
Constraint-Based Mining of Sequential Patterns
over Datasets with Consecutive Repetitions�

Marion Leleu1,2, Christophe Rigotti1,
Jean-François Boulicaut1, and Guillaume Euvrard2

1 LIRIS CNRS FRE 2672
Bâtiment Blaise Pascal, INSA Lyon, 69621 Villeurbanne Cedex, France

{crigotti,jfboulic}@lisisun1.insa-lyon.fr
2 Direction de la Stratégie - Informatique CDC, 113 rue Jean-Marin Naudin, F-92220

Bagneux, France
{marion.leleu,guillaume.euvrard}@caissedesdepots.fr

Abstract. Constraint-based mining of sequential patterns is an active
research area motivated by many application domains. In practice, the
real sequence datasets can present consecutive repetitions of symbols
(e.g., DNA sequences, discretized stock market data) that can lead to a
very important consumption of resources during the extraction of pat-
terns that can turn even efficient algorithms to become unusable. We
propose a constraint-based mining algorithm using an approach that en-
ables to compact these consecutive repetitions, reducing drastically the
amount of data to process and speeding-up the extraction time. The
technique introduced in this paper allows to retain the advantages of
existing state-of-the-art algorithms based on the notion of occurrence
lists, while permitting to extend their application fields to datasets con-
taining consecutive repetitions. We analyze the benefits obtained using
synthetic datasets, and show that the approach is of practical interest
on real datasets.

Keywords: constraint-based mining, sequential pattern, generalized oc-
currence

1 Introduction

Sequential pattern mining has been introduced in 1995 [1]. It concerns pattern
discovery (e.g., regularities) from ordered data, typically sequence databases.
It has many applications, e.g., customer purchase analysis, Web Usage Mining,
DNA sequence analysis. Looking for efficient algorithms has received a lot of
attention (e.g., [8,11,9,5,10,12,14,13]). Each of these algorithms has its own pros
and cons. Their efficiency depends on the characteristics of the data and on the
kind of user-defined selection criteria, i.e., the constraints that must be satisfied
by the extracted patterns. Several available algorithms are based on the so-
called occurrence lists, i.e., lists that contain the location of the patterns in the
� This research is partially funded by the European Commission IST Programme -

Future and Emergent Technologies, cInQ project (IST-2000-26469).

N. Lavrač et al. (Eds.): PKDD 2003, LNAI 2838, pp. 303–314, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

304 Marion Leleu et al.

data. This technique has been proved very useful for frequent pattern extraction
(e.g., [8,12,14,3,13]).

Independently, the use of user-defined constraints to reduce the search space
during sequential pattern extraction has been developed (e.g., [11,9,4,2]). In-
deed, it has also been integrated in the occurrence list approach in the cSpade
algorithm [13], resulting in one of the most efficient algorithms proposed for
constraint-based mining of sequential patterns.

We have two main application domains for which we need efficient sequential
pattern algorithms: financial data (stock market data) analysis for CDC (a ma-
jor financial company in France) and DNA sequence database analysis. When
considering the cSpade approach on these data, we understood that the ben-
efits of the use of occurrence lists are lost when mining sequences containing
consecutive repetitions of symbols. It comes from an explosion of the number of
occurrences due to the repetition of the symbols. We recently proposed to han-
dle efficiently the repetitions in the occurrence lists [7] when considering only a
minimal frequency constraint. In this paper, we present how to generalize the
notion of occurrence to perform efficient constraint-based mining on collections
of sequences that contain repetitions. From a practical point of view, this leads
to a technique that retains the advantages of the cSpade approach, while being
able to address efficiently a broader scope of applications. The key idea is to use
a single generalized occurrence to represent several occurrences while keeping
enough information for the mining process.

This paper is organized as follows. Section 2 recalls the constraint-based
sequential pattern mining problem and gives an abstract formulation of an algo-
rithm for sequential pattern mining using occurrence lists. The notion of general-
ized occurrence is introduced in Section 3, and the corresponding modifications
of the mining algorithm is presented. The practical impact of the use of gener-
alized occurrences is demonstrated by means of experiments in Section 4. We
conclude in Section 5.

2 Problem Statement and Abstract Algorithm

2.1 Constrained Sequential Pattern

The problem is to mine all frequent sequential patterns, verifying some user-
defined constraints, that can be found in a sequence database. The constraints
considered in this paper are the so-called minimum and maximum gap con-
straints, that enable to specify the minimum or maximum time interval between
the occurrences of two events inside a pattern. Another similar constraint con-
sidered is the time window constraint, that enables to limit the maximum time
between the first event and the last event of a pattern. Basically, the problem can
be presented as follows: Let I = {i1, i2, . . . , im} be a set of m distinct items. An
event (also called itemset) of size l is a non empty set of l items from I : (i1i2...il).
A sequence α of length L is an ordered list of L events α1, . . . , αL, denoted as
α1 → α2 → ... → αL. A database is composed of sequences, where each se-
quence has a unique sequence identifier (sid) and each event of each sequence

Constraint-Based Mining of Sequential Patterns 305

has a temporal event identifier (eid) called timestamp. For a sequence in the
database, each eid associated to an event is unique and if an event ei precedes
event ej in a sequence, then the eid of ej must be strictly greater than the eid
of ei. A sequential pattern (or pattern) is a sequence. Due to the lack of space,
we considered only single-item events in patterns, that is patterns composed of
events of size 1. The extension to pattern composed of events of size greater than
1 is straightforward and can be found in an extended version of the paper [6].

