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Using a solver over the string pattern domain to
analyze gene promoter sequences
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Jean-François Boulicaut, and Olivier Gandrillon

Abstract This chapter illustrates how inductive querying techniques can be used
to support knowledge discovery from genomic data. More precisely, it presents a
data mining scenario to discover putative transcription factor binding sites in gene
promoter sequences. We do not provide technical details about the used constraint-
based data mining algorithms that have been previously described. Our contribution
is to provide an abstract description of the scenario, its concrete instantiation and
also a typical execution on real data. Our main extraction algorithm is a complete
solver dedicated to the string pattern domain: it computes string patterns that satisfy
a given conjunction of primitive constraints. We also discuss the processing steps
necessary to turn it into a useful tool. In particular, we introduce a parameter tun-
ing strategy, an appropriate measure to rank the patterns, and the post-processing
approaches that can be and have been applied.
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1.1 Introduction

Understanding the regulation of gene expression remains one of the major chal-
lenges in molecular biology. One of the elements through which the regulation
works is the initiation of the transcription by the interaction between short DNA se-
quences (calledgene promoters) and multiple activator and repressor proteins called
Transcription Factors (TFs). These gene promoter elements are located in sequences
called promoter sequences, that are DNA sequences close to the sequences that en-
code the genes. In fact, on a promoter sequence various compounds can bind, having
then an impact on the activation/repression of the gene associated to this promoter
sequence, but among these compounds, the TFs are known to play a very impor-
tant role. Therefore, many researchers are working on TFs and Transcription Factor
Binding Sites (TFBSs). These are subsequences of the promoter sequences where
the TFs are likely to bind. In practice, identifying patterns corresponding to putative
TFBSs help the biologists to understand which TFs are involved in the regulation of
the different genes.

In this study, we report our contribution to gene promoter sequence analysis
and TFBS discovery by means of generic constraint-based data mining techniques
over strings. Indeed, we consider that the promoter sequences are sequences of nu-
cleotides represented by the symbols A, C, G and T (i.e., a data sequence is a string
over the alphabet{A,C,G,T} and a pattern is a substring in such sequences). Con-
trary to many approaches that support motif discovery in promoter sequences, we
do not take into account domain knowledge about that quite specific type of strings.
Instead, we use a generic solver over the string pattern domain.

The recent advances in constraint-based mining (see [2] and [7] for an overview),
and more generally the current developments in the domain of inductive querying
(i.e., the vision proposed in [10]), lead to the design of many mining tools based on
the constraint paradigm. We have now at hand scalable complete solvers, in partic-
ular over the string domain, that can be used to find substring patterns in sequences.
However, this is far from being sufficient to tackle a real application. In this chapter,
we present all the necessary processing, beyond the pattern extraction, that is needed
to support knowledge discovery from a biological perspective, hopefully leading to
the discovery of new putative TFBSs. First, we describe the corresponding data
mining abstract scenario, and then we give its concrete instantiation. Finally, we il-
lustrate its execution by means of a typical case study. We also give technical details
about aspects that are important to run the scenario in practice. This includes, in
particular, the tuning of the parameters in the early exploratory mining stage, the
ranking of the patterns using a measure adapted to the domain, and the designed
pattern post-processing technique to exhibit putative TFBSs.

Methodological and technical details about the method and the algorithms can
be found in several papers. TheMargueritesolver over the string pattern domain
has been described in details in [14, 15]. A concrete instance of the scenario is
described in the journal publication [16]. This is also where our measure of interest,
the so-called TZI measure, is studied in depth. Our parameter tuning method has
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been introduced in [1]. Last by not least, the Ph.D. thesis [13] considers all these
issues in detail.

The rest of the chapter is organized as follows. In Section 1.2, we present the
scenario both at an abstract and instantiated level. Then, in Section 1.3, we describe
the kind of patterns and the constraints that are handled by the solver. The parameter
tuning strategy is discussed in Section 1.4 and the dedicated measure to rank the
patterns is introduced in Section 1.5. Then, a typical example of a real execution of
the scenario is presented in Section 1.6. Finally, we conclude with a short summary
in Section 1.7.

1.2 A promoter sequence analysis scenario

Let us present the scenario which has been designed and used in our case study.
First, we describe it in abstract terms and then we explain how it has been instanti-
ated into a concrete scenario.

