
DOI: 10.1007/s00453-003-1041-6

Algorithmica (2004) 38: 25–43 Algorithmica
© 2003 Springer-Verlag New York Inc.

Decomposition of a Three-Dimensional Discrete Object
Surface into Discrete Plane Pieces

Isabelle Sivignon,1 Florent Dupont,2 and Jean-Marc Chassery1

Abstract. This paper deals with the polyhedrization of discrete volumes. The aim is to do a reversible
transformation from a discrete volume to a Euclidean polyhedron, i.e. such that the discretization of the
Euclidean volume is exactly the initial discrete volume. We propose a new polynomial algorithm to split the
surface of any discrete volume into pieces of naive discrete planes with well-defined shape properties, and
present a study of the time complexity as well as a study of the influence of the voxel tracking order during
the execution of this algorithm.

Key Words. Discrete volumes, Digital plane recognition, Surface, Polyhedrization.

1. Introduction. Three-dimensional discrete volumes are used more and more espe-
cially in the medical area since they result from MRI and scanners. As two-dimensional
images are composed of squares called pixels, these three-dimensional images are com-
posed of cubes called voxels. This structure induces many difficulties in the exploitation
and study of these objects: as each cube is stored, the volume of data is very huge, which
is a problem in obtaining fluent interactive visualization; the facet structure (voxels’s
faces) of the discrete object induces many problems to get the nice visualization that is
necessary for medicine, as no rendering nor texture algorithm can be applied.

The general idea to solve these problems is to transform discrete volumes into Eu-
clidean polyhedra. Many research activities have already been achieved to find solutions
to this problem, using Euclidean geometry or discrete geometry. To get a good visual-
ization of discrete volumes, the method that is most used is the Marching cubes method
[1], which considers replacing local voxel configurations by small triangles. Even if
this method offers good visualization, it does not provide good data compression (huge
number of facets).

Many other research activities have been done in this field, using completely different
ideas. The first algorithms dealt with the construction of the convex hull of the considered
set of voxels. This study was mainly done by Kim and Rosenfeld who published in [2] a
first algorithm to characterize a piece of discrete plane by the convex hull of the discrete
surface. This algorithm was then improved by Kim and Stojmenović [3]. This algorithm
was not reversible, i.e. the discretization of the Euclidean hull obtained is not the discrete
object.

1 Laboratoire LIS, 961 rue de la Houille Blanche, Domaine Universitaire - BP46, 38402 Saint Martin D’Hères
Cedex, France. {sivignon,chassery}@lis.inpg.fr.
2 Laboratoire LIRIS, 8 Boulevard Niels Bohr, 69622 Villeurbanne Cedex, France. fdupont@liris.cnrs.fr.

Received January 21, 2003. Communicated by R. C. Veltkamp.
Online publication October 24, 2003.

26 I. Sivignon, F. Dupont, and J.-M. Chassery

The first reversible algorithm was proposed by Borianne and Françon [4]. In this paper
they exposed two methods: one to do a polyhedrization, and another to do the reverse
operation, i.e. discretization. For that, they used an approximation by the least-squares
method that made it marginal compared with entirely discrete methods.

Another idea was then proposed by Debled [5], [6]. She developed an algorithm to
recognize rectangular pieces of naive planes. Then she used this algorithm to decompose
the digital surface of symmetric objects (with known symmetries) into pieces of discrete
planes. The polyhedrization was not complete here but it was the first approach using
discrete plane recognition.

In 1999 Papier [7], [8] presented an algorithm using the Fourier–Motskin algorithm
to recognize standard discrete planes on an object surface, each point of the plane being
a pointel (vertex of a voxel). The time complexity of this algorithm is high because of the
Fourier–Motskin algorithm and, moreover, the polyhedrization done is not reversible.

Finally, in 2000, Burguet and Malgouyres published [9] an approximation algorithm
using a curvature computation to choose some germ points and then calculate the skeleton
of the discrete surface without those germs (Voronoi diagram). The result is a Delaunay
triangulation that approximates and simplifies the original object.

The aim of this paper is to present the first steps to achieve a totally discrete and
reversible polyhedrization. We use discrete geometry that seems to fit best the structure
of the processed objects. Reversibility means that from a discrete object, we can get a
Euclidean polyhedron whose digitalization is exactly the former discrete volume. This
property enables many applications and we give two of them here. First, this can lead
to efficient data compression describing the volume by the set of all the faces of the
Euclidean polyhedron: no loss of data and no loss of information in the compressed
object. After this transformation, we can apply morphological operations on the recon-
structed Euclidean polyhedron and then retrieve the discrete volume obtained after these
operations.

In the next section, we give the basic definitions of discrete geometry. Then we present
in detail the naive plane recognition algorithm that we use in the following, giving some
improvements and new properties. In Section 4, after a short state of the art, we expose
our segmentation algorithm. Section 5 deals with the algorithm’s time complexity. Then,
in the next section, we propose a study of the voxel processing order and its influence on
the final surface decomposition. Before a few words of conclusion, we finally present
some performance and image results on generated and real volumes.

2. Basic Definitions and Properties. In this first part we focus in a few words on the
basic objects and definitions of discrete geometry. All the following definitions lie in a
discrete three-dimensional space. This space is defined as a unit cubic mesh centered on
points having integer coordinates. The vertices of each cell (cube) of the mesh correspond
to points with half-integer coordinates.

A voxel or Z
3 point or discrete point is assimilated with the unit closed cube of

the mesh. Then voxel coordinates are the coordinates of the corresponding cube center.
Faces, edges and vertices of a voxel are respectively called surfels, linels and pointels.

