
Controlled Metamorphosis of Animated Objects

Aurélien Barbier, Eric Galin, Samir Akkouche

L.I.R.I.S
Université Claude Bernard Lyon 1

69622 Villeurbanne Cedex, FRANCE

{abarbier,egalin,sakkouch}@ligim.univ-lyon1.fr
http://www710.univ-lyon1.fr/˜abarbier

Abstract

Although many animation, deformation and metamorphosis tech-
niques have been proposed, the simultaneous combination of those
three transformations has never been addressed for three dimen-
sional objects so far. This paper presents a framework for con-
trolling metamorphosis between two animated implicit models built
from skeletal elements. It relies on the animated BlobTree model
that encompasses the animation and metamorphosis in an unified
and coherent fashion. Our method is general and supports a wide
range of animation systems such as key-frames or physically based
systems.

Keywords: control, metamorphosis, animation, implicit surfaces,
special effects

1 Introduction

Animation and metamorphosis have been in the highlights of the
computer graphics community to meet the increasing demand of
the entertainement industry. A wide range of animation, deforma-
tion and metamorphosis techniques have been proposed in the lit-
erature for the past few years. Moreover, existing metamorphosis
techniques that operate on three dimensional models transform still
objects only. This paper adresses the metamorphosis of animated
shapes and focuses on the control of the transformation.

One major concern in shape metamorphosis is the preservation
of shape coherence during the transformation. Shape coherence
becomes even more difficult when transforming animated objects.
Animation coherence should be also preserved to create convincing
and natural looking transitions between animations. Eventually, the
animator should be able to control the shape and the speed of the
transformation. or edit the transformation to add local deformations
to create special effects.

1.1 Related work

We present our approach in the context of two related areas : meta-
morphosis and animation.

Existing metamorphosis techniques are strongly dependent on
the underlying geometric model. Mesh models, which are promi-
nently used in major modelling and animation software, are difficult
to metamorphosize, especially when dealing with surfaces of differ-
ent topology. In contrast, skeletal implicit surfaces lend themselves
for transforming complex shapes of arbitrary topology.

Figure 1: Metamorphosis between a walking Tyrannosaurus-Rex
and a flying Dragon Characters. The back legs of the T-Rex pro-
gressively stop moving while the wings grow and start flattering as
the character takes off.

Metamorphosis Most mesh metamorphosis techniques first cre-
ate a graph of correspondences matching the vertices of the two
models, possibly merging their topologies, and define the trans-
formation by performing an interpolation between the geome-
tries [Lazarus and Verroust 1998; Alexa 2001]. In practice, the
correspondence process may be awkward in the general case, and
dealing with shapes of different topology remains difficult.

Several metamorphosis techniques for voxel models have been
proposed [Hughes 1992; He et al. 1994; Lerios et al. 1995]. One
major drawback is that good visual effects cannot be obtained un-
less using a fine sampling of the objects, and the computation cost
becomes the more prohibitive as the size of the sampling grid in-
creases.

Skeletal implicit surfaces have proved to be the most efficient
model for metamorphosizing shapes of arbitrary topology [Pasko
and Savchenko 1995; Galin and Akkouche 1996; Galin et al. 2000].
Shape coherence, which is essential for creating convincing trans-
formations, may be preserved by controlling the paths of interpolat-
ing skeletal elements. Existing techniques only address the trans-
formation of still objects however. Our approach presents a uni-
fying framework that allows the deformation and metamorphosis
during animation and provides a high level of control to ensure both
shape and animation coherence.

Animation Both key-frame and physically based animation tech-
niques have been applied to animate implicit surfaces. One of the
major applications of implicit surfaces in physically based anima-
tion has been the simulation of viscous liquids [Desbrun and Cani
1995], soft inelastic models based on particle systems [Miller and
Pearce 1989; Tonnesen 1991]. Recently, they have been success-
fully applied to characterize the smooth surface of fluids such as
water [Foster and Fedkiw 2001]. Moreover, implicit surfaces lend
themselves for collision detection and precise contact modeling be-
tween flexible solids [Gascuel 1993].

Earlier key-frame animation systems produced animation by
simply moving the skeletons of the implicit model along a frame
curve, or by applying deformations in a warped space [Bloomenthal
et al. 1997]. The animation of the Frep model is proposed
in [Fausett et al. 2000]. The concept of animation tracks in the
BlobTree model was first proposed in [Nur et al. 2001]. Our ap-
proach relies on a BlobTree structurewhose nodes are fully param-
eterized by functions of time, which may be of any type. Thus, our
approach can handle both physically based and key-frame based
animation systems.

