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Abstract—We propose TopGraphVisualizer, a tool to support
the discovery of relevant topological patterns in attributed
graphs. It relies on a new pattern detection method that cru-
cially needs for sophisticated postprocessing and visualization.
A topological pattern is defined as a set of vertex attributes
and topological properties (i.e., properties that characterize the
role of a vertex within a graph) that strongly co-vary over the
vertices of the graph. For instance, such a pattern in a co-
authorship attributed graph where vertices represent authors,
edges encode coauthorship, and vertex attributes reveal the
number of publications in several journals, could be “the
higher the number of publications in IEEE ICDM, the higher
the closeness centrality of the vertex within the graph”. Two
different ways of navigation through the topological patterns
and the related graph data are provided to the end-user.
We exploit graph visualization and exploration techniques
from the open platform Gephi. As an illustrative scenario,
we consider a co-autorship attributed graph built from DBLP
digital library and a video has been produced that describe
the main possibilities of the TopGraphVisualizer software.

Keywords-Topological patterns, attributed graphs, structural
correlation.

I. INTRODUCTION

Graphs are powerful models of real-world phenomena

where vertices represent entities and edges represent their

interactions. In real-life graphs, entities are often described

by one or more attributes that constitute the attribute vectors

associated with the vertices. Existing methods that support

the discovery of local patterns in graphs mainly focus on the

topological structure of the patterns, by extracting specific

subgraphs while ignoring the vertex properties (e.g., cliques,

quasi-cliques [1]), or by computing frequent relationships

between vertex attribute values (frequent subgraphs in a

collection of graphs or in a single graph [2]), while ignoring

the topological status of the vertices within the whole

graph, e.g., the vertex connectivity or centrality. The same

limitation holds for the methods proposed in [3], [4] and

[5], which identify sets of vertices that share local attributes

and that are close neighbors. Such approaches only focus

on a local neighborhood of the vertices and do not consider

the connectivity of the vertex in the whole graph. We aim at

discovering relevant patterns that integrate information about

the connectivity of the vertices and their attribute values.

For us, the connectivity of each vertex is described by

topological properties that quantify its topological status in

the graph. Some of these properties are based on the close

neighborhood of the vertices (e.g., the vertex degree), while

others describe the connectivity of a vertex by considering

its relationship with all other vertices (e.g., the centrality

measures). Combining such microscopic and macroscopic

properties characterizes the connectivity of the vertices and

it may be a sound basis to explain why some vertices

have similar attribute values. Such topological properties and

vertex attributes are mostly of numerical or ordinal types

and their similarity can be captured by quantifying their co-

variation. Such co-variation indicates how a set of vertex

descriptors tend to monotonically increase or decrease all

together. We have recently proposed to mine rank-correlated

sets over graph descriptors by extracting topological patterns

defined as a set of vertex properties and attributes that

strongly co-vary over the vertices of the graph [6]. We

introduced several interestingness measures of topological

patterns that differ by the pairs of vertices that are consid-

ered while evaluating up and down co-variations between

descriptors: (1) Considering all the vertex pairs enables to

find patterns that are true all over the graph; (2) Examining

the vertex pairs that are connected in the graph makes it

possible to identify patterns that are structurally correlated
to the relationship encoded by the graph. We have also

designed an operator that identifies the top k representative

vertices of a topological pattern. As a result, we defined

the TopGraphMiner algorithm to discover the topological

patterns and their related top k representative vertices [6].

Considering only algorithmic issues, this appears as an

extension of the method proposed in [7],

Like for most of the pattern mining techniques, the tedious

interpretation phase by the end-user needs for many inter-

actions with both the computed patterns (e.g., collections

of topological patterns) and the data (e.g., large attributed

graphs). Indeed, we should never forget that pattern detection

is just one of the steps towards knowledge discovery: our

goal is to disseminate the TopGraphMiner method among

practitionners and it crucially needs for sophisticated post-

processing techniques. In this ICDM 2012 demo session,

we propose TopGraphVisualizer. It is a system that enables

to navigate among the patterns computed by means of

TopGraphMiner. Two ways of exploration are proposed.

First, the end-user can navigate among the patterns. Some

operators enable to rank the patterns according to different

interestingness measures or enable select some of them given

a specified property. A more original feature concerns the

exploration based on the top k vertices that are ranked with
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respect to the number of computed patterns they are rep-

resentative. For any selected vertex, an operator enables to

directly retrieve all topological patterns in which the vertex

is representative. Finally, selected patterns can be visualized

thanks to Gephi which is an interactive visualization and

exploration platform [8].

II. PROBLEM DEFINITION

A. Topological vertex properties

The input of our mining task is a non-directed attributed

graph G = (V,E,L), where V is a set of n vertices, E a

set of m edges, and L = {l1, . . . , lp} a set of p attributes

associated with each vertex of V . We assume here that they

are numerical or ordinal. Important properties of the vertices

are also encoded by the edges of the graph that describe

inter-relations between vertices. This relation enables to

compute some topological properties that summarize the role

played by each vertex within the graph. These properties

range from a microscopic level (i.e., those that describe a

vertex based on its direct neighborhood) to a macroscopic

level (i.e., those that characterize a vertex by considering its

relationship to all other vertices). Statistical distributions of

these properties can be used as vertex descriptors:

Microscopic properties of a vertex v
Degree centrality (denoted DEGREE),

Clustering coefficient (CLUST),

Number of γ-quasi cliques involving v (NBQC),

Size of the largest γ-quasi-cliques involving v (SZQC).