1.2.1 A generic scenario

This abstract view describes the main steps of the general process that has been
studied. It can be decomposed as a workflow containing the following sequence of
operations:

• Use the results of SAGE experiments [21] to select two groups of genes, one
group corresponding to genes active in a context (called the positive context), and
the second group corresponding to genes active in an opposite context (called the
negative context). These positive vs. negative issues are application dependent.
Notice that SAGE is one technology for recording gene expression values in
biological samples and that other popular approaches could be used, e.g., mi-
croarrays.

• Retrieve from a gene database the promoter sequences of the selected genes.
Construct two setsD+ andD− of promoter sequences: one for the genes active
in the positive context (D+), and the other for the genes active in the negative
context (D−).

• Perform a differential extraction of substrings between datasetsD+ andD−, to
find substrings frequent inD+ and not frequent inD−.

• Compute for each extracted substring a dedicated interestingness measure.
• Select some of the patterns, according to their ranking on the measure value

and/or to their support inD+ and/or support inD−.
• Perform a complementary post-processing:

– Cluster the set of selected patterns (pairwise alignment).
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– In each cluster, perform a multiple alignment of the patterns in the cluster, to
obtain a consensus motif (centroid) for each cluster.

– Search these consensus motifs in a database of known TF binding sites (e.g.,
Trans f acR© database [12]), to look for their corresponding TFs and the known
functions of these TFs (if any).

The workflow of the whole process is depicted Figure 1.1. Notice that numer-
ous efforts have given rise to a variety of computational methods to discover puta-
tive TFBSs in sets of promoters of co-regulated genes (see [16] for an overview).
Among them two families can be distinguished: statistical or stochastic approaches,
and combinatorial approaches [20]. Concerning the family of statistical and stochas-
tic approaches, a recent review of the most widely used algorithms exhibits rather
limited results [19]. The scenario presented in this chapter uses a combinatorial
approach, and its main originality w.r.t. the other combinatorial algorithms, which
allow to extract patterns from several datasets (e.g., SPEXS [3] or DRIM [9]), is
that the maximal support threshold is set explicitly. This is particularly interesting,
when there is a clear semantic cut between a positive and negative datasets, i.e.,
the negative dataset has an opposite biological sense (presence/absence of a mu-
tation; addition or not of a given drug, etc.), and does not just represent random
background.

1.2.2 Instantiation of the abstract scenario

We focus the search on putative TFBSs that could be used to regulate the transcrip-
tion of the genes associated to promoter sequences of the positive dataset (D+) while
they are not likely to have an important impact on the regulation of the genes associ-
ated to the other set. To collect the setsD+ andD−, the method starts with a classical
operation used in molecular biology: the search for differentially expressed genes1,
using SAGE experiments. This allows to obtain two groups of genes from which
we derive two sets of associated promoter sequences using a promoter database. To
look for putative TFBSs regulating the overexpressed genes, we choose the first set
(the promoters of the overexpressed genes) to be used as a positive set, and the sec-
ond set as a negative one2. The promoter sequences are sequences of compounds
called bases. There are four different bases, commonly represented by the symbols
A, C, G and T, and a sequence is simply represented by a string over the alphabet
{A,C,G,T}. Then the method consists in finding patterns that are substrings occur-
ring in at leastαmin promoters from the positive set and in at mostαmax promoters
from the negative set, where the parameterαmin (resp.αmax) is supposed to be a large

1 It consists in comparing two biological situations,Sit1 andSit2, in order to obtain two groups of
genes: one that is up-regulated, and the other one that is down-regulated, when going fromSit1 to
Sit2.
2 Notice that if we exchange the positive and negative datasets, then we could find putative TFBSs
regulating the underexpressed genes.
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Fig. 1.1 Workflow of the abstract scenario.

(resp. small) threshold value. Typical sizes of the promoter sequences are about a
few thousands of symbols, and the positive and negative datasets contain each a few
tens of such sequences.

We consider two kinds of patterns: Exact Matching Patterns (EMPs) and Soft
Matching Patterns (SMPs). Both are strings of bases, but they differ in the way their
supportsare defined. The support of an EMP in a dataset is the number of sequences
of the dataset that contain at least one exact occurrence of this EMP. Letαdist be a
given threshold, termed thesoft matchingthreshold, then the support of a SMP is the
number of sequences containing at least one soft occurrence of the pattern, where a
soft occurrence is a part of the sequence different from the pattern in at mostαdist

positions (i.e., the Hamming distance between this part of the sequence and the
pattern is at mostαdist). Both SMPs and EMPs are necessary: SMPs allow to gather
the degenerated TFBSs while EMPs are dedicated to pick out the conserved ones.