1.2 Overview

The BlobTree [Wyvill et al. 1999] is a powerfull implicit surface
modeling system that combines blending, boolean and warping op-
erations performed on skeletal primitives. In [Galin et al. 2000],
we have proposed an efficient approach for metamorphosizing two
BlobTree models. The method provides the animator with a hier-
archical control over the transformation through the use of a graph
of correspondences matching elements or whole sub-trees of the
arguments models.

In this paper, we present an original technique for metamorpho-
sizing two animated models defined by skeletal implicit surfaces.
Specifically, we define the animorphosis as a metamorphosis per-
formed between two animated objects. We show that parameter-
izing the BlobTree by functions of time is a natural way to create
complex animations and transformations. This approach encom-
passes the animation and metamorphosis in a unified and coherent
model.

The evolution of the model is defined by a generic BlobTree
structure combined with classes of time varying parameters. As-
signing evolution functions to the parameters of every node in the
BlobTree leads to an increasing number of time dependent evolu-
tion functions for complex models. In practice, the hierarchical
structure of the BlobTree enables the animator to control the whole
animation or transformation by tuning but a few parameters lo-
cated at the top nodes in the BlobTree. A very tight control may
be achieved if necessary by tuning the parameters of lower nodes,
which provides a level of detail in the control of the animation.

Whenever the animation of the source and target models is based
on key-frames, we provide a semi-automatic method of animor-
phosis that creates a generic animated BlobTree controlled by key-
frame parameters. This approach takes advantage of the hierarchi-
cal structure of the BlobTree to provide an intuitive hierarchical
control over the transformation. This technique ensures that both
shape and animation coherence are preserved by the use of well
chosen time steps.

The remainder of this paper is structured as follows. Section 2
recalls the fundamentals of the BlobTree and details the control pa-
rameters that are used to produce animations. Section 3 presents
the animorphosis concept, focuses on shape and animation coher-
ence and then presents the semi-automatic key-frame animorphosis
method. Finally, section 4 shows the results for the different kinds
of animorphosis.

2 Fundamental concepts

In this section, we present the animated BlobTree model. It is de-
signed as an extension of the original static BlobTree model [Wyvill
et al. 1999] that only creates still objects. Although our extended
model simply relies on the parameterization by functions of time of
each parameter of the BlobTree model, we here present it entirely
for the sake of clarity.

Blend

Hyper−Blend

Union

Figure 2: Synthetic representation of the BlobTree structure of a
Tyrannosaurus-Rex model.

2.1 The BlobTree model

The BlobTree is characterized by a hierarchical combination of
primitives organized in a tree data-structure. The nodes of the tree
hold blending, boolean operators and warping operators, whereas
the leaves are characterized as skeletal elements. Figure 2 repre-
sents a Tyrannosaurus-Rex model created with sphere, cylinder,
cone and spline skeletal elements combined with blending and
boolean operators.

The field contributions of the skeletal primitives are decreasing
functions of the distance to a skeleton fi = gi ◦di where gi :R+→
R is the potential function, and di :R3→R+ refers to the distance
to the skeleton. The evaluation of the field function at a given point
in space is achieved by recursively traversing the BlobTree, either
evaluating the field functions at the leaves of the tree or combining
the field function values returned by the children of a given node.

2.2 Animating the BlobTree

The animated BlobTree model is characterized by the hierarchical
generic tree data-structure of the BlobTree, denoted as A, and a set
of time varying parameters, denoted as PA(t).

The set of parameters PA(t) includes the global time varying
threshold parameter, denoted as TA(t), as well as the set of time
varying parameters of the nodes Ai(t) of the BlobTree, denoted as
PAi (t) :

PA(t) =

TA(t)
PA1 (t) = {pA1,1 (t), . . .}

. . .
PAn (t) = {pAn,1 (t), . . .}

Therefore, pAi, j (t) will denote the jth time varying parameter of the
ith node of the BlobTree. Each parameter has its own evolution
function which is independent of these of the other parameters.

Frame

Blend

Frame

Blend

Frame

Generic Model

Strength

Frame

Radius

Evolution functions

F(t)

R(t)

F(t)

I(t)

Figure 3: Closeup of the animated BlobTree model of the leg of the
Tyrannosaurus-Rex character. Frame nodes are parameterized in
time by quaternion splines, denoted as F(t), that define the move-
ment of the animation skeleton. The radius of some skeletal ele-
ments of the leg varies in time to create a bulging effect during the
animation.

