Proc.

Mondello

16th Italian

Symp. on Advanced Database Systems SEBD 2008,

(PA), ltaly, June 22-25, 2008. pp. 279-286.

Numerical Data Co-clustering via Sum-Squared
Residue Minimization and User-defined
Constraint Satisfaction*

Ruggero G. Pensa' and Jean-Francois Boulicaut?

! Pisa KDD Laboratory, ISTI-CNR, 1-56124 Pisa, Italy
ruggero.pensa@Qisti.cnr.it
2 INSA-Lyon, LIRIS CNRS UMRS5205, F-69621 Villeurbanne cedex, France

jean-francois.boulicaut@insa-lyon.fr

EXTENDED ABSTRACT

Abstract. Co-clustering aims at computing a bi-partition that is a col-
lection of co-clusters: each co-cluster is a group of objects associated to
a group of attributes and these associations can support interpretations.
We consider constrained co-clustering not only for extended must-link
and cannot-link constraints (i.e., both objects and attributes can be in-
volved), but also for interval constraints that enforce properties of co-
clusters when considering ordered domains. We propose an iterative co-
clustering algorithm which exploits user-defined constraints while mini-
mizing the sum-squared residues, i.e., an objective function introduced
for gene expression data clustering by Cho et al. (2004).

1 Introduction

In many application domains, the data analyst has to consider possibly large
data sets that record numerical values of given properties for given objects (say
objects X features matrices). Exploratory data analysis processes often make use
of clustering techniques to get insights about global patterns within the data, i.e.,
to propose partitions of objects and/or of properties such that a grouping qual-
ity measure is optimized. Many clustering methods can compute partitions but
suffer from the lack of explicit cluster characterization. This has motivated the
research on conceptual clustering, e.g., the co-clustering approaches described
in [6,2]. The objective of co-clustering is to compute co-clusters that are as-
sociations of (possibly overlapping) sets of objects with sets of properties. A
co-clustering algorithm computes simultaneously linked partitions on both rows
and columns. Co-clustering has been well studied in the context of gene ex-
pression data analysis because it provides valuable information about putative
regulation mechanisms and biological functions [5]. Intuitively, a co-cluster ex-
tracted from a gene expression data set (a matrix that records gene expression

* This paper summarizes the results presented in [8].

jfboulicaut
Zone de texte
Proc. 16th Italian Symp. on Advanced Database Systems SEBD 2008,
Mondello (PA), Italy, June 22-25, 2008. pp. 279-286.

values for given genes in given biological samples) denotes a set of genes with
similar expression profiles along its associated set of biological samples.

We are designing co-clustering methods that compute more relevant bi-
partitions thanks to the satisfaction of user-defined constraints. Given a co-
clustering algorithm, the analyst has generally a weak control on the clusters
he/she obtains. Typically, he/she can decide for ad-hoc parameter settings which
are quite operational and conceptually far from the declarative specification of
desired properties. A co-clustering algorithm tries to optimize an objective func-
tion (e.g., the sum of squared residues [6]) but it may also ensure that some
constraints that express his/her domain knowledge are satisfied (e.g., the fact
that some objects and/or properties have to be together or not). Enforcing con-
straints can lead to lower values for the objective functions, and it is clear that
combining objective function optimization and the satisfaction of other user-
defined constraints is challenging. The last 5 years, several researchers have
studied "single-sided" constrained clustering for simple types of primitive con-
straints, mainly the so-called must-link and cannot-link constraints (see [3] for
an up-to-date survey). To the best of our knowledge, constrained co-clustering
has been rarely studied. In [9], we have studied co-cluster discovery when at
least one of the dimensions is ordered and when interval constraints are defined
w.r.t. orders. A typical application concerns kinetic gene expression data anal-
ysis. In this case, objects denote gene expression level measurements performed
for successive time points. For an organism like Plasmodium Falciparum [4], we
see that during its life cycle, groups of genes are activated and then inhibited,
being somehow characteristic of development stages. Using interval constraint
can support the discovery of such groups from experimental data. However, the
method presented in [9] is dedicated to Boolean data analysis and it is based on
a two-step strategy that first extracts local patterns and then post-process them
to compute the co-clusters. Furthermore, the method from [9] cannot guaran-
tee the satisfaction of all the constraints in the computed bi-partition. In this
paper, we introduce a new constraint-based co-clustering approach which builds
a bi-partition directly from numerical matrices. The resulting bi-partition sat-
isfies the user-defined constraints while the algorithm has been optimizing the
objective function proposed in [6], namely the sum-squared residues.