The two kinds of patterns are extracted using a solver over the string pattern do-
main calledMarguerite(see Section 1.3). This tool performs a differential extrac-
tion of patterns between the two sets of sequencesD+ andD−. To run an extraction,
the user has to set the four following constraints:L the length of the patterns,αmin

their minimal support inD+, αmax their maximal support inD−, andαdist the soft
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matching threshold (for SMPs).Marguerite is complete in the sense that it finds
all possible patterns satisfying the constraints according to the user setting. In the
case of SMPs, the solver enforces an additional constraint: the patterns must have
at-least one exact occurrence inD+. This additional constraint enables to focus on
SMPs that appear at-least one time in a non-degenerated way. Concerning the use
of the solver, setting four parameters is not an easy task, so we developed and used
a dedicated parameter tuning tool (see Section 1.4).

In order to assess the significance of a pattern we used the notion of Twilight
Zone (TZ) [11] to build a Twilight Zone Indicator (TZI). A twilight zone is a zone
in a parameter space, where we are likely to obtain patterns produced by the random
background. For a patternφ of lengthL, the indicatorTZI(φ) is an estimate of the
minimum number of patterns of lengthL, due to the random background, that are
likely to be extracted together withφ , in the most stringent conditions (i.e., with the
strongest constraints, that still lead to the extraction ofφ ). The computation of the
TZI is detailed in Section 1.5. It is based on the same hypothesis made in [11]: the
data sequences are composed of independent and uniformly distributed nucleotides,
and the possible overlap of the occurrences of the patterns is considered to have a
limited impact on the number of extracted patterns. In addition, we suppose that the
positive and the negative datasets are independent.

During the next step, the biologist browses and ranks the patterns (according to
the TZI measure, and to the support of the patterns inD+ andD−) and then he/she
selects some promising ones.

On these selected patterns, the following post-processing is applied (see Sec-
tion 1.6.3). First the similar patterns are grouped by performing a hierarchical clus-
tering. Then, for each cluster we compute the average of the TZI of the patterns in
the cluster, and in each cluster, the patterns are aligned with a multiple alignment
tool (MultAlin [5]) to build aconsensus patternof the cluster. Finally, the concen-
sus patterns are checked w.r.t. theTrans f acR© [12] database, to find out if they are
known TFBSs, close to some known TFBSs or unknown.

1.3 TheMargueritesolver

We introduce the solverMargueritewhich supports inductive querying on strings.
It has been used in the scenario described in this chapter. We define more pre-
cisely the patterns and constraints handled by this solver. More details can be found
in [14, 15].

Let Σ be a finite alphabet (in the scenarioΣ = {A,C,G,T}), then a stringφ over
Σ is a finite sequence of symbols fromΣ . The language of patternsL is Σ ∗, i.e, the
set of all strings overΣ . A string datasetD is a multi-set3 of strings fromΣ ∗. The

3 The dataset may contain several times the same string.



1 Using a solver over the string pattern domain to analyze gene promoter sequences 7

length of a stringφ is denoted|φ |. A substringφ ′ of φ is a sequence of contiguous
symbols inφ .

An exact occurrenceof a patternφ is simply a substring of a string inD that is
equal toφ . Theexact supportof φ , denotedsuppE(φ ,D), is the number of strings in
D that contain at least one exact occurrence ofφ . Notice that multiple occurrences
of a pattern in the same string do not change its support.

Let αdist be a positive integer, then an(αdist)-soft occurrenceof a patternφ
is a substringφ ′ of a string in D, having the same length asφ and such that
hamming(φ ,φ ′) ≤ αdist, wherehamming(φ ,φ ′) is the Hamming distance between
φ andφ ′ (i.e., the number of positions whereφ andφ ′ are different). The(αdist)-
soft supportof φ is the number of strings inD that contain at least one(αdist)-soft
occurrence ofφ . It is denotedsuppS(φ ,D,αdist).

Example 1.If D = {atgcaaac,acttggac,gatagata, tgtgtgtg,gtcaactg}, then we have
suppE(gac,D) = 1 since only stringacttggaccontainsgac, and we also have
suppS(gac,D,1) = 3 becauseacttggac, gatagataandgtcaactgcontain some 1-soft
occurrences ofgac.