Splitting the animated BlobTree model into a generic structure
and a set of parameters controlled by evolution functions (Figure 3)
has a number of advantages. Since evolution functions may be of
any type, our model supports a wide range of animation systems.
Key-frame based animation systems, physically-based simulations
and even comportemental methods may be used to characterize the
time varying parameters. Time varying deformations, as well as
metamorphoses, may be achieved in the same way.

The animation, deformation and metamorphosis of our model
will be performed by creating instances of the generic BlobTree
structure A using the parameters PA(t) at a given time step t. The
creation of those instances is achieved by recursively traversing the
nodes of the generic BlobTree structure and computing the values
of the parameters of the nodes with the evolution functions pAi, j (t).

2.3 Control of the model through time

The next paragraphs review the different control parameters PA(t)
of the animated BlobTree.

Skeletal primitives Skeletal primitives are characterized by the
parameters of their field function and skeleton. Field function pa-
rameters include the radius of influence R(t), the maximum inten-
sity I(t) and the stiffness coefficient k(t) of the potential function
(Figure 4). The skeletons involve different geometrical parameters,
depending on their type.

Polytopes are defined by their vertices pi(t) whose coordinates
may be functions of time. Cylinder, cone, disc, circle, and sphere
primitives are characterized by their intrinsic time varying parame-
ters, i.e. center or axis, and radius. The animation of spline curves
and Coons patches is achieved by directly modifying the control
points and normal vectors of the corresponding meta-primitives as
we will see below.

Ii(t)

ki(t)

Ri(t)

~a(t)

Ri(t)

~b(t)

Figure 4: Time varying parameters of a skeletal primitive.

Blending and Boolean operators Boolean operators (union, in-
tersection and difference) as well as the blending operator are not
parameterized and therefore kept unchanged through-out an anima-
tion. The hyper-blending operator however may be parameterized
by the power coefficient q(t). Let us recall that hyper-blending op-
erator proposed in [Wyvill et al. 1999] is a generalization of the
Euclidean distance, using Lq metrics:

f (p) =

(
i=n

∑
i=1

fi(p)q

)1/q

q ∈R∗

As shown in figure 5, the hyper-blending operator may be used
to produce smooth metamorphosis between blending and union by
transforming the parameter q(t) in interval [1,+∞[.

q(t)→−∞
(Intersection)

q(t) = 1
(Blending)

q(t)→+∞
(Union)

Figure 5: Evolution of the hyper-blending degree.

Warping operators The BlobTree includes warping operators
that distort the shape of the implicit surface by warping space in
its neighborhood. A warp is a homeomorphic function ω(p) that
maps R3 into R3. The field function in space is defined as :

fω(p) = f ◦ω−1(p)

In our implementation, we use the Barr operators [Barr 1984] and
affine transformations. The twisting operator is parameterized by
the end vertices of the twisting axis ~a(t) and~b(t) and by the twist-
ing angle θ(t). The tapering operator is also characterized by the
end vertices of the tapering axis ~a(t) and ~b(t), and a time varying
tapering function.

Affine transformation operators Although affine transforma-
tions are specific warps, they deserve special attention as they are
involved in the definition of the animation skeleton.

Affine transformations are defined as a composition of scalings,
rotations and translations. The whole sub-tree of a frame node is
automatically affected by the evolution of the frame’s parameters
which allows a very simple and intuitive way to control a large set
of skeletal primitives. Scalings and translations are simply charac-
terized by two time varying vectors of coefficients. Rotations are
defined using quaternion, and we use quaternion slerping [Möller
and Haines 1999] to interpolate rotations through time so as to avoid
any gimbal lock problem.

Meta-primitives Experiments show that the designer feels it un-
comfortable to tune by hand the thousands of primitives of a com-
plex model. Thus, we have defined the spline meta-primitive that
freely combines a set of given nodes along any trajectory. For in-
stance, the spiky backbone of the dragon model (Figure 13) has
been designed as a spline meta-primitive of spikes. A specific case
is a spline meta-primitive of spheres along a trajectory which ap-
proximate a spline curve. Likewise, the Coons patch meta-primitive
generates the union of the desired number of triangles. Thus, the
designer may define and finely control a large number of primitives
whose animations are automatically generated from the animation
of the meta-primitives through their vertices and normal vectors.

2.4 Discussion

The BlobTree is animated or deformed directly by defining the evo-
lution functions of its nodes. Every single parameter of every node
is a function of time, which provides a great flexibility and allows
the animator to finely tune the animation if needed. The BlobTree
metamorphosis and animorphosis also strongly relies on the param-
eterization of every node in the BlobTree model.