2 A constrained co-clustering setting

Let X € R™*" denote a data matrix to be mined. In this paper, we will talk
about rows and columns instead of objects and properties. Let x;; be the ele-
ment corresponding to row ¢ and column j. For instance, x;; might contain the
expression level of gene 7 in the experimental condition j. Let x; and y; de-
note the vectors associated to, respectively, row i and column j. A co-clustering
C**! gver X produces simultaneously a set of k x [co-clusters (a partition C”
into k groups of rows associated to a partition C° into [groups of columns). To
obtain a first quality criterion, we first try to optimize a certain objective func-
tion. Let us assume an objective function f(X,C**!), an optimization constraint

Copt (f, X, CF*) is satisfied iff Ck*! = argmin%%kxl f(X, ¢) where Lerx: is the
the collection of all possible co-clusterings. One can be interested in other kinds
of constraints which are now defined.

Definition 1 (must-link /cannot-link). If rows i, and i, (resp. columns j,
and jp) are involved in a must-link constraint, denoted c—(iq,ip) (resp. c=(ja, b)),
they must be in the same cluster of CT™ =1ry,...,rg (resp C¢ = ¢, ..., ck). If rows
ia, Uy (resp. columns jo, and jp) are involved in a cannot-link constraint, denoted
c£(la, i) (resp. cx(Ja, Jb)), they cannot be in the same cluster of C™ =1r1,..., 1
(resp C¢ =c1,...,cx).

Let us now assume that all the elements j (resp. i) are ordered, i.e., Vi, jp
$.t. Ja < Jb, Ja < Jb (the same property holds for rows). In microarray data, the
order might be related to the sampling time of each DNA chip (say experiment)
j. Then, It could also be interesting to search for co-clusters which are coherent
with such an order. For this purpose, we can enforce an interval constraint.

Definition 2 (interval constraint). If an order (X) is defined over the col-
umn set (resp. row set), an interval constraint over this set, denoted cin(C°),
specifies that each cluster in C¢ has to be an interval: Yc € C¢, if jo, J» € ¢ then
vjc such that ja = jc = jb; jc €c.

We want a co-clustering algorithm which is able to take into account such
constraints while trying to optimize the retained objective function.

3 Using sum-squared residues

Our approach to constrained co-clustering is based on an iterative algorithm
that minimizes the sum of squared residues. This objective function has been
introduced in [6] for unconstrained co-clustering applied to gene expression data.
It is an adaptation of a measure designed for local pattern discovery [5].

Given a data matrix X € R™*" we search for a partition of X into k row
clusters, and [column clusters. Let I be the set of indices of the rows belonging
to a row cluster, and J the set of indices of the columns belonging to a column
cluster. The sub-matrix of X determined by I and J is called a co-cluster. We
use the definition of residue from [5].

Definition 3 (residue). Given an element x;; of X, the residue of x;; in the
co-cluster defined by the sets of indices I and J, and whose respective cardinalities
are |I| and |J|, is given by

hij = @iy — @1y — 2y + 21 (1)

> o ma Cmas Yo
where x1; = =S U1 = leefl 2 oand xyy = =L

[

Algorithm 1: ConsCoClust(X,k,l,M,.,M.,C..C.)