Definition 1 (Frequency constraints). In the case of the exact support, given a
threshold valuef , the minimal (resp. maximal) frequency constraint isMinFr(φ ,
D, f )≡ suppE(φ ,D)≥ f (resp.MaxFr(φ ,D, f )≡ suppE(φ ,D)≤ f ). For the(αdist)-
soft support, the constraints are defined asMinFr(φ ,D, f ) ≡ suppS(φ ,D,αdist) ≥
f ∧suppE(φ ,D)≥ 1 andMaxFr(φ ,D, f )≡ suppS(φ ,D, αdist)≤ f .

Notice that, in the case of the soft support, our definition ofMinFr enforces the
presence of at least one exact occurrence, in order to discard patterns that only occur
as degenerated instances.

The generic conjunction of constraints handled byMargueriteis:
C ≡ MinFr(φ ,D+,αmin)∧MaxFr(φ ,D−,αmax)∧ |φ | = L, whereD+ andD− are
string databases,αmin andαmax are frequency thresholds, andL is a user defined
pattern length.

The algorithms used byMarguerite[14, 15] are based on the generic algorithm
FAVST [6], designed for the efficient extraction of strings under combination of
constraints, taking advantage of the so-called Version Space Tree (VST) [8] data
structure.Marguerite extends FAVST to degenerated patterns discovery through
similarity and soft-support constraints. It is implemented inC/C+ + and can be
used to compute both Exact Matching Patterns (EMPs) and Soft Matching Patterns
(SMPs) in a complete way (i.e., all patterns satisfying the constraints are outputted).

1.4 Tuning the extraction parameters

In an exploratory data mining task based on pattern extraction, one of the most
commonly used parameter tuning strategies, in the early exploration stage, is to run
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a few experiments with different settings, and to simply count the number of patterns
that are obtained. Then, using some domain knowledge, the user tries to guess some
potentially interesting parameter settings. After that stage, the user enters a more
iterative process, in which she/he also looks at the patterns themselves and at their
scores (according to various quality measures), and uses her/his knowledge of the
domain to focus on some patterns and/or to change the parameters by somelocal
variations of their values.

To support this early exploratory stage, so that the user can guess promising ini-
tial parameter settings, we decided to probe the parameter space in a more system-
atic way, so that it could be possible to provide graphics that depict the extraction
landscape, i.e., the number of patterns that will be obtained for a wide range of pa-
rameter values. This idea is very simple, and many (if not all) of the practitioners
have one day written their own script/code to run such sets of experiments. How-
ever, in many cases, the cost of running real extractions for hundreds of different
parameter settings is clearly prohibitive.

Instead of running real experiments, a second way is to develop an analytical
model, that estimates the number of patterns satisfying the constraintC , with respect
to the distribution of the symbols and the structure (number of strings and size) of
the datasets, and with respect to the values of the parameters used inC . In this
approach, an important effort has to be made on the design of the model, and in
most cases this is a non-trivial task. For instance, to the best of our knowledge,
in the literature there is no analytical model of the number of patterns satisfying
C ≡ MinFr(φ ,D+,αmin)∧MaxFr(φ ,D−,αmax)∧ |φ | = L when soft-occurrences
are used to handle degenerated patterns (even in the simple case whereαdist = 1).
Designing an analytical model to handle this case is certainly not straightforward,
in particular because of the specific symbol distribution that has to be incorporated
in the model.

We developed a third approach based on the following key remark. When a pat-
tern φ is given, together with the distribution of the symbols, the structure of the
datasets and the values of the parameters inC , we can computeP(φ sat. C ) the
probability thatφ satisfiesC in this dataset. In most cases, designing a function to
computeP(φ sat. C ) is rather easy in comparison to the effort needed to exhibit an
analytical model that estimates the number of patterns satisfying the constraintC .
Having at hand a function to computeP(φ sat. C ), the next step is then to estimate
the total number of patterns that will be extracted, but without having to compute
P(φ sat. C ) for all patterns in the pattern space. Therefore, we propose a simple
pattern space sampling approach, that leads to a fast and accurate estimate of the
number of patterns that will be extracted. Finally, we can compute such an estimate
for a large number of points in the parameter space and provide views of the whole
extraction landscape.

To determineP(φ sat. C ), we first compute the different frequencies of occur-
rence of the symbols. We consider that all occurrences of the symbols are inde-
pendent, and then, for a given patternφ we can easily compute the probability
that φ occurs in a string of a given length. If we suppose that all strings in the
dataset have the same length, the probability to appear in each string is the same,
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and we can use a binomial law to obtain the probability for this pattern to sat-
isfy the constraintMinFr(φ , D+,αmin) and the probability to satisfy the constraint
MaxFr(φ ,D−,αmax). Finally, if we suppose that the datasetsD+ andD− are inde-
pendent, we can multiply these two probabilities to obtainP(φ sat. C ).