Apparently, one major drawback of this approach is that the
number of evolution functions that need to be defined and con-
trolled increases as the model becomes more complex. In practice,
the hierarchical structure of the BlobTree effectively prevents from
tuning every evolution function. As shown in figure 6, only a few
dynamic parameters are needed to create convincing animations.
Like for any hierarchical structure, the animated BlobTree profits
by a hierarchical control over any transformation allowing precise
control with a few tuning. Most of the evolutions of an animated
model are solid movements of still nodes which are controlled with
an unique frame node each. Thus, affine transformations play a
major role in the animation, whereas twisting, tapering and bend-
ing nodes are responsible for the deformations of the model.

Figure 6: The animation skeleton: dots highlight dynamic param-
eters involving deformation (breathing and vertical tail movement)
whereas frames outline the main articulations of the model.

Figure 6 shows the animation skeleton of our Tyrannosaurus-Rex
over the still model. This BlobTree model includes 1835 skeletal
primitives, 21 frame nodes and 201 boolean and blending opera-
tors for a total number of 2057 nodes. Thus, in theory, the model
is parameterized by thousands of evolution functions. In practice
however, most of parameters are kept constant as obtained from
the still model. Only a few ones need to be defined to animate
the Tyrannosaurus-Rex character. The movement of the legs, arms
and head of the models are controlled by the hierarchy of the 21
frame nodes. The pulsating belly has been controlled by chang-
ing the radius of influence of the sphere primitives through time to

fake breathing. The movement of the tail is directly controlled by 4
evolution functions that locate the control points of the spline meta-
primitive through time.
Therefore, the overall animation is fully controlled by less than 30
evolution functions.

Hence, the control of the animation of the geometrically complex
model stays both simple and fine. Moreover, since the movements
are local, the model does not explode during an animation except
if the animator wishes it, as shown in figure 14. Thus, during an
animation, the volume of the model apparently stays the same and
no artefacts appear.

Finally, the animation skeleton is internal to the structure of an
animated BlobTree which is very beneficial to define the metamor-
phosis of complex models as we will see in the next section.

3 Animorphosis

In this section, we present the animorphosis of the BlobTree that
aims at creating a smooth animated metamorphosis between two
freely animated 3D-objects. This problem is more complex than
the metamorphosis between still shapes. In general, a metamor-
phosis between two still objects is visually appealing and convinc-
ing if shape coherence is preserved during the transformation. In
the context of animorphosis, both shape and animation coherence
should be preserved. For instance, the transformation between a
walking Tyrannosaurus-Rex and a flying Dragon should not only
create smooth interpolating shapes. The animation of the legs of
the Tyrannosaurus-Rex should smoothly transform into the slow
balancing movement of the legs of the Dragon. The wings should
not only progressively grow from its back but should also start flut-
tering with an increasing amplitude as the Dragon takes-off.

3.1 General algorithm

Let A(t) = {A,PA(t)} and B(t) = {B,PB(t)} denote the source and
target models. The time varying parameters pAi, j (t) and pBi, j (t) of
the nodes Ai and B j will be denoted as pA(t) and pB(t) for the sake
of clarity. Without loss of generality, we will assume that animor-
phosis takes place over the interval of time [0,1].

We characterize the transformation by a new generic animated
BlobTree model C(t) = {C,PC(t)} defined as follows. The generic
structure of C is computed by invoking the original BlobTree meta-
morphosis algorithm [Galin et al. 2000] between the corresponding
generic models A and B. This generic structure will characterize the
whole transformation. The time varying parameters PC(t) should
interpolate the parameters PA(0) and PB(1). This step is the most
difficult, since a tight control is required to preserve both shape and
animation coherence. The overall algorithm may be outlined as fol-
lows :

1. Define a graph of correspondences GC(A→ B) matching two
models A and B.

2. Create the generic structure C from the bijectively matching
graph derived from GC(A→ B).

3. Define each time varying parameter pC(t) by interpolating its
corresponding parent parameters pA(t) and pB(t).

Creation of the generic tree structure The first two steps of the
algorithm are performed as follows [Galin et al. 2000]. Given the
tree structures A and B, we aim at creating two new overlapping
models whose nodes and leaves can be bijectively paired. This in-
volves the creation of a graph of correspondences compatible with

the tree structure of both the source and the target animated models
(Figure 7).