In Z
3, three voxel neighborhoods (Figure 1) are classically used. They are defined

with the two distances called the Manhattan distance, denoted d6, and the Chessboard

Decomposition of a Three-Dimensional Discrete Object Surface 27

Fig. 1. A voxel and the three classical neighborhoods.

distance, denoted d26:

d6(M, P) = |xm − xp| + |ym − yp| + |zm − zp|,
d26(M, P) = max(|xm − xp|, |ym − yp|, |zm − zp|).

Two voxels M and P are 6-neighbors (6-N) if and only if d6(M, P) ≤ 1. M and P
are 26-neighbors (26-N) if and only if d26(M, P) ≤ 1. In other words, two points are
6-N if they have a common face, 26-N if they have a common face, a common edge or a
common vertex. This point of view suggests another neighborhood for the case of two
voxels sharing a common face or a common edge, called 18-N (d6(M, P) ≤ 2).

A classical way to define a discrete line or a discrete plane is to consider the digitization
of a Euclidean line or plane on a unit grid with a given digitization scheme. However,
as in Euclidean space, there exist arithmetical definitions of discrete planes and lines.
Those definitions were given by Reveillès [10] and then generalized to hyperplanes by
Andrès [11].

A digital plane (Figure 2) of normal vector (a, b, c), translation parameter r and
arithmetical thickness ω ∈ N is defined as the set of points M(x, y, z) ∈ Z satisfying
the double inequality:

0 ≤ ax + by + cz + r < ω,

��� ��� ���

Fig. 2. A discrete plane: 0 ≤ 6x + 13y + 27z < ω with different thicknesses: (a) ω = 15, a thin plane with
holes; (b) ω = 27, a naive plane; (c) ω = 46, a standard plane. A tricube is also depicted onto the naive plane.

28 I. Sivignon, F. Dupont, and J.-M. Chassery

where a, b, c are not all null and satisfy gcd(a, b, c) = 1. A discrete plane such that
ω = |a| + |b| + |c| is called standard. A discrete plane such that ω = max(|a|, |b|, |c|)
is called naive (see Figure 2 for an example).

The thickness parameter determines the connectivity of the plane. In fact, naive planes
are the thinnest 18-connected planes without 6-holes and therefore they are very well
adapted for object surface study. In the rest of the paper we deal with naive planes,
denoted P(a, b, c, r).

Finally, naive discrete plane can be decomposed into primitive elements called tri-
cubes: the tricube at point (i, j) of the naive plane P(a, b, c) with |a| ≤ |b| ≤ |c| is
defined as the set {(x, y, z) ∈ P | i ≤ x ≤ i + 3, j ≤ y ≤ j + 3}.

3. Recognition of a Piece of Discrete Naive Plane. We present in this part an algo-
rithm proposed by Vittone and Chassery [12] to recognize digital plane segments. Some
new properties are also proved.

3.1. Description of the Algorithm. Given a Euclidean plane P defined by ax + by +
cz + r = 0, where 0 ≤ a ≤ b ≤ c and c �= 0, the OBQ (Object Boundary Quantization)
discretization of P is the set of all points M(x, y, z) of the mesh on or “under” P . For
x, y ∈ Z, this method consists of rounding z to the lower integer value. The result of
such a discretization is the naive plane with parameters (a, b, c, r).

In [13] and [12] Vittone presents an algorithm that solves in polynomial time the
following problem (the so-called recognition problem):

Let S be a set of voxels containing the origin (0, 0, 0) and let n be other voxels
(iq , jq , kq), q = 1, . . . , n. What is the set S̄ of the parameters (α, β, γ) ∈ R with
0 ≤ α ≤ β < 1 and 0 ≤ γ ≤ 1 such that all the voxels of S belong to the OBQ
discretization of P: αx + βy + z + γ = 0?

Then we look for the set S̄ defined by

S̄ = {(α, β, γ) ∈ [0, 1[2×[0, 1], α ≤ β | ∀(x, y, z) ∈ S, 0 ≤ αx + βy + z + γ < 1}.

We consider the duality of the double inequality of the former formula. Indeed, let P
be a Euclidean plane defined by z = −(αx + βy + γ). This equation represents all the
points (x, y, z) belonging to P . We rewrite the equation as γ = −(xα + yβ + z). Then,
in the dual space (0, α, β, γ) (also called the parameter space), this equation represents
all the planes containing the point (x, y, z). In this space a plane (a, b, c, r) is the point
(a/c, b/c, r/c) if c = max(a, b, c).

Since each voxel generates a double inequality, in the dual space each voxel of S
is represented by a half-open strip delimited by two parallel planes. For a given voxel
(x, y, z), this area represents the set of Euclidean planes parameters whose OBQ dis-
cretization contains the voxel (x, y, z). Finally, S̄ is the intersection in the dual space of n
half-opened strips delimited by two Euclidean planes P(iq , jq , kq) and P(iq , jq , kq −1),
q = 1, . . . , n.

This is the main point of the recognition algorithm: each voxel constrains the solution
area in the dual space with a half-opened strip. The intersection of those half-spaces
can be found step by step by adding one voxel after the other. At the end, S̄ can be

Decomposition of a Three-Dimensional Discrete Object Surface 29

α

β

γ

Fig. 3. The initial set of solutions.

a polyhedron, a polygon, a line segment or empty. In the last case the voxels are not
coplanar.

We present here a sketch of the final algorithm. Let M(x, y, z) be a voxel and let S be
the set containing M and p other voxels with coordinates (x + iq , y + jq , z + kq), q =
1, . . . , p. The aim is to find the set of the naive planes containing all the p+1 voxels of S,
M being the origin. The computation of the half-spaces intersection returns the solution
area S̄ and the final solutions are, after translation, the planes P(a, b, c, r−(ax+by+cz))
such that (a/c, b/c, r/c) is in S̄.