Let SC be the set of patterns inL that satisfy the constraintC ≡ MinFr(φ ,
D+, αmin)∧MaxFr(φ ,D−,αmax)∧|φ |= L, usingP(φ sat. C ) we can estimate|SC |
by sampling the pattern space as follows. Let us associate to each patternφ a ran-
dom variableXφ , such thatXφ = 1 whenφ satisfyC andXφ = 0 otherwise. Then
|SC | = ∑φ∈L Xφ . Considering the expected value of|SC |, by linearity of the ex-
pectation operator we haveE(|SC |) = ∑φ∈L E(Xφ ). SinceE(Xφ ) = 1×P(Xφ =
1)+0×P(Xφ = 0), thenE(|SC |) = ∑φ∈L P(φ sat. C ). Let SL be the set of patterns
in L that satisfy|φ | = L. As P(φ sat. C ) = 0 for all patterns that do not satisfy
|φ |= L, we haveE(|SC |) = ∑φ∈SL

P(φ sat. C ).
Computing this sum overSL could be prohibitive, since we want to obtain the

values ofE(|SC |) for a large number of points in the parameter space. Thus we
estimateE(|SC |) using only a sample of the patterns inSL. Let Ssamp be such a
sample, then we use the following value as an estimate ofE(|SC |):

|SL|
|Ssamp| × ∑

φ∈Ssamp

P(φ sat. C )

In practice, many techniques can be used to compute the sample. In our experi-
ments, we use the following process:

• Step 1: build an initial sampleSsampof SL (sampling with replacement) of size
5% of |SL| and compute the estimate ofE(|SC |).

• Step 2: go on sampling with replacement to add 1000 elements toSsamp. Compute
the estimate, and if the absolute value of the difference between the new estimate
and the previous one is greater than 5% of the previous estimate, then iterate on
Step 2.

1.5 An objective interestingness measure

The notion of Twilight Zone (TZ) [11] has been originally proposed to character-
ize thesubtle motifs, i.e., motifs that can not be distinguished (no statistically signif-
icant difference) from random patterns (patterns due to the random background). In
this context, the TZ was defined as the set of values of the scoring function for which
we can expect to have some random patterns exhibiting such score values. Let us
consider the notion of extraction parameters in a broad sense, including structural
properties of the dataset (e.g., number of sequences, length of the sequences) and
mining constraints (e.g., selection threshold according to one or several measures,
length of the patterns). Then, the TZ can be seen as a region (or a set of regions)
in the parameter space, where we are likely to obtain random patterns among the
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extracted patterns, these random pattern having scores as good (or event better) than
thetruepatterns.

We can now define a Twilight Zone Indicator (TZI) to rank the patterns in the case
of differential extractions. Letφ be a pattern, occurring insupport+(φ) sequences
of the positive dataset, and insupport−(φ) sequences of the negative dataset. Then,
TZI(φ ) is an estimate of the number of random patterns, having the same length as
φ , that will be extracted usingαmin = support+(φ) andαmax= support−(φ), i.e.,
using the most selective constraints that still permit to obtainφ (since for largerαmin

and/or lowerαmax threshold values,φ will not satisfy the constraints and will not be
retained during the extraction). The higher isTZI(φ), thedeeperis φ in the twilight
zone, and thus likely to be retrieved among a larger collection of patterns due to
the random background that cannot statistically be distinguished fromφ . Then, in
practice, we will select patterns having a low TZI, to expect to have patterns that are
not due to the random background.

At first glance, the number of patterns satisfyingαmin = support+(φ) and
αmax = support−(φ) could be obtained using the sampling based technique pre-
sented in Section 1.4. Unfortunately, if this approach can help the user to find esti-
mates of the number of patterns in wide ranges of parameter values, the extracted
patterns themselves can represent many much more(support+,support−) pairs,
than the number of(αmin,αmax) pairs considered during the parameter setting stage.
For instance, it can make sense for the expert to explore theαmin setting between
20 and 40, while real patterns that are extracted usingαmin ∈ [20,40] could have
support larger than 40, and not only in[20,40]. In order to avoid the cost of com-
puting the sampling based estimate for each extracted pattern, we now discuss an
alternative way to obtain such an estimate. This second estimate is less accurate, in
the sense that it does not take into account the difference among the frequencies of
the symbols, but it uses a direct analytical estimate, i.e., without sampling. It can be
much more relevant in practice.