Input: Data matrix X, k, [, cannot-link sets C, and Cc, collections M, and M.
Output: Matrices R and C
Initialize R and C;
A=1;7=10""||X|*; t = 0; 0bj* = [|(I - RR")X(I — CCT)|[
while A > 7 do
t=t+1, X =({I-RR"XC; X = (I - RR"X;
foreach 1 < j <n do
L =0
if AM, € M. s.t. j € M, then
foreach j, € M, do
| L=LU{l <c<Il|#je|v'[ie] = ¢ Acr(fo,de) € Ce}s
end

P —1/2 . C 12
S eny X5 2X 112
[My |)

7' [M,] = argmin
else
L={1<c<lU|#jc |7 'lic] = cNex(f,de) € Ce};
7'[j) = argmin ., [| X5 = n X G|

end

end

Update C' using 7;

XR=RTX(I-CCT); X* =X(I-CC");

{Reassign rows};

obj* = ||(I = RR")X(I — CCT)||* A = |obj" — obj'™";

end

Let H = [h;j] € R™*™ denote the matrix of residues computed using the
previous definition. The objective function to be minimized is the sum of squared
residues [6] computed as follows:

WHIP =Y el =) > A (2)
I1,J

I,J i€l jel

We can rewrite the residue matrix in a more compact form. Let us introduce
the matrices R € R™** and C' € R™*! which are defined as follows: each element
(t,7) (1 <r <k)of Risequal to my "% if i is in co-cluster r (m, is the number
of rows in r), 0 otherwise. Each element (j,¢) (1 < ¢ <) of the matrix C is
equal to nc_l/2 if j is in ¢ (n. being the number of columns in ¢), 0 otherwise.
The residue matrix becomes:

H=(I-RR"X(I-cCcC™) (3)

Our approach uses the so-called “ping-pong” technique to process alterna-
tively (applying a k-means method) columns and rows. Thus, matrix C' is up-
dated only after determining the nearest column cluster for each column (and
similarly for rows). For that, we can decompose the objective function in terms

Algorithm 2: IntCoClust(X ,k,l)

Input: Data matrix X, k£ and [

Output: Matrices R and C

Initialize R, C, left, right; (%)

A=1;7=10""||X|*; t = 0; 0bj* = [|(I - RR")X(I - CCT)|[%
while A > 7 do

t=t+1, X =({I-RR"XC; X = (I - RR"X;
foreach 1 < ¢ <l do

stop = false;
while ¢ > 1 A stop = false A right[c] > left]c] do
j = left[c];

if [| X7 —nPXS |17 < [|1X5 —no'/2X9)|? then
Y17 = c¢—1; left|c] = left|c] + 1; right|c — 1] = right|c — 1| + 1;
ty 1;1 l 1; righ 1 igh 1] +1
else
| stop = true;
end
end
{Process right-side frontiers};

end

Update C' using 7;

XR=R'X(1-cchy; x¥ =x(I-cch,

{Reassign rows }(>*);

obj* = ||(I = RRT)X(I - CCT)||*; A= |obj" —obj'~"];

end

of columns. Given X¥ = (I — RRT)X, X¢ = (I — RRT)XC, and X =
(I - RRT)XCCT = XCCT, we can rewrite the objective function as follows:

l l
IXP = XP2 =3 > X5 = XTI1P =" > I1X5 —n2X|?

c=1j€eJ. c=1j€eJ.

We have a similar result for the rows of the matrix. Then, matrices X¢ and X
correspond to the cluster centroids for columns and rows respectively.

We introduce now our algorithms to solve the constrained co-clustering prob-
lem. More details about the algorithms, as well as the complexity analysis, can
be found in [8].

The transitivity of the must-link constraint is a well known property. We can
then transform a set of must-link constraints over rows into a collection M,. =
My, ..., My, where each M; is a set of rows involved by the same transitive
closure of must-link constraints. Let us denote M. the same set built for columns
and let C, and C. be the sets of cannot-link constraints for rows and columns
respectively.