Since 0 ≤ α ≤ β < 1 and 0 ≤ γ ≤ 1, the initial solution area is delimited by the
projections of the six vertices of

B0 = {(0, 0, 0, 1), (0, 1, 0, 1), (1, 1, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1)}

(Figure 3) onto the dual space. In the rest of this paper, Bq stands for the set of points
in N

4 such that their projections in the parameter space are the vertices of the solution
area for the first q voxels. Hence, S̄ is the projection of translated Bp+1 in the parameter
space.

We denote Lq(a, b, c, r) = aiq +bjq +ckq +r and L+
q (a, b, c, r) = Lq(a, b, c, r)−c.

Let (a, b, c, r) be the normal vector of a plane P solution after step q . Then, at step
q +1, this plane is still a solution if and only if Lq+1(a, b, c, r) and L+

q+1(a, b, c, r) have
opposite signs, i.e. in the dual space, the point corresponding to the plane P is between
the two planes defined by the voxel (iq+1, jq+1, kq+1).

The following algorithm takes as input a voxel V (iq , jq , kq) and the set Bq−1 solution
for the first q − 1 voxels, and computes the set Bq of the solution polyhedron vertices
after the addition of V .

Function Add voxel(Bq−1, V)

Initialization. Bq = ∅.
Lq(a, b, c, r) = aiq +bjq +ckq +r and L+

q (a, b, c, r) = Lq(a, b, c, r)−c.

Main loop.
(1) For all V1 belonging to Bq−1 do
(2) If Lq(V1) = 0 or L+

q (V1) = 0 then put V1 in Bq

(3) Else if Lq(V1) > 0 and L+
q (V1) < 0 then put V1 in Bq

(4) Else

30 I. Sivignon, F. Dupont, and J.-M. Chassery

(5) For all V2 in Bq−1, V2 �= V1, such that Lq(V1) and Lq(V2)

or L+
q (V1) and L+

q (V2) have opposite signs
(6) • Compute the intersection I of the line (V1V2)

and the plane Lq(X) = 0 (or L+
q (X) = 0)

(7) • Put I in Bq

(8) end for
(9) end for

Result. Return Bq .

The result of this function is the set of the solution polyhedron vertices after the
processing of q first voxels. Hence, to check if a set of voxels S are coplanar, it is enough
to call the function Add voxel for one voxel after the other, each time using the last Bq

computed. In the rest of this paper we call the algorithm that recognizes a piece of the
plane the recognition algorithm.

3.2. Properties and Improvements. This polyhedron S̄ is the intersection of half-open
strips. Hence, although the points that are linearly dependent with positive weights to
the vertices of S̄ are necessarily solutions, this algorithm does not make precise whether
the vertices, edges and faces of S̄ are solutions or not.

PROPOSITION 1. Let S = {(iq , jq , kq), q = 1, . . . , p} be a set of p voxels, and let S̄ be
the solution polyhedron obtained with the recognition algorithm. If S̄ is not empty, let
N = {Ni , i = 1, . . . , m} be the set of vertices of S̄. Then Ni is a solution if and only if
∀q, 1 ≤ q ≤ p, L+

q (Ni) �= 0.
Let E be a point of the edge (Ni , Nj). If Ni or Nj is a solution, then E is also a

solution.

PROOF. Let Ni (a, b, c, r) be a vertex of S̄. Suppose that there exists a voxel (iq , jq , kq)

such that L+
q (Ni) = 0. This means that Ni belongs to the plane (iq , jq , kq − 1) in the

dual space. Since this plane is the open limit of the solution area, Ni is not a solution.
On the other hand, suppose that Ni is not a solution, and show that there exists a voxel
(iq , jq , kq) such that L+

q (Ni) = 0. By construction, two kinds of non-solution points
exist: those that are not in the solution polyhedron, and those that belong to an open side
of the polyhedron. As Ni is a non-solution vertex of the solution polyhedron, it belongs
to a plane that is an open side of the polyhedron, i.e. a plane whose normal vector is
(iq , jq , kq − 1). Then there exists (i1, jq , kq) such that aiq + bjq + c(kq − 1) + r = 0,
and then L+

q (Ni) = 0.
Let E be a point of the edge (Ni , Nj) with solution Ni . Suppose that E is not a

solution. Then there exists a half-open strip that does not contain E . As E is on an edge
of the polyhedron, E belongs to the open plane of a strip. Either this plane contains the
edge (Ni , Nj) and then this leads to a contradiction, or this plane cuts this edge in E ,
and then one of the two vertices Ni or Nj is outside the strip. If Ni is outside, then we
get the contradiction. Otherwise, if Ni is a solution, then Nj is not. As E is on the edge
(Ni , Nj), Nj does not belong to the open plane, which implies that Nj is not a vertex of
S̄. Contradiction.

Decomposition of a Three-Dimensional Discrete Object Surface 31

COROLLARY 1. Let E be a point of a face F of S̄. Let Ni , i = 1, . . . , n, n >= 2, be the
set of vertices of F . If at least one Ni is a solution and if E is not on an edge of the face,
then E is also a solution.

PROOF. For n = 2, see Proposition 1. For n > 2, the demonstration is nearly the same.
Suppose that E is not a solution. As E is on a face of the polyhedron, E belongs to
one of the open planes of the strips. If this plane contains the face F , then we get the
contradiction as Ni belongs to this face. Otherwise, there exists an open plane containing
E . As E is not on an edge and as S̄ is convex, this plane cuts the face F in at least two
edge points. This plane splits the space into two half-spaces, one containing points that
do not belong to S̄ . Therefore, at least one vertex of F will be in this half-space, a
contradiction.