Macroscopic properties of a vertex v
Size of the community involving v (SZCOM),

Closeness centrality (CLOSE),

Betweenness centrality (BETW),

Eigenvector centrality (EGVECT),

Pagerank index (PAGERANK).

Such properties characterize the graph relationship en-

coded by E. These properties, along with the set of vertex

attributes L, constitute the set of vertex descriptors D.

B. Topological patterns over the whole graph

Let us now consider a topological pattern as a set of vertex

attributes and topological properties that behave similarly

over a large part of the graph vertices. Since targeted

topological properties and vertex attributes are of numerical

or ordinal type, we propose to capture their similarity by

quantifying their co-variation over the graph vertices. A

topological pattern P is defined as {D1
s1 , · · · , D�

s�} where

Dj is a vertex descriptor from the set of all descriptors

D and sj ∈ {+,−} is its co-variation sign. For instance,

the trend “the more papers in IEEE ICDM, the higher the
Pagerank” is represented by the topological pattern {ICDM+,

PAGERANK
+}.

Several signed vertex descriptors co-vary if the orders

induced by each of them on the set of vertices are consistent.

This consistency is evaluated by the number of vertex pairs

ordered the same way by all descriptors. The number of such

pairs constitutes the so-called support of the pattern. This

measure can be seen as a generalization of the Kendall’s τ
measure.

Definition 1 (Suppall): The support of a topological pat-

tern P over all possible pairs of vertices is:

Suppall(P ) =
|{(u,v)∈V 2 | ∀Dsj

j ∈P :Dj(u)�sj
Dj(v)}|

(n2)
where �sj denotes < when sj is equal to +, and �sj denotes

> when sj is equal to −.

This gives the number of vertex pairs (u, v) such that u is

strictly lower than v on all descriptors with sign +, and u
is strictly higher than v on descriptors with sign −.

C. Emerging patterns w.r.t. the graph structure

Given a topological pattern P , Suppall(P ) considers all

possible of vertex pairs and thus does not take into account

the graph structure. To measure if the graph structure plays

an important role in the support of P , a similar support

measure based on pairs that belongs to the set of edges E
is CE = {(u, v) ∈ V 2 | {u, v} ∈ E}. The graph support of

P can now be defined.

Definition 2 (SuppE): The support of a topological pat-

tern P over the pairs of vertices that are linked in G is:

SuppE(P ) =
2|{(u,v)∈CE | ∀Dsj

j ∈P :Dj(u)�sj
Dj(v)}|

|CE |
The maximum value of the numerator is

|CE |
2 since: (1)

if (u, v) ∈ CE then (v, u) ∈ CE , and (2) it is not possible

that ∀Dsj
j ∈ P , Dj(u) �sj Dj(v) and Dj(v) �sj Dj(u) at

the same time. The support of P over the pairs of vertices

that do not belong to CE is denoted SuppE(P ).
These measures allow to evaluate the impact of E on the

support of P . We use a growth rate of the support of P over

the partition of vertex pairs {CE , CE}:

Gr(P,E) =
SuppE(P )

SuppE(P )
.

Gr(P,E) enables to assess the impact of the graph

structure on the pattern. Therefore, if Gr(P,E) � 1, P
is said to be structurally correlated. If Gr(P,E) � 1, the

graph structure tends to inhibit the support of P .

D. Top k representative vertices

The user may be interested in identifying the vertices that

are the most representative of a given topological pattern,

thus enabling the projection of the patterns back into the

graph. For example, the representative vertices of the pattern

{ICDM+, BETW
−} would be researchers with a relatively

large number of IEEE ICDM papers and a low betweenness

centrality measure. Assume S(P ) denotes the set of vertex

pairs (u, v) that constitutes the support of a topological

pattern P :

S(P ) = {(u, v) ∈ V 2 | ∀Dsj
j ∈ P : Dj(u)�sj Dj(v)}

which forms, with V , a directed graph GP = (V, S(P )).
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GP is transitive and acyclic: it admits a topological

ordering of its vertices, which is, in the general case, not

unique. The top k representative vertices of a pattern P
are the k last vertices with respect to this ordering of V .

Considering that an arc (u, v) ∈ S(P ) is such that v
dominates u on P , this vertex set contains the most dominant

vertices on P . The top k representative vertices of P can be

easily identified by ordering the vertices by their incoming

degree.