Algorithm 1 enables to co-cluster data when conjunctions of must-link and
cannot-link constraints are given. It starts with some initialization (e.g., random
initialization) of matrices C' and R. During each iteration, the algorithm asso-
ciates each column (resp. row) to the nearest column (resp. row) cluster which

does not, introduce any cannot-link violation. If a column (resp. row) is involved
in a must-link constraint, the algorithm associates the whole set of columns
(resp. rows) involved in the transitive closure of this constraint to the column
(resp. row) cluster such that the average distance is minimum, and controlling
that there is no cannot-link constraint which is violated by this operation. Then
the algorithm updates the matrix C (resp. R) following the assignment schema
resulting from the previously described operations. This process is iterated until
the diminution of the objective value turns to be smaller than a user-defined
threshold 7.

Algorithm 2 enables to solve the satisfaction problem for the interval con-
straint (the part concerning row assignment (xx) is omitted here). The initial-
ization (x) of partitions interested by this constraint should produce a number
[(resp. k) of intervals over columns (resp. rows). Then, the assignment process
only considers the frontiers between intervals. More precisely, it first processes
the left frontier, then the right frontier iteratively. A column (resp. row) can
be assigned to the adjacent interval if the distance is smaller than the distance
computed over its original interval. In this case, we continue processing the re-
maining columns (resp. rows). When the left frontier and the right frontier of an
interval correspond to the same column (resp. row), the algorithm starts to pro-
cess the next frontier. If there is no necessity to reassign the column (resp. row),
the algorithm stops the current frontier processing and it skips to the following
one. Notice that, contrary to [9], the satisfaction of the interval constraint on
the computed bi-partition is here ensured.

4 Experimental validation

We have studied the impact of our constraint-based co-clustering approach on
two well-documented microarray data sets, plasmodium [4] and drosophila [1].
The first one concerns the transcriptome of the intraerythrocytic developmental
cycle of Plasmodium Falciparum, i.e., a causative agent of human malaria. The
data provide the expression profile of 3 719 genes in 46 biological samples. Each
sample corresponds to a time point of the developmental cycle: it begins with
merozoite invasion of the red blood cells, and it is divided into three main phases,
the ring, trophozoite and schizont stages. The second data set concerns the gene
expression of the Drosophila melanogaster during its life cycle [1]. The expression
levels of 3 944 genes are evaluated for 57 sequential time periods divided into
embryonic, larval and pupal stages.

Results for must-link et cannot-link constraints We measured the impact
of combining constraints over row sets and column sets on plasmodium data. For
this purpose, we selected a bi-partition among the unconstrained co-clustering
results. In particular, we chose the co-clustering results with the minimum ob-
jective function value obtained at the end of the iterative process. This value
is about 1.99x10*. Then, we generated 20 random sets of constraints involving
gene and biological conditions. The number of genes involved in these constraints

is about 5% to 10% of the total size of the gene set. For biological conditions,
this number is about 15% to 25%. As the initial partitions were randomly gener-
ated, our algorithm has been executed 20 times for each group of constraints. To
evaluate the agreement between the selected bi-partition and the ones discov-
ered by the constrained algorithm, we used the adjusted Rand index [7]. Results
obtained by using constraints have been compared with those obtained by the
unconstrained algorithm (see Table 1). We can see that using constraints gives

AR.[AR.[[|H|®? [Number of Tterations
Constrained |0.88[0.73[2.16 x10* 9.18
Unconstrained|0.70[0.43| 2.21x10* 9.35

Table 1. Adjusted Rand index, final objective function value and number of iterations.

rise to an obvious improvement of the agreement between the two bi-partitions
(AR, and AR, are the agreement indexes measured on rows and columns respec-
tively). As side effects, the average number of iterations needed for co-clustering
is slightly smaller. Moreover, specifying constraints enables to improve the final
value of the objective function. Indeed, the ||H||? value decreases by about 2%.
Notice that, since the sets of constraints are randomly selected, these experi-
ments include results achieved through constraints which can either positively
influence the results or do not introduce any quality improvement. However, as
average clustering results are good, we can conclude that our approach enables
to obtain more relevant bi-partitions according to prior biological knowledge.