Now we focus on line (6) of the function Add voxel presented in Section 3.1. Many
efficient algorithms exist to compute the intersection of a polyhedron and a plane (see
for instance Chapter 7 of [14]). Those algorithms return the set of vertices of the poly-
hedron as rational numbers. However, to get the plane normal vectors corresponding to
the vertices coordinates, we must have those coordinates in fractional form. Instead of
computing the polyhedron first and then transforming each vertex coordinate, it is better
to compute them directly as fractions.

In [13] that was done using a modified version of Grabiner’s algorithm [15]. This
algorithm uses Farey series and their properties to compute the new vertices v with a
dichotomy method. The time complexity is thenO(log(n)) if v is between two vertices v1

and v2 such that d(v1, v2) = n where d denotes the Euclidean distance. We propose here
to compute directly those coordinates keeping the value of numerators and denominators
at each step of the computation. This step can be done in O(1) time with the following
algorithm.

V1 and V2 are two vertices of the current solution polyhedron and P is a plane in the
dual space. This algorithm will compute the parameters of the Euclidean plane whose
representation in the dual space is the intersection point between the line (V1, V2) and
the plane P .

Function Plane line(V1, V2, P)

Initialization. V1(a1, b1, c1, r1), V2(a2, b2, c2, r2), P: αi +β j +k +γ = 0,
in the dual space (0, α, β, γ).
Let p be the intersection point of the line (V1, V2) and the plane P .

Computation.
Compute N = −ia1c2 − jb1c2 − r1c2 − kc1c2.
Compute D = i(a2c1 − a1c2) + j (b2c1 − b1c2) + (r2c1 − r1c2).

Result. The three coordinates have a common denominator: pd = N ×c1c2.
The three numerators are pn = (N (a2c1 −a1c2)+a1c2 D, N (b2c1 −b1c2)+
b1c2 D, N (r2c1 − r1c2) + r1c2 D).

It is easy to retrieve the coordinates of the corresponding plane with the defini-
tion of the dual space: for instance, if |c| = max(|a|, |b|, |c|), the plane coordinates

32 I. Sivignon, F. Dupont, and J.-M. Chassery

are (N (a2c1 − a1c2) + a1c2 D, N (b2c1 − b1c2) + b1c2 D, pd , N (r2c1 − r1c2)

+ r1c2 D).
To conclude this part, this recognition algorithm offers some properties that are useful

for the next step, i.e. applying this algorithm on a discrete surface:

• it recognizes a naive discrete plane: the minimal thickness of these planes implies that
the object surface is enough to do a recognition, we do not need interior voxels;

• it is incremental: the voxels can be added one by one;
• for a given set of voxels, the adding order does not have an influence on the final result;
• it returns the set of vertices of the solution polyhedron: so, we have the complete set

of the solution planes normal vectors.

4. General Algorithm. Recognizing discrete planes is the first step of a most general
goal: the polyhedrization of a discrete object. This section describes a new algorithm
that splits the discrete surface of an object into naive plane pieces. We will also see that
this algorithm has features which make it especially well adapted to get a totally discrete
and reversible polyhedrization.

We consider 18-connected objects with a 6-connected background. In the rest of
the paper we call the set of surfels that belong simultaneously to an object voxel and
to a background voxel the surface. In other words, the surface is the set of visible
surfels. As each voxel has six faces, those six faces define six directions that we consider
symmetrically during the algorithm’s description.

Algorithm Decompose-discrete-surface

Initialization. For each object voxel, locate the surface surfels, S.
Initialize the number of planes cpt to −1.
Initialize the list To-process with the empty list.
Let B be a set of vertices of a solution polyhedron: B0, the initial set, depends
on the current direction.

Main loop.
(1) For each object direction d
(2) For each object voxel V
(3) Let s0 be the surfel of V in the direction d;
(4) If s0 ∈ S and s0 has never been treated then
(5) origin = s0;
(6) cpt = cpt + 1;
(7) put s0 in To-process;
(8) B = B0;
(9) While To-process is not empty
(10) choose one surfel s in To-process;
(11) Bsave = B;
(12) For each of the 8-neighbors sn of s
(13) B = Add voxel(B, sn)

Decomposition of a Three-Dimensional Discrete Object Surface 33

(14) if B is not empty then
(15) cpt is a solution for s and its 8-neighbors;
(16) among the 8-neighbors, put those which have not been

treated yet for this plane into the list To-process;
(17) else
(18) If s = s0 then cpt = cpt − 1 and clear To-process;
(19) B = Bsave;

end while
end for

end for

Result. For each surfel: a list of all the plane numbers it belongs to.
For each piece of plane: the set of all the solution polyhedron vertices.

In this algorithm the solution polyhedron is represented by the set of its vertices
denoted by B. Each time the function Add voxel is called, the set B is modified. We
save the value of B before the addition of the 8-neighbors of a given surfel s. So, if
s is not a tricube center, we can recover the solution polyhedron as it was before the
processing of s’s neighbors (lines (18) and (19)).

During the execution, for each surfel we create a list containing all the plane numbers
to which this surfel belongs. Moreover, at the end of each piece of plane recognition, we
keep in an appropriate structure the coordinates of the solution polyhedron vertices.