We consider that all the sequences have the same length, denotedG. In this con-
text, we want to estimate the number of SMP patterns of lengthL that will be ex-
tracted under the thresholdsαmin, αmax andαdist. Let us notice that estimating the
number of EMP is a particular case, whereαdist is set to 0. As in [11], we suppose
that the data sequences are composed of independent and uniformly distributed sym-
bols, having the same occurrence probability, and that the overlapping of the occur-
rences of the patterns has a negligible impact on the number of patterns extracted
(sinceL ¿ G). Additionally, as in the previous section, we suppose that the two
datasets are independent.

Occurrences at a given position

The data sequences are gene promoter sequences. On such a given vocabulary, we
have4L different possible strings of lengthL. The hypotheses made on the distri-
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bution of the symbols imply that the probability that a patternφ of lengthL has an
exact occurrence starting at a given position in a sequence4 is:

P(exact occ. ofφ at one position) = 1
4L .

From an exact occurrence ofφ , one can construct the soft occurrences ofφ within
an Hamming distanceαdist by placingk substitutions in

(L
k

)
possible ways, with

k ∈ {0, . . .αdist}. Since we have 4 symbols, then for each position were we have a
substitution, we have3 different possible substitutions. Thus, for a patternφ , there
are∑αdist

k=0

(L
k

)×3k strings that are soft occurrences ofφ . Then, the probability that a
pattern has a soft occurrence starting at a given position in a sequence is:

P(soft occ. ofφ at one position) = ∑
αdist
k=0

(L
k

)
×3k

4L .

In the following, we also need the probability that a patternφ has astrict soft
occurrence starting at a given position (astrict soft occurrence ofφ is a soft occur-
rences ofφ that is not an exact occurrence). In this case we have simply:

P(strict soft occ. ofφ at one position) = ∑
αdist
k=1

(L
k

)
×3k

4L .

Occurrences in a random sequence

In a sequence, there are(G−L+1) possible positions to place the beginning of an
occurrence ofφ . SinceL¿G, for the sake of simplicity, we approximate a number
of possible positions byG. Then, considering that the occurrence overlap has a
negligible impact, the probability that there is no soft occurrence ofφ in a random
sequence is:

P(no soft occ. ofφ in a seq.) = (1−P(soft occ. ofφ at one position))G.

The probability that there is at least one soft occurrence ofφ in a sequence is:

P(exists soft occ. ofφ in a seq.) = 1− (1−P(soft occ. ofφ at one position))G.

Similarly, the probability that there is at least one strict soft occurrence ofφ is:

P(exists strict soft occ. ofφ in a seq.) =
1− (1−P(strict soft occ. ofφ at one position))G.

Finally, the probability that there is at least one exact occurrence is:

P(exists exact occ. ofφ in a seq.) = 1− (1− 1
4L )G.

Minimum support constraint

To determineP(φ sat. min. supp.), i.e., the probability ofφ to satisfy the mini-
mum support constraint, let us defineX as the number of sequences, in the positive

4 Except the lastL−1 positions.
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dataset, that contains at least one exact occurrence ofφ . The probabilityP(φ sat.
min. supp.) can be decomposed using the conditional probability ofφ sat. min.
supp.given the value of X, as follows:

P(φ sat. min. supp.) =
N+

∑
i=1

(P(X = i)×P(φ sat. min. supp.|X = i)) (1.1)

Notice that the sum starts ati = 1, and not ati = 0, since the pattern must have at
least one exact occurrence in the positive dataset (see Section 1.3).

The variableX follows a binomial distributionB(N+, P(exists exact occ. ofφ
in a seq.)), whereN+ is the number of sequences in the positive dataset. Thus we
have:

P(X = i) =
(N+

i

)×P(exists exact occ. ofφ in a seq.)i

×(1−P(exists exact occ. ofφ in a seq.))N+−i .

P(φ sat. min. supp.|X = i) is the probability thatφ satisfies the minimum support
constraint, given that exactlyi sequences contain at least one exact occurrence ofφ .
This also means that(N+ − i) sequences do not have any exact occurrence of a
pattern. Then, according toi, there are two cases:

1. If i ≥ αmin thenP(φ sat. min. supp.|X = i)) = 1 since the constraint is already
satisfied by thei sequences that contain each at least one exact occurrence ofφ .