Equivalent

Overlap

Equivalent

tree structure A tree structure B

tree structure B’tree structure A’

Generic tree structure C

Overlap Overlap

Figure 7: Generic tree structure creation process

Starting from the roots of the models, we iteratively descend
down the tree structures and create a graph of correspondences be-
tween the nodes at the same level. Whenever a node of A holds sev-
eral correspondence links, it is split into sub-nodes and the animated
BlobTree {A,PA(t)} is updated into an equivalent form denoted as
{A′,PA′(t)}. The same process is simultaneously performed on the
nodes of B.

The correspondence process ends at the leaves of either struc-
ture. Multiply matched leaves of the structure are split as described
in [Galin and Akkouche 1996]. In practice, this correspondence
process may be either controlled by the animator or achieved auto-
matically through heuristics.

The generic structure C is implicitly created during the corre-
spondence and the decomposition steps. It is the same as the over-
lapping structures A′ and B′.

Controlling the generic parameters The last step of the algo-
rithm controls the way parameters change through time. The new
animated BlobTree C(t) should not only interpolate the initial and
final shapes A(0) and B(1) but also produce a visually coherent
interpolation between the animations of A(t) and B(t) taking into
account both animations. This means that the animation of A(t)
should smoothly disappear while the animation of B(t) takes place.
Therefore, we are confronted with both shape and animation coher-
ence.

As we have seen is the previous section, the animation skele-
ton is internal to the structure of an animated BlobTree. In fact,
each parameter of the model is twice a geometric and an anima-
tion parameter ensuring the coherence of these two aspects during
whatever evolution. Thus, interpolating the geometries constrains
the animation of the intermediate shape and interpolating the an-
imations constrains its geometry. We use an evolution function,
denoted as s(t), to interpolate and weight the influence of the par-
ent parameters pA(t) and pB(t) of every parameter pC(t) through
time :

pC(t) = (1− s(t)) pA(t) + s(t) pB(t)

This dependency relation is a great advantage since our goal is to
maintain the coherence between geometry and animation. In the
example of the animorphosis of a walking Tyrannosaurus-Rex into
a flying Dragon, the growth of the wings is so constrained by the
evolution function defining the speed that the fluttering increases.

In practice, s(t) may be of any type but should fulfill the re-
quirements that s(0) = 0 and s(1) = 1. Altogether, the interpola-
tion functions s(t) control the animorphosis and are responsible for
shape and animation coherence. In our implementation, s(t) is a
piecewise cubic spline that allows a fine and intuitive control of the
transformation through the control of a few control knots. Figure 8

shows the control curve of the interpolation of the height param-
eters of the Tyrannosaurus-Rex and the Dragon. This curve con-
strains the model to the floor over the first third of the animorphosis
interval and characterizes how rapidly the Dragon takes off.

0 1
t0

1
s(t)

Figure 8: Control of the animorphosis of a parameter using a piece-
wise interpolation function s(t). This evolution function constrains
both the animation and the geometry evolutions of the model.

3.2 Discussion

As for animation, each time varying parameter of every node in the
generic animated BlobTree model C(t) may be characterized inde-
pendently with its own evolution function. Although this approach
provides a very tight control over the transformation, it requires
the characterization of many parameters. Let us recall that only a
few parameters of the source and target models are effectively dy-
namic. Here again, the alone parameters pC(t) whose one of their
parent parameters is dynamic really have to be managed whereas
the others may simply be characterized by the linear cross-dissolve
of pA(t) and pB(t).

3.3 Key-frame animorphosis

In this section, we present our key-frame animation system and
a semi-automatic method to define the animorphosis of two such
animated shapes as an internal operator of the animated BlobTree
model.

In our own key-frame animation system, the parameters of an
animated BlobTree model are characterized by piecewise Hermite
spline curves defined as follows. At the end times of an interval
[t− , t+], a parameter p is characterized by a column vector of its
successive time derivatives. Let p(ti) represents the value of the
parameter at time step ti, ṗ(ti) and p̈(ti) represent respectively its
speed and acceleration value at this same time. Thus p(ti) is defined
as follows :

p(ti) =

p(ti)
ṗ(ti)
p̈(ti)
. . .

The value of p over the interval [t− , t+] is given by the interpolation
of Hermite-Ferguson of degree n which is a polynomial of degree
2n−1.

We also use Hermite spline curves to define the interpolation
functions s(t) to control both shape and animation coherence. The
designer may freely control the shape of the interpolation function
by playing with the control points to produce the desired interpola-
tion.