We analyze the properties of this algorithm:

• During the processing of a surfel, either eight faces are added to the current plane
or zero: indeed, if a surfel is a tricube center, then we add all of them to the current
plane, otherwise, none of them are added (even those which could belong to the plane).
This implies that every surfel of a recognized naive plane has a least three neighbors
belonging to this plane. Indeed, a face that belongs to a piece of plane must have a
neighbor that is a tricube center. Hence, only two cases are possible (see Figure 4).
As a consequence, recognized regions have a “regular form”.

• A surfel can belong to many pieces of planes: indeed, no restrictions nor choices
are done during the expansion of the planes. Then naive planes are extended to their
maximum under the constraint given before.

The second property can be seen as an advantage or as a problem. Indeed, if we do not
allow discrete plane covering, the limit between two planes is easy to handle. However,
we can get many very small pieces of plane at the end of the algorithm and, hence,
allowing plane covering reduces the influence of the seeds used for the pieces of planes.

1

2 3

1

2 3 4

5

Fig. 4. A surfel of a piece of plane has at least three neighbors in this plane.

34 I. Sivignon, F. Dupont, and J.-M. Chassery

Moreover, to get a reversible polyhedrization, the border of a piece of plane should be a
discrete line. Without covering, we have no means to control the border of the pieces of
plane.

5. Time Complexity. In this section we give a polynomial bound on the algorithm’s
time complexity. This study is split into two parts: first, the time complexity of the
function Add voxel presented in Section 3; then the time complexity of the algorithm
Decompose-discrete-surface described in Section 4.

5.1. Add voxel Time Complexity. The first loop of this algorithm covers the elements
of the set Bq . To bound the cardinality of this set, we have to bound the number of
vertices of a polyhedron according to its number of faces. This is a classical result in
computational geometry (see Chapter 7 of [14] for instance) that we recall here:

THEOREM 1. Let P be a convex polyhedron with n faces. Then P has at most 2n − 4
vertices.

In the algorithm, B0 is a polyhedron with five faces. As the addition of one voxel
is equivalent to the addition of two parallel planes in the dual space, after step q , the
solution polyhedron has at most 2(2q + 5) − 4 = 4q + 6 vertices. As a matter of fact,
the first loop of the function Add voxel is done in O(q) time where q is the number of
voxels of the piece of plane. Nevertheless, in practice, the number of vertices of Bq is
much smaller than q.

In the loop the first two tests can be done in constant time. The second loop does a new
cover of the set Bq and is carried out in O(q) time. For the computation of the plane/line
intersection, we saw that here we need to keep some particular knowledge on the values
found for the intersection point, and we proposed in Section 3.2 an algorithm that solves
this problem in constant time. To recover the parameters of the solution planes, we will
need after this algorithm a step to normalize the parameters (using Euclid’s algorithm
for instance to compute the gcd of the three denominators). This normalization can be
done either for each Bq , or only at the end, for the vertices of S̄.

For the function Add voxel, we finally find an O(q2) time complexity, where q is the
number of voxels of the piece of plane.

5.2. Decompose-discrete-surface Time Complexity. We analyze line by line how this
algorithm runs. Let n be the number of voxels which have a surfel belonging to the
object surface. As a voxel has six faces, the first loop (line (1)) is done exactly six times.
The second loop (line (2)) is run n times as we have n surface voxels. All the tests and
instructions done between lines (3) and (8) run in constant time.

The time complexity of the loop line (9) depends on the maximum number of elements
in To-Process.

PROPOSITION 2. At step number q (after q first voxels) the maximum number of elements
in To-Process is 4q + 4.

Decomposition of a Three-Dimensional Discrete Object Surface 35

PROOF. After processing the first surfel, we put its 8-neighbors inTo-Process. More-
over, we have seen in Section 4 that any surfel belonging to a piece of plane has at least
three neighbors in this plane. This means that at any time during the algorithm, each
surfel of To-Process has at least two neighbors in this list. During the treatment of
one surfel of the list, we delete this element from the list and we add its 8-neighbors.
However, since at least three of them are already in the list, we add at most five for its
neighbors. Finally, we add at most 5 − 1 = 4 surfels at each step. Hence, at step number
q , this list has at most 8 + 4(q − 1) = 4q + 4 elements.

So, for the recognition of a naive plane with q voxels, this loop will be done at most
4q + 4 times. The choice in line (10) can be done in constant time, and in line (11),
saving B needs a cover of the set B, which is done in O(q) time for a plane with q
voxels. Moreover, for a naive plane with q voxels, the function Add voxel runs in O(q2)

time, and the loop line (12) in O(8q2) = O(q2) time. All the tests and instructions done
between lines (14) and (18) run in constant time. The restitution of B, line (19), is done
in O(q) time as it needs a cover of Bsave. Then we have all the elements to compute the
global time complexity of this algorithm as a function of n, the number of voxels which
have a surface surfel, and p, the size of the biggest recognized piece of plane. We get

6n × p × (2p + 8p2),

which leads to a final time complexity of O(np3).

6. Study on the Voxel Processing Order. During execution of the algorithm Decom-
pose-discrete-surface, many choices have to be made concerning the order in which to
process the voxels. They have an influence on the final decomposition we get: a given
set of choices induces a different decomposition. Therefore, a study is useful to know if
there exists a strategy leading to a “better” decomposition. In this section we study this
influence, comparing the results obtained with different strategies.

In the algorithm, three main choices are made for the tracking order. Indeed, in lines
(1), (2), (10) and (12), no details are given concerning the processing order for these
different steps. However, we can easily see that the choice made in line (10) does not
influence the result: since our approach is surfel based, the recognition done for one
direction has no influence on the recognitions done for the others. Then three choices
remain:

• the origin of each piece of plane (line (2));
• the next voxel to process during the recognition of a piece of plane (line (10));
• the tracking order of the 8-neighbors of a given voxel which determines the structure

of the list To-Process (line (16)).