2. If i < αmin thenP(φ sat. min. supp.|X = i) is equal to the probability that at least
(αmin− i) of the (N+− i) remaining sequences contain at least one strict soft
occurrence. This number of sequences that contain at least one strict soft occur-
rence ofφ also follows a binomial distributionB(N+− i,P(exists strict soft occ.
of φ in a seq.)). Then we have:

P(φ sat. min. supp.|X = i)) = ∑N+−i
z=αmin−i(

(N+−i
z

)
×P(exists strict soft occ. ofφ in a seq.)z

×(1−P(exists strict soft occ. ofφ in a seq.))N+−i−z).

It means that we can provideP(φ sat. min. supp.) by computing the sum in Equa-
tion 1.1 andP(φ sat. min. supp.|X = i) according to the two cases above.

Maximum Support constraint

Let Y be the number of sequences that supportφ in the negative dataset. A pattern
φ satisfies the maximum support constraint with thresholdαmax if Y ≤ αmax. The
variableY follows a binomial distributionB(N−, P(exists soft occ. ofφ in a seq.)),
whereN− is the number of sequences in the negative dataset. Then the probability
thatφ satisfies the maximum support constraint is:

P(φ sat. max. supp.) = ∑αmax
z=0

(N−
z

)
×P(exists soft occ. ofφ in a seq.)z

×(1−P(exists soft occ. ofφ in a seq.))N−−z.
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Conjunction of Minimum Support and Maximum Support constraints

Given our hypothesis that the positive and negative datasets are independent, the
probability that a pattern satisfies a conjunction of minimum support and maximum
support constraints is:

P(φ sat. min. and max. supp.) = P(φ sat. min. supp.)×P(φ sat. max. supp.).

Number of expected patterns and Twilight Zone Indicator

Let ENP( L,αmin,αmax,αdist) be the Expected Number of Patterns of lengthL that
will be extracted under the thresholdsαmin, αmaxandαdist. Since there are4L possi-
ble patterns of lengthL, and given the hypothesis that the overlapping of the occur-
rences of the patterns has a negligible impact on the number of extracted patterns, we
can approximateENP(L,αmin,αmax,αdist) by P(φ sat. min. and max. supp.)×4L.

Finally, let φ be a pattern, occurring insupport+(φ) sequences of the positive
dataset, and insupport−(φ) sequences of the negative dataset for a givenαdist

threshold. Then, TZI(φ ) is defined asENP(|φ |,support+(φ), support−(φ),αdist).

1.6 Execution of the scenario

In this section, we present a typical concrete execution of the whole scenario, in
the context of the study of the TFs and TFBSs involved in the activation/repression
of genes in reaction to the presence of the v-erbA oncogene, a chemical compound
involved in the cell self-renewal process.

1.6.1 Data preparation

Using the SAGE technique [21], we identified two sets of genes: a setRof 29 genes
repressed by v-ErbA and a setAof 21 genes activated by v-ErbA. Then, we collected
the promoter sequences of all these genes (taking 4000 bases for each promoter).
These promoter sequences have been extracted as described in [4]. Finally, we have
built two datasets:D+ (resp.D−) containing the promoter sequences of the genes of
setR (resp.A).

These two datasets represent two biologically opposite situations. As a result, we
assume that computing string patterns that have a high support inD+ and a small
support inD− is a way to identify putative binding sites of transcription factors
involved in this activation/repression process induced by v-ErbA.
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1.6.2 Parameter tuning

Patterns having slightly degenerated occurrences can be interesting in our context.
Therefore, we look for SMP patterns usingαdist = 1 for the soft support definition.
The estimates are computed according to the sampling technique presented in Sec-
tion 1.4 with respective frequencies of 0.23, 0.26, 0.27, 0.24 for symbols A, C, G
and T. Representative graphics depicting portions of the extraction landscape, are
presented in Figure 1.2, on the right.

A typical use of such graphics is, for instance, to look for points, in the parameter
space, corresponding to a large support onD+, but a low support onD−, a large
pattern size, and a rather small number of expected patterns. Such a point can be
used as an initial guess of the parameters to perform the extractions. For instance,
we may consider pattern size= 10, minimal support onD+ of 15, and maximal
support onD− of 5. The graphic in the middle on the right for Figure 1.2 indicates
that, for this setting, only about 1 pattern is expected.

Additionally, in Figure 1.2 on the left, we give the real numbers of extracted pat-
terns. In practice, these graphics are not easily accessible, since in these experiments
the running time of a single extraction withMarguerite(on a Linux platform with
an Intel 2Ghz processor and 1Gb of RAM) ranges from tens of minutes to several
hours5, while for an estimate (graphics on the right) only a few tens of seconds is
needed. Even though the global trends correspond to the estimates on the right, there
are differences in some portions of the parameter space. For example, for the setting
pattern size= 10, minimal support= 15, andmaximal support= 5, we have about
100 extracted patterns while we expected only one. Such a difference suggests that
these 100 patterns capture an underlying structure of the datasets, and that they are
not simply due to the random background.