In this case, we can constrain the computation of the parameters
pC(t) so that animorphosis should produce a consistent animation
model. The goal is to define the intermediate shape as a simple key-
frame animated BlobTree rather than an interpolation of two ani-
mated BlobTrees at each time step. Given an interpolation function

s(t), the following algorithm presents our semi-automatic method
for controlling the animorphosis of two parameters pA(t) and pB(t)
defined with evolution functions of this type (Figure 9) :

1. For each time interval [t− , t+] of the interpolation function
s(t) defined by the animator, we define the set {ti} of the time
steps of pA(t) or pB(t) in [t− , t+].

2. For each ti, we define a key step of pC(t) as follows :

pC(ti) = (1− s(ti))pA(ti) + s(ti)pB(ti)

The key steps of pC(t) at the end times of the control interval
[t− , t+] are obtained by plugging t− and t+ into the previous
equation, thus :

pC(t−) = (1− s(t−))pA(t−) + s(t−)pB(t−)

pC(t+) = (1− s(t+))pA(t+) + s(t+)pB(t+)

3. We define the piece of the evolution function of pC(t) by
the interpolation of Hermite-Ferguson of the new key-steps
{pC(ti)}.

0

pA(t)

pC(t)

pB(t)

1
t

Figure 9: Definition of the intermediate parameter pC(t) as a simple
key-frame animated parameter whose time step values are defined
as the constrained interpolation of the values of pA(t) and pB(t) at
every of their time steps.

This technique creates at most nA + nB + ns key-frames for the
parameter pC(t) and enables a tight control of the overall evolu-
tion by sticking to the control points of the evolution of pA(t) and
pB(t). This algorithm is applied to each parameter pC(t). It de-
fines an intermediate shape whose animation is characterized by a
classical key-frame method and takes into account each time step
of both the source and target models. Moreover, if necessary, extra
control points may be inserted. It is generally the case for some of
the important parameters, i.e. the few parameters which really are
dynamic. This choice of the intermediate time steps ensures that
both shape and animation coherence are preserved.

4 Results

Since we rely on a generic animated model that characterizes the
whole transformation, the computation time needed to create all the
instances through time is very fast and negligible compared to the
rendering time: almost one thousand complex objects may be cre-
ated in less than one second on a 750Mhz Duron. In comparison,
displaying an instance with a few thousands of primitives takes ten
to twenty seconds with a mesh and a couple of minutes in raytrac-
ing. We here present the different kinds of animorphosis depending
on the way we use to animate the source and target models.

4.1 Key-frame animorphosis

Figure 11 shows a walking Tyrannosaurus-Rex controlled by a key-
framing animation system. This model has been created with 2057
components including 1835 primitives, 21 frame nodes organized
in a hierarchy and 201 boolean, blending and warping operators.
The skeletons used for these primitives are vertices, spheres, cylin-
ders and cones.

In practice, the modeling process is simpler than it seems thanks
to the meta-primitives we use to arrange the elementary primitives.
Thus, we only have had to tune by hand 66 spline meta-primitives
to arrange 1788 of the 1835 primitives of this model. For the an-
imation of the Tyrannosaurus-Rex, we have defined the animation
skeleton of the still model and added the corresponding time vary-
ing frame nodes in the tree data-sructure. Then we have chosen a
few others parameters to be controlled independently so as to per-
form specific animation effects such as the pulsating belly. The
animation of the tail of the Tyrannosaurus-Rex has been simply de-
fined by modifying the parameters of the control points of the un-
derlying spline skeletal elements. It combines a rotation frame node
that creates a left to right balancing movement synchronized with
the hips. The vertical undulations are produced by directly moving
the control vertices of its spline skeletal meta-primitives. Finally,
the overall animation is controlled by only 30 parameters that are
highlighted on the figure 6.

Figure 10: The animation skeleton of the Dragon : pink vec-
tors highlight the control parameters of the Coons patch meta-
primitives.

Figure 13 shows a flying Dragon. This model contains 5564
components including 5337 primitives, 27 frame nodes organized
in a hierarchy and 200 boolean, blending and warping opera-
tors. The body of the Dragon has been created with point, sphere
and cone skeletal elements sometimes arranged with spline meta-
primitives. The wings have been created with triangles generated
by Coons patch skeletal meta-primitives. Here again, only 51 pa-
rameters are used to control the movement of the model (Figure 10).

Figure 12 shows the transformation of the walking
Tyrannosaurus-Rex into the flying Dragon. The correspon-
dences graph between the two models is relatively simple since
the initial and final shapes share the same kind of topology. The
Dragon model needs more frame nodes due to the wings and the
fine articulations of the forelegs and back legs.

The transformation of the animations is performed as follows.
The animated wings grow faster than other components so that the
Tyrannosaurus-Rex should take-off only when the wings get large
enough.