In this study we give an insight on the influence of the last two.
First, we can notice that the order in which we process the 8-neighbors of a given voxel

determines the order in which those neighbors are inserted into the list To-Process.
Hence, the planes growing shape depends on two inter-dependent choices.

In the following we present various strategies defined from those two choices.

36 I. Sivignon, F. Dupont, and J.-M. Chassery

V

14 15 16 18 23

2274213

10 1 6 21

205309

8 11 12 17 19

V0
2

1

0 3

4

8 9

7

6

5

10

11

12

1413

18 19

17

16

15

22

21

20

V0

(a) (b) (c)

Fig. 5. Strategy 1: (a) the 8-neighbors tracking; (b) propagation with the first element of the list To-Process;
(c) propagation with the last element.

6.1. Different Strategies. The first strategy is also the simplest one to implement. In
Figure 5 we present first the 8-neighbors tracking and then the propagation scheme
depending on which surfel we choose in the list of surfels To-Process. The numbers
on the surfels refer to the order in which they are added in the list To-Process. With
this first order, taking the last element of the list at each step leads to a very linear
propagation scheme. This induces a main direction for the planes propagation. In fact,
for any neighborhood tracking, choosing the last element of the list leads to a main
direction given by the position of the last element processed during the 8-neighborhood
tracking. If we take the first element of the list as a following surfel, we get the propagation
drawn in Figure 5. With this tracking, the left-down corner is always treated before the
other sides, and the expansion is not regular nor isotropic.

Figure 6 illustrates a second strategy. The 8-neighbors tracking is now a clockwise
tracking around the processed voxel (any other tracking around the voxel gives symmet-
rical results). The propagation obtained with the choice of the first surfel of the list is
more isotropic than the previous one, even if the left-down corner is still processed first
in an irregular way when we get further from the plane origin.

V

34

33

30

29

26

25

24 28

8

9

10

13

14

35 36

15

2

1

0

12

27 32

11

7

3

16

37 38

17

4

5

6

23

31

22

21

20

19

18

39 40

41

V0

2 3 4

51

0 7 6

9108

11 13 12

V0

(a) (b) (c)

Fig. 6. Strategy 2: (a) the 8-neighbors tracking; (b) propagation with the first element of the list To-Process;
(c) propagation with the last element.

Decomposition of a Three-Dimensional Discrete Object Surface 37

V

32 30 29 31 33

37221311122128

26 10 5 1 6 15 35

341420824

25 9 4 3 7 16 36

38231917182027

42 40 39 41 43

V0

(a) (b)

Fig. 7. Strategy 3: (a) the 8-neighbors tracking; (b) propagation with the first element of the list To-Process.

The main problem with those two strategies is that it is difficult to handle exactly the
propagation even close to the origin.

A third method is illustrated in Figure 7. This 8-neighbors tracking processes the
voxels that are closer to the origin of the piece of plane first: the four 4-neighbors are
first processed, and then the four 8-neighbors. As we saw that choosing the last element of
the list induces linear propagations, we just show here the propagation obtained with the
choice of the first element. We see that even after a big number of steps, the propagation
scheme is always the same: the four directions (“sides”) are processed one after the other
in the clockwise direction. During the processing of one side, the surfels are processed
according to their distance to the origin. After processing the four sides, the four corners
are treated. So, the propagation is perfectly defined in this case, and is isotropic as each
direction is processed in the same way as another, even if one direction is processed
first.

6.2. Comparison Results. In the following we give some results for the comparison of
the three tracking orders presented previously. To do so, we use the following criterion
and objects: since a sphere is a symmetric object in all the directions, it would be nice
to get pieces of planes that have nearly the same size. Hence, for a sphere, the standard
deviation/average for the size of the recognized pieces of planes should be as small as
possible.

In the rest of this section we denote order 1 (resp. 2, 3) to be the one which corresponds
to the first (resp. second, third) strategy on the previous section, independently of the
choice of the next voxel to process.

Figures 8 and 9 present the two comparisons we propose. The curves depicted are
spline approximations of the discrete results.

In the first comparison (Figure 8), each diagram represents the curves for one given
tracking order, and each curve is the result choosing the first or the last voxel of the list.
For all the strategies, the general shape of the curves is chaotic. This is due to the discrete
nature of the data. Nevertheless, the curves have similar behaviors: for instance, all the
curves have a local maximum when the radius is 5 or 8. It is quite easy to see that on
those three first graphs, the curve corresponding to the choice of the last voxel of the list

38 I. Sivignon, F. Dupont, and J.-M. Chassery

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10 12 14 16 18

st
an

d.
 d

ev
. /

 a
ve

ra
ge

radius

"ressens1_first.txt"
"ressens1_last.txt"

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10 12 14 16 18

st
an

d.
 d

ev
. /

 a
ve

ra
ge

radius

"ressens2_first.txt"
"ressens2_last.txt"

(a) (b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10 12 14 16 18

st
an

d.
 d

ev
. /

 a
ve

ra
ge

radius

"ressens3_first.txt"
"ressens3_last.txt"

(c)

Fig. 8. Comparison for the choice of the next voxel to process: (a) order 1; (b) order 2; (c) order 3.

is globally worse than the one corresponding to the first voxel of the list. This suggests
that the more isotropic the growing shape is, the better the result is.