We are interested in the so-called constrained sequential patterns defined
as follows. A sequence sa = α1 → α2 → . . . → αn is called a subsequence of
another sequence sb = α′

1 → α′
2 → . . . → α′

m if and only if there exists integers
1 ≤ i1 < i2 < . . . < in ≤ m such that α1 ⊆ α′

i1
, α2 ⊆ α′

i2
, . . ., αn ⊆ α′

in
.

Let supMin be a positive integer called absolute support threshold, a pattern p
verifies the minimum frequency constraint in a database D if p is a subsequence
of at least supMin sequences of D. In this paper, we also use interchangeably the
relative support threshold expressed in the percentage of the number of sequences
of D. Let gapMin be the fixed value of the minimum gap constraint. A pattern
p = α1 → α2 → . . . → αn verifies the minimum gap constraint if and only if, for
all αi, i = 1 . . . n−1, eid(αi+1)−eid(αi) ≥ gapMin. Similarly, let gapMax be the
fixed value of the maximum gap constraint. Pattern p verifies the maximum gap
constraint if and only if, for all αi, i = 1 . . . n−1, eid(αi+1)−eid(αi) ≤ gapMax.
Now, let winMax be the fixed value of the time window constraint. Pattern p
verifies this constraint, if and only if eid(αn) − eid(α1) ≤ winMax.

2.2 Abstract Mining Algorithm

We present in this section an abstract algorithm corresponding to the general
principle used in algorithms based on the use of occurrence lists for mining
sequential patterns (e.g., [8,12,14,3,13]). The algorithm repeats two operations:
a generation of candidate patterns and a support counting step. Let us introduce
some needed concepts. A pattern with k items is called a k-pattern. A prefix of a
k-pattern z is a subpattern of z constituted by the k − 1 first items of z and its
suffix corresponds to its last item. We extend the notion of prefix and suffix to
occurrence. Let y = e1 → e2 → . . . → ek−1 → ek be an occurrence of a k-pattern
z, then prefix(y) = e1 → e2 → . . . → ek−1 and suffix(y) = ek.

The algorithm uses two frequent k-patterns z1 and z2 having the same (k−1)-
pattern as prefix to generate a (k + 1)-pattern z. This operation is denoted as
merge(z1, z2) and generates a single k-pattern: z = z1 → suffix(z2). The sup-
port counting for the newly generated pattern is not made by scanning the whole
database. Instead, the algorithm has stored in specific lists, called occLists, the
positions where z1 and z2 occur in the database. It then uses these two lists de-
noted occList(z1) and occList(z2) to determine where z occurs. Then occList(z)
allows to compute directly the support of z, by counting the number of distinct
sids present in this list. The computation of occList(z) is a kind of join and is
denoted join(z1, z2). The abstract algorithm is presented as Algorithm 1.

306 Marion Leleu et al.

Algorithm 1 (Abstract Mining Algorithm)
Input: a database of sequences and a sup-
port threshold.
Output: the frequent sequential patterns
contained in the database.

Use the database to compute:
- F1 the set of all frequent items
- occList(z) for all element z of F1

let i := 1
while Fi �= ∅ do

let Fi+1 := ∅
for all z1 ∈ Fi do

for all z2 ∈ Fi do
if z1 and z2 have the same prefix then

let z := merge(z1, z2)
let occList(z) := join(occList(z1), occList(z2))
Use occList(z) to determine if z is frequent
if z is frequent then

Fi+1 := Fi+1 ∪ {z}
fi

fi
od

od
i := i + 1

od
output

⋃
1≤j<i

Fj

Fig. 1. Abstract mining algorithm using occurrence lists.

3 Generalized Occurrences and GoSpec Algorithm

3.1 Constrained Generalized Occurrences

The structure of a constrained generalized occurrence list is designed to reduce
the size of the occurrence lists by representing several occurrences with a single
more general one. In case of data presenting consecutive repetitions of items,
this leads to an important gain in term of memory space used, and since the
lists proceeded by the join operation are shorter, it results also in the reduction
of the overall execution time.

For example, let us consider the following toy database containing three se-
quences. In these sequences the events are located at consecutive timestamps
(i.e., 1,2,3, . . .) and each sequence begin at timestamp 1.
Sequence 1:

{A}, {A}, {A}, {A}, {A}, {B}, {B}, {B}, {B, C}, {B, C}, {B, C}, {B, C},
{B}, {B}, {B}
Sequence 2:

Constraint-Based Mining of Sequential Patterns 307

{B}, {A, B}, {A, B}, {B}, {B, C}, {B, C}, {B, C}, {B, C}, {B, C}, {B, C},
{C}, {C}, {C}, {C}
Sequence 3:

{}, {A}, {}, {B}, {B}, {B}, {B}, {B, C}, {B, C}, {C}, {C}, {C}, {C}, {C}
A classical representation of occurrence lists like the one used by cSpade [13]

is depicted in Figure 2, in the