Figure 11: A walking Tyrannosaurus-Rex (key-frame animation).

Figure 12: Animorphosis of a walking Tyrannosaurus-Rex into a flying Dragon (key-frame animorphosis).

Figure 13: A flying Dragon (key-frame animation).

Figure 14: Explosion of a statue (physically-based animation).

Figure 15: The statue explodes into pieces which smoothly form a swirling vortex. These particles eventually gather to recreate the original
statue (physically-based animorphosis).

Figure 16: Disintegration of a statue into a swirling vortex of particles (physically-based animation).

The metamorphosis between the heads of the two models re-
quired a tighter control. The heads and necks were treated sepa-
rately because of the transformation of the necks which is volumet-
rically more important. The jaws were controlled independently
to avoid blending during their metamorphosis. It took us a cou-
ple of hours to create the graph of correspondences between the
two models. Much time was spent finely matching the jaws and
the different parts of the skulls to ensure shape coherence. Another
couple of hours were necessary to tune the important interpolation
parameters. In prtactice, most of the time was spent waiting for the
renderings.

4.2 Physically-based animorphosis

Figure 15 represents a complex animorphosis of physically-based
animations. A statue disintegrates into a set of particles because of
the energy of an explosion. The trajectories of those particles are
then animorphed with the inverse animation of a swirling vortex in
order to re-build the statue.

Figure 17: A snake-woman statue.

The physically-based animorphosis was performed as follows.
We first created the statue model (Figure 17) that contains 8862
nodes, including 8600 primitives and 262 boolean and blending
operators. Here again, the modeling process has been simplified
by the use of our meta-primitives. This time however, the anima-
tion is not performed by modifying the parameters of these meta-
primitives. Instead, the statue was transformed into a set of 36100
particles. The animation of the explosion (Figure 14) was per-
formed as prescribed in [Mazarak et al. 1999; Yngve et al. 2000]
whereas the animation of the vortex (Figure 16) relies on a force
field that constrains particles to a swirling movement.

5 Conclusion and future work

In this paper, we have presented a general framework to create and
control metamorphoses between animated shapes. Our animated
BlobTree model encompasses animation and metamorphosis in a
unified and coherent fashion.

This model is characterized by a generic BlobTree structure
whose nodes are controlled by arbitrary functions of time. Since
evolution functions may be of any type, our model supports what-
ever animation system. Key-frame based animation systems, phys-
ically based simulations and even comportemental methods may be
used to define the time varying parameters.

We have proved that our animated BlobTree allows the creation
of a wide range of special effects easilly. The animorphosis gen-
erates convincing and visually appealing transformations between
complex objects while preserving both shape and animation coher-
ence. The creation of a generic model is fundamental. This prop-
erty enables us to use the same accelerated techniques to ray-trace
or polygonize any instance of the animated BlobTree model. In
this context, the use of level of details in the design of complex
BlobTrees could speed up rendering. Specific polygonization tech-
niques that take advantage of temporal coherence will be needed in
the creation of an interactive animorphosis editor.

A major challenge in implicit surface metamorphosis is the con-
trol of the blend between the different skeletal parts of the models.
As prescribed in [Galin and Akkouche 1996], our method relies
on the control of the trajectories of the skeletal elements to avoid
blobby shapes. The local blending techniques proposed in [Ange-
lidis et al. 2002; Pasko et al. 2002] could be incorporated in our
implementation as a future work.

6 Acknowledgments

We would like to thank Tiphaine Accary who modelled the beauti-
ful snake-woman statue in a few hours.

References

ALEXA, M. 2001. Mesh morphing. Proceedings of Eurographics
2001 20, 3 (September).

ANGELIDIS, A., JEPP, P., AND CANI, M.-P. 2002. Implicit mod-
eling with skeleton curves: Controlled blending in contact situa-
tions. In Shape Modeling International, IEEE Computer Society
Press, ACM. Banff, Alberta, Cananda.

BARR, A. H. 1984. Global and local deformations of solid primi-
tives. Computer Graphics Proceedings 18 (July), 21–30.

BLOOMENTHAL, J., BAJAJ, C., BLINN, J., CANI-GASCUEL, M.-
P., ROCKWOOD, A., WYVILL, B., AND WYVILL, G. 1997.
Introduction to Implicit Surfaces. Morgan Kaufmann.

COQUILLART, S. 1990. Extended free-form deformation: A sculp-
turing tool for 3D geometric modeling. Computer Graphics 24,
4, 187–196.