The results of the second comparison are depicted in Figure 9. In this case the first
voxel of the list is chosen and the comparison is done over the three different orders.
This figure shows that the three curves cross over, keeping very close values for any
sphere radius. Hence, we cannot deduce from this graph that one tracking order is better

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10 12 14 16 18

st
an

d.
 d

ev
. /

 a
ve

ra
ge

radius

"ressens1_first.txt"
"ressens2_first.txt"
"ressens3_first.txt"

Fig. 9. Comparison for the 8-neighbors tracking order.

Decomposition of a Three-Dimensional Discrete Object Surface 39

than another one, and according to the very similar values we obtain, this suggests that
those three orders have nearly the same behavior. Finally, it seems that the tracking order
chosen does not have a very big influence on the resulting quality provided that it does
not lead to a linear growing shape.

Nevertheless, it would be interesting to see if the global behavior becomes stable
when the radius of the sphere increases up to huge values, i.e. if one tracking order
becomes better than the others, or if the curves always cross whatever the radius is. The
treatment of very huge objects leads to implementation problems: indeed, since we work
with integer fractions in the dual space, we quickly get some very long integers. The
solution is to use a library to handle integers with infinite precision and this work is now
in progress.

7. Results. In this section we present some results about speed performances and
images resulting from our algorithm.

7.1. Performance Results. We did some tests for performance results on a Linux OS
with a 1.8 GHz processor. The algorithm is implemented in C++ with no particular
optimizations. Figure 10(a) shows the results obtained for cubes of different sizes. In
this figure we use logarithmic scales for the two axes. Hence, if the processing time
depends directly on a power of the size of the object, then the graph is a straight line.
Moreover we only consider the time spent for the recognition of the pieces of planes,
not including the input/output and display operations.

As the tracking order does not influence the result for a cube (the six faces are always
found), we chose the tracking order that minimizes the lists tracking in the algorithm,
i.e. the first order with the choice of the last element of the list To-Process. We can
moreover notice that even if choosing the first element of the list To-Process induces
one more list tracking in the time complexity computation, in practice, this choice has
no effect on performance results.

Using Section 5 results, we can evaluate the time complexity for a cube of side n: the
number of surface surfels is in O(n2) and the size of the biggest plane is in O(n2) too,

0.00390625

0.015625

0.0625

0.25

1

4

16

64

256

1024

2 4 8 16 32 64 128

pr
oc

es
si

ng
 ti

m
e

(s
)

side

"cubes.dat"

0.015625

0.0625

0.25

1

4

16

64

256

2 4 8 16

pr
oc

es
si

ng
 ti

m
e

radius

"res_spheres.txt"

0.015625

0.0625

0.25

1

4

16

64

256

2 4 8 16

pr
oc

es
si

ng
 ti

m
e

(s
)

radius

"res_spheres.txt"

0.015625

0.0625

0.25

1

4

16

64

256

2 4 8 16

pr
oc

es
si

ng
 ti

m
e

(s
)

radius

"res_spheres.txt"

0.015625

0.0625

0.25

1

4

16

64

256

2 4 8 16

pr
oc

es
si

ng
 ti

m
e

(s
)

radius

"res_spheres.txt"

(a) (b)

Fig. 10. Performance results: (a) for the cube; (b) for the sphere.

40 I. Sivignon, F. Dupont, and J.-M. Chassery

which leads to an O(n8) theoretical bound for the time complexity. We see in Figure 10
that the graph is really close to a straight line. In fact, if we consider the uncertainties
due to such measurements, this result approaches very well a straight line with slope 3.5.
This means that for the cube, the algorithm runs in O(n3.5) if n is the side of the square,
which is quite better than the theoretical bound found in Section 5.

We did the same job for a sphere, and the results are presented in Figure 10(b). With
this object, it is harder to do a comparison with the theoretical bound: indeed, it depends
on the size of the biggest plane recognized, and it is hard to find a relation between
the radius of the sphere and the size of the biggest plane. Nevertheless, the number of
surface voxels is in O(n2) if n is the radius of the sphere, and we can also suppose that
the size of the biggest plane is a fraction of n2. All together, we find a theoretical time
complexity of O(n8). Finally, it is interesting to notice that the curve we obtain is, as for
the cube, very close to a straight line of slope 4.5. This means that the algorithm runs in
O(n4.5) which is better than the estimation of the theoretical bound.

7.2. Image Results. To finish, we give here some image results of this algorithm. For
all the images presented here (Figures 11 and 12), each color corresponds to one piece
of plane. For the visualization, if one surfel belongs to many pieces of planes, we display
the color of the piece of plane that was recognized first.

Figure 11 presents some created and simple objects: one pyramid, a cube, a cube
rotated in the grid and a chamfer cube (a cube of which one vertex has been cut by a

(a) (b)

(c) (d)

Fig. 11. Simple objects: (a) a pyramid with basis 10 and height 5; (b) a cube of side 16; (c) a cube rotated in
the grid; (d) a chamfer cube.

Decomposition of a Three-Dimensional Discrete Object Surface 41

(a) (b)

(c)

Fig. 12. (a) A sphere of radius 14; (b) a hand image; (c) a small part of a human vertebra.

plane). On the pyramid, we see that four planes have been recognized, for the four faces
of the pyramid. All those planes are the same by symmetry: many voxels belong to two or
more planes, and thus, with the priority rules we defined above, the plane first recognized
is bigger than the others on the picture. Our algorithm recognizes the six faces of a cube
for any rotation in the grid, and for a chamfer cube, it recognizes in addition the plane
that cuts a vertex of this cube. As for the pyramid, the priority rules hide a big part of
the sectioning plane: typically in this example, as the slopes of this plane and the face
of the cube are close, the overlap between these planes is about 35 voxels.