III. DESCRIPTION OF THE SYSTEM

In [6], we have proposed the TopGraphMiner algorithm

that enables to discover topological patterns considering and

pushing several interestingness measures. We present here

TopGraphVisualizer to support the discovery of relevant

topological patterns in attributed graphs. TopGraphVisual-

izer, which is implemented in Java (JSE7), aims at providing

to the end-user a set of operators to supply the navigation

through the TopGraphMiner’s output.
We propose two ways of navigation for identifying the

patterns of interest. The end-user can navigate through the

topological patterns either by directly applying operators on

the patterns or by considering the representative vertices.

A. Pattern-based navigation
For the end-user, the most natural navigation through

TopGraphMiner’s output is to apply some operators over

the topological patterns themselves. TopGraphVisualizer,

illustrated in Figure 1, supports the following functionalities:

Pattern ranking: Topological patterns can be sorted

with respect to any interestingness measure (e.g.,

Suppall(P ), SuppE(P ) and Gr(E,P )) in ascending

order or descending order.

Attribute selection: The end-user can select only patterns

containing a set of signed or unsigned attributes.

Vertex selection: The end-user can make a restriction of the

topological patterns to those containing a specified vertex

among their top k representatives vertices (see Figure 2).

Figure 1: Pattern-based navigation interface

Figure 2: Representative-based navigation interface

B. Representative-based navigation

The navigation through the TopGraphMiner’s output can

be based on the top k vertices that are ranked with respect

to the number of patterns they are representative. Then, for

any selected vertex v, an operator enables to the end-user to

directly retrieve all topological patterns whose set of top k

representative vertices contains v as illustrated in Figure 3.

Figure 3: Pattern visualization with Gephi platform [8]

C. Pattern visualization

Finally, a selected topological pattern can be projected

into the graph. To offer to the end-user a large set of features

for interactive visualization and exploration of the topolog-

ical pattern into the attributed graph, we made the choice

to use Gephi an existing open visualization platform for

all kinds of graphs [8]. Gephi supports graph visualization,

structure, shape, and colors manipulations to reveal hidden

properties.

We thus export the projected attributed graph to Gephi

format. Two kinds of export are proposed. The first one

only consider representative vertices and their neighbours

and only edges involving a representative vertex. The second

kind of export returns the attributed graph induced by the

900900



set of representative vertices and their neighbours. We also

apply some state-of-the-art layout algorithms enhancing the

visualization of the graph. The end-user can take benefit

from the other functionalities of Gephi to analyse the se-

lected topological pattern.

IV. ILLUSTRATIVE SCENARIO

We give a demonstration of the capabilities of our tool

using a co-authorship graph built from the DBLP digital

library. Each vertex represents an author who published at

least one paper in one of the major conferences and journals

of the Data Mining and Database communities between

January 1990 and February 2011. Each edge links two

authors who co-authored at least one paper (no matter the

conference or journal). The vertex properties are the number

of publications in each of the 29 selected conferences or

journals given in Table I. We also consider 9 topological

properties (see Table I). The main characteristics of the

attributed graph are given in Table II.

Table I: Vertex descriptors in the DBLP attributed graph

Conferences:
KDD, ICDM, ECML/PKDD, PAKDD, SIAM DM, AAAI, ICML,
IJCAI, IDA, DASFAA, VLDB, CIKM, SIGMOD, PODS, ICDE,
EDBT, ICDT, SAC

Journals:
IEEE TKDE, DAMI, IEEE Int. Sys., SIGKDD Exp., Comm. ACM,
IDA J., KAIS, SADM, PVLDB, VLDB J., ACM TKDD.

Topological properties:
DEGREE, CLOSE, BETW, EGVECT, PAGERANK, CLUST,
SZQC, NBQC, SZCOM.

Table II: Main characteristics of the attributed graph used as

illustrative scenario.

Attributed graph DBLP

#Vertices 42, 252
#Edges 210, 320
#Vertex attributes 29
Density 2× 10−4

#Connected Comp. 577
#Communities 1016

Topo. prop. Max Mean Std. Dev.

Raw degree 304 9.73 14.22

DEGREE 7.3× 10−3 2.4× 10−4 3.4× 10−4

CLUST 1 0.31 0.29
NBQC 4.6× 105 2.2× 102 7.8× 103

SZQC 35 2.75 4.83
SZCOM 9, 342 40.67 5× 102

CLOSE 1 0.024 0.137
BETW 2.6× 106 1.4× 105 5.7× 105

EGVECT 0.003 2.36× 10−5 9.91× 10−5

PAGERANK 21.53 0.98 0.98

TopGraphVisualizer supports the discovery of relevant

topological patterns in this attributed graph. It enables to

find out the patterns among the publications target and some

topological properties that are the most correlated to the

graph structure. TopGraphVisualizer also enables to navigate

among the authors that are representative and visualize the

patterns they are involved in and their projection into the

graph.

V. CONCLUSION

We propose TopGraphVisualizer, a tool to support the dis-

covery of relevant topological patterns in attributed graphs.

Two different ways of navigation through the topological

patterns are provided to the end-user. We take benefit from

the graph visualization and exploration techniques available

in the open platform Gephi. As illustrative scenario, we

consider a co-authorship attributed graph built from DBLP

digital library.
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