1.6.3 Post-processing and biological pattern discovery

Hierarchical clustering of SMPs

The hierarchical clustering of the SMPs patterns is performed using thehclust
function of the packagestat of the R environment [18]. The proximity between
clusters is computed using the complete linkage method. To improve the quality
and efficiency of the clustering, we process the SMPs by groups of patterns hav-
ing the same length. To construct a distance matrix, we estimate the dissimilarity of

5 Notice that for experiments using EMP (exact support) on these datasets, with similar parameter
values, the running time is only about a few tens of seconds to a few minutes.
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Fig. 1.2 Expected and real numbers of extracted patterns. The minimal supportαmin corresponds
to the horizontal axis, and the number of patterns corresponds to the vertical axis (log scale).
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each pair of SMPs as follows. For each pair, we compute its optimal pairwise global
alignment [17] with the following parameters: the score for a mismatch is 1, the
score for a match is 0, the insertions and deletions inside an alignment are not al-
lowed, the terminal gaps are not penalized, and the length of an alignment (terminal
gaps are not included in the alignment length) must be at least a half of the length
of the patterns in the pair. Finally, the dissimilarity of a pair of SMPs is simply the
score of its best alignment (i.e., alignment having the lowest score).

Finding a consensus pattern within a cluster

To find the consensus pattern of each cluster of SMPs we align the patterns in
each cluster using the multiple alignment toolMultAlin [5]. We use the following
alignment scoring parameters: gap creation and extension penalty is−5, terminal
gaps are not penalized, score for a match is2, and score for any mismatch is0.
Once a consensus SMP is computed we consultTrans f acR© [12] to check whether
it is a known TFBS. Figure 1.3 gives an example of a cluster, whose consensus SMP
that has been selected because of its rather low TZI value (i.e., not likely to be due to
the random background), and that is reported byTrans f acR© as a binding site of the
TF c-Myb-isomorf1. In the consensus pattern in this figure, the bases that are highly
conserved appear as uppercase letters in the consensus, and the weakly conserved
ones appear as lowercase. Positions with no conserved bases are indicated as dots.

           Alignment                           TZI

           .CGGCCGTT...      23.94

           .GCGCCGTT...       0.68

           ...GCCGTTAT.       4.4

           ....CCGTTCGT       4.4

           ...GCCGTTCG.      23.75

           ....CCGTTAGG       0.68

           TTGGCCGT....      23.75

           ...GCCGTAAC.     107.37

           ..TGCCGTAA..       0.58

Consensus    ...gCCGTt...

Transfac:    c-Myb-isoform1

Mean of TZI:  21.06

Fig. 1.3 A cluster of SMPs and its consensus computed by a multiple alignment.
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Biological interpretation

The application of the scenario therefore allowed us to identify a c-Myb binding
site as a signature motif of many newly identified v-ErbA repressed target genes
compared with v-ErbA activated target genes. This suggests a potential role for
c-Myb in the v-ErbA induced transformation. To determine the role of c-Myb in
this transformation process, we used a gene reporter assay to test the ability of v-
ErbA to transactivate c-Myb [4]. This experiment demonstrated that v-ErbA can
indeed functionally interacts directly or indirectly with the transcriptional activity
of endogenous c-Myb in T2ECs, constituting an experimental validation of thein
silico extracted motif.

1.7 Conclusion

In this chapter, we presented a complete scenario that has been designed and used
to support knowledge discovery from promoter sequences. Indeed, it can be applied
to suggest putative TFBSs. The description of this application has been made at
different levels: the corresponding abstract scenario, its concrete instantiation and a
typical execution on a real dataset. To perform the main extraction step, we propose
to use a solver developped for inductive querying over the string pattern domain.
We also discussed all the additional processing required to use a solver, i.e., a data
mining algorithm, in such a realistic context. This includes a parameter tuning tool,
a support to pattern ranking and typical post-processing facilities dedicated to this
kind of discovery task.

Acknowledgments.This work has been partly funded by EU contract IST-FET IQ
FP6-516169 (Inductive Queries for Mining Patterns and Models) and by the French
contract ANR-07-MDCO-014 Bingo2 (Knowledge Discovery For and By Inductive
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