Figure 12 gives the results for real objects: one image of a single hand’s bones; one
image of a piece of vertebra with high resolution. A table of the sizes of the planes
recognized on the vertebra is presented in the Appendix.

8. Conclusion and Future Work. In this paper we have presented a new polynomial
algorithm for the number of surface voxels to decompose the surface of any discrete
volume into pieces of digital naive planes. To do so, we used an incremental naive plane
recognition algorithm and we have shown some properties on the dual space associated
to each piece of plane.

42 I. Sivignon, F. Dupont, and J.-M. Chassery

Using 8-neighborhood voxels tracking, this decomposition algorithm forbids too long
and narrow pieces of planes, and we analyzed some shape properties of the recognized
pieces of planes. Then we analyzed the global time complexity of this algorithm, finding
a polynomial bound depending on the number of surface voxels. A sharper analysis of
this algorithm led us to study the influence of the different voxels tracking orders. In a
last part, we made some performance tests on cubes of increasing size. These tests have
shown that for the cube, practical performances are much better than the theoretical time
complexity. The last images illustrated the position of the recognized pieces of plane for
generated and real objects.

This work opens many future prospects, both on theoretical and practical aspects.
First, some practical work can be done to improve performances: the use of a library that
handles integers with arbitrary precision will enable us to run this algorithm on bigger
volumes.

On the theoretical side, it would be interesting to study in more detail the structure
of the dual space for a piece of plane as has been done in two-dimensional for discrete
line segments [16].

Finally, this paper presented the first step of a more global goal that consists of finding
a reversible polyhedrization of any discrete volume. To get such a polyhedrization, we
need to transform each recognized piece of plane into a discrete polygon, a definition
of which has been proposed in [17]. This supposes that we can define and place all the
edges and the vertices between the found pieces of plane.

Appendix. Table of the Plane Sizes for the Vertebra (see Figure 12)

p.n.∗ Size p.n. Size p.n. Size p.n. Size

0 59 1 24 2 12 3 24
4 32 5 21 6 31 7 119
8 124 9 25 10 27 11 9

12 15 13 12 14 18 15 9
16 74 17 15 18 40 19 9
20 106 21 15 22 41 23 18
24 12 25 16 26 15 27 15
28 9 29 9 30 16 31 23
32 20 33 15 34 9 35 18
36 119 37 95 38 58 39 87

∗Plane number.

References

[1] W.E. Lorensen and H.E. Cline. Marching cubes: a high resolution 3d surface construction algorithm.
Computer Graphics, 21(4):163–169, 1987.

[2] C.E. Kim and A. Rosenfeld. Convex digital solids. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-4(6):612–618, 1982.

[3] C.E. Kim and I. Stojmenović. On the recognition of digital planes in three dimensional space. Pattern
Recognition Letters, 32:612–618, 1991.

Decomposition of a Three-Dimensional Discrete Object Surface 43

[4] Ph. Borianne and J. Françon. Reversible polyhedrization of discrete volumes. In J.-M. Chassery and
A. Montanvert, editors, Discrete Geometry for Computer Imagery, pages 157–168, 1994.

[5] I. Debled-Rennesson. Etude et reconnaissance des droites et plans discrets. Ph.D. thesis, Université
Louis Pasteur, Strasbourg, 1995.

[6] I. Debled-Rennesson and J.-P. Reveillès. An incremental algorithm for digital plane recognition. In
Discrete Geometry for Computer Imagery, pages 207–222, 1994.

[7] L. Papier. Polyédrisation et visualisation d’objets discrets tridimensionnels. Ph.D. thesis, Université
Louis Pasteur, Strasbourg, 1999.

[8] L. Papier and J. Françon. Polyhedrization of the boundary of a voxel object. In C. Bertrand, M. Couprie,
and L. Perroton, editors, Discrete Geometry for Computer Imagery, number 1568 in LNCS, pages 425–
434. Springer-Verlag, Berlin, 1999.

[9] J. Burguet and R. Malgouyres. Strong thinning and polyhedrization of the surface of a voxel object. In
G. Borgefors, I. Nyström, and G. Sanniti di Baja, editors, Discrete Geometry for Computer Imagery,
number 1953 in LNCS, pages 222–234. Springer-Verlag, Berlin, 2000.

[10] J.-P. Reveillès. Géométrie discrète, calcul en nombres entiers et algorithmique. Ph.D. thesis, Université
Louis Pasteur, Strasbourg, 1991.

[11] E. Andres, R. Acharya, and C. Sibata. Discrete analytical hyperplanes. Graphical Models and Image
Processing, 59(5):302–309, 1997.

[12] J. Vittone and J.-M. Chassery. Recognition of digital naive planes and polyhedization. In G. Borgefors,
I. Nyström, and G. Sanniti di Baja, editors, Discrete Geometry for Computer Imagery, number 1953 in
LNCS, pages 296–307. Springer-Verlag, Berlin, 2000.

[13] J. Vittone. Caractérisation et reconnaissance de droites et de plans en géométrie discrète. Ph.D. thesis,
Université Joseph Fourier, Grenoble, 1999.

[14] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New
York, 1985.

[15] D.J. Grabiner. Farey nets and multidimensional continued fractions. Monatshefte für Mathematik,
114(1):35–61, 1992.

[16] M.D. McIlroy. A note on discrete representation of lines. AT&T Technical Journal, 64(2):481–490,
February 1984.

[17] E. Andrès. Defining discrete objects for polygonalization: the standard model. In J.-O. Lachaud,
A. Braquelaire and A. Vialard, editors, Discrete Geometry for Computer Imagery, number 2301 in
LNCS, pages 313–325. Springer-Verlag, Berlin, 2002.