DESBRUN, M., AND CANI, M.-P. 1995. Animating soft sub-
stances with implicit surfaces. Computer Graphics Proceedings
29 (August), 287–290.

FAUSETT, E., PASKO, A., AND ADZHIEV, V. 2000. Space-time
and higher dimensional modeling for animation. Computer Ani-
mation 2000 (May), 140–145.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liq-
uids. Computer Graphics Proceedings, 15–22.

FOX, M., CALBRAIGHT, C., AND BRIAN. 2001. Efficient imple-
mentation of the blobtree for rendering purposes. Proceedings
of Shape Modelling International, Genova, Italy (May).

GALIN, E., AND AKKOUCHE, S. 1996. Soft object metamorphosis
based on minkowski sums. Proceedings of Eurographics’96 15,
3 (August), 143–153.

GALIN, E., LECLERCQ, A., AND AKKOUCHE, S. 2000. Morphing
the blobtree. Computer Graphic Forum 19, 4 (November), 257–
270.

GASCUEL, M.-P. 1993. An implicit formulation for precise contact
modeling between flexible solids. Computer Graphics Proceed-
ings (August), 313–320.

HE, T., WANG, S., AND KAUFMAN, A. 1994. Wavelet-based
volume morphing. Proceedings of Visualization’94, 85–91.

HUGHES, J. F. 1992. Scheduled fourier volume morphing. Com-
puter Graphics Proceedings 26, 2, 43–46.

LAZARUS, F., AND VERROUST, A. 1998. Three-dimensional
metamorphosis: a survey. The Visual Computer 14, 8/9, 373–
389.

LAZARUS, F., COQUILLART, S., AND JANCÈNE, P. 1994. Axial
deformations: an intuitive deformation technique. Computer-
Aided Design 26, 8 (August), 607–613.

LEE, A., DOBKIN, D., SWELDENS, W., AND SHRÖDER, P. 1999.
Multiresolution mesh morphing. Computer Graphics Proceed-
ings (August).

LERIOS, A., GARFINKLE, C. D., AND LEVOY, M. 1995. Feature-
based volume metamorphosis. Computer Graphics (August),
449–456.

MACCRACKEN, R., AND JOY, K. I. 1996. Free-form deformations
with lattices of arbitrary topology. Computer Graphics Proceed-
ings 30, 181–188.

MAZARAK, O., MARTINS, C., AND AMANATIDES, J. 1999. An-
imating exploding objects. Graphics Interface.

MILLER, G., AND PEARCE, A. 1989. Globular dynamics: a con-
nected particle system for animating viscous fluids. Computer
and Graphics 13, 3, 305–309.

MÖLLER, T., AND HAINES, E. 1999. Real-Time Rendering. A K
Peters, Natick, Massachusetts.

NUR, M. A., LANG, K., WYVILL, B., AND BOURNE, G. 2001.
Animating the escape response of stomphia coccinea from dr-
masterias imbricata modeled using implicit surfaces. Proceed-
ings of Computer Graphics International, Hong-Kong, 81–88.

PASKO, A., AND SAVCHENKO, V. 1995. Constructing functionally
defined surfaces. Proceedings of Implicit Surfaces’95, 97–106.

PASKO, G., PASKO, A., IKEDA, M., AND KUNII, T. 2002.
Bounded blending operations. In Shape Modeling International,
IEEE Computer Society Press, ACM. Banff, Alberta, Cananda.

PLATT, J., AND BARR, A. H. 1988. Constraints methods for
flexible models. Computer Graphics 22, 4, 279–288.

SEDERBERG, T., AND PARRY, S. 1986. Free-form deformation of
solid geometric models. Computer Graphics Proceedings 20, 4,
151–160.

TERZOPOULOS, D., PLATT, J., BARR, A. H., AND FLEISHER, K.
1988. Elastically deformation models. Computer Graphics 22,
4, 205–214.

TONNESEN, D. 1991. Modelling liquids and solids using thermal
particles. Graphics Interface, 255–262.

WYVILL, G., PHEETERS, C. M., AND WYVILL, B. 1986. Data
structure for soft objects. The Visual Computer 2, 4, 227–234.

WYVILL, B., GUY, A., AND GALIN, E. 1999. Extending the
csg tree (warping, blending and boolean operations in an im-
plicit surface modeling system). Computer Graphics Forum 18,
2 (June), 149–158.

YNGVE, G., O’BRIEN, J., AND HODGINS, J. 2000. Animat-
ing explosions. Proceedings of ACM SIGGRAPH, New Orleans
(July), 29–36.