Results for the interval constraint We evaluated the added value of interval
constraint satisfaction on drosophila data. Here, our goal is to rediscover the
three phases of the drosophila life cycle (i.e., we set the number of clusters
(k =1 = 3) and this is the only information we use). We compared the adjusted
Rand index for the constrained and unconstrained versions of our algorithm and
for a collection of 20 randomly initialized runs. The results (see Table 2), show
that using an interval constraint enables to find more accurately the three stages
of the drosophila life cycle (the measured improvement for the adjusted Rand
index is about 85%). Notice that the final value of the objective function for the
unconstrained version of the algorithm is better than for the constrained version.
It means that the structure which our algorithm is able to discover is unlikely
to be the global optimum for this data set. Despite of this, the unconstrained
algorithm has never managed to find intervals.

5 Conclusion

Improving co-cluster relevancy remains a difficult task in real-life exploratory
data analysis processes. First, it is hard to capture subjective interestingness

AR [[H|? [Number of Iterations
Constrained |0.76(8.23x10% 11.60
Unconstrained|0.41 |7.73x10* 14.60

Table 2. Adjusted Rand index, final objective function value and number of iterations.

aspects, e.g., the analyst’s expectation given her/his domain knowledge. Next,
when these expectations can be declaratively specified, using them during bi-
partition computation is challenging. We have proposed a new constrained co-
clustering algorithm. We explained how to exploit user-defined constraints like
must-link, cannot-link, and interval constraints when co-clustering numerical
matrices. Applications on kinetic gene expression data analysis have been consid-
ered. A short-term perspective is to combine properly the strategies for exploiting
must-link and cannot-link constraints one one hand, and interval constraints on
another hand. We may also study the possibility to discover overlapping co-
clusters.

Acknowledgements. This research is partially funded by EU contracts 1Q
IST-FP6-516169 and GeoPKDD IST-FP6-014915.

References

1. M.N. Arbeitman, E.E. Furlong, F. Imam, E. Johnson, B.H. Null, B.S. Baker, M.A.
Krasnow, M.P. Scott, R.W. Davis, and K.P. White. Gene expression during the life
cycle of drosophila melanogaster. Science, 297:2270-2275, september 2002.

2. A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D.S. Modha. A generalized
maximum entropy approach to bregman co-clustering and matrix approximation.
Journal of Machine Learning Research, 8:1919-1986, 2007.

3. S. Basu, I. Davidson, and K. Wagstaff (Editors). Constrained Clustering: Advances
in Algorithms, Theory and Applications. Chapman & Hall/CRC Press, Data Mining
and Knowledge Discovery Series, 2008. In press.

4. 7. Bozdech, M. Llinas, B. Lee Pulliam, E.D. Wong, J. Zhu, and J.L. DeRisi. The
transcriptome of the intraerythrocytic developmental cycle of plasmodium falci-
parum. PLoS Biology, 1(1):1-16, October 2003.

5. Y. Cheng and G. M. Church. Biclustering of expression data. In Proceedings ISMB
2000, pages 93—-103, San Diego, USA, 2000. AAAT Press.

6. H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum sum-squared residue co-
clustering of gene expression data. In Proceedings SIAM SDM 200/, Lake Buena
Vista, USA, 2004.

7. L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193—
218, 1985.

8. R. G. Pensa and J-F. Boulicaut. Constrained co-clustering of gene expression data.
In Proceedings SIAM SDM 2008, pages 25-36, Atlanta, GA, USA, 2008.

9. R. G. Pensa, C. Robardet, and J-F. Boulicaut. Towards constrained co-clustering
in ordered 0/1 data sets. In Proceedings ISMIS 2006, volume 4203 of LNCS, pages
425-434, Bari, Italy, 2006. Springer.

