notes in Artificial Intelligence N¥2689 - Springer-Verlag:80-95, 2003.
Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. An
improved algorithm for matching large graphs. In 8rd IAPR-TC15 Workshop on
Graph-based Representations in Pattern Recognition, pages 149-159. Cuen, 2001.
Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, 1990.

Pasquale Foggia, Carlo Sansone, and Mario Vento. A performance comparison of
five algorithms for graph isomorphism. In 3rd JAPR-TC15 Workshop on Graph-
based Representations in Pattern Recognition, pages 188-199. Cuen, 2001.

Scott Fortin. The graph isomorphism problem. Technical report, Dept of Com-
puting Science, Univ. Alberta, Edmonton, Alberta, Canada, 1996.

Michael R. Garey and David S. Johnson. Computers and Intractability : A Guide
to The Theory of NP-Completness. W.H. Freeman, San Francisco, 1979.

John E. Hopcroft and Jin-Kue Wong. Linear time algorithm for isomorphism of
planar graphs. 6" Annu. ACM Symp. theory of Comput., pages 172-184, 1974.
ILOG,S.A. ILOG Solver 5.0 User’s Manual and Reference Manual. 2000.
Frangois Laburthe and the OCRE project team. CHOCO: implementing a CP
kernel. In Proc. of the CP’2000 workshop on techniques for implementing constraint
programming systems, Singapore, 2000.

Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. Journal of Computer System Science, pages 42—65, 1982.

James J. McGregor. Relational consistency algorithms and their applications in
finding subgraph and graph isomorphisms. Information Science, 19:229-250, 1979.
Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium,
30:45-87, 1981.

Roger Mohr and Thomas C. Henderson. Arc and path consistency revisited. Ar-
tificial Intelligence, 28:65-74, 1986.

Jean-Charles Régin. Développement d’Outils Algorithmiques pour I’Intelligence
Artificielle. Application & la Chimie Organique. PhD thesis, Univ. Montpellier II,
1995.

Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
Jeffrey D. Ullman. An algorithm for subgraph isomorphism. Journal of the Asso-
ciation of Computing Machinery, 23(1):31-42, 1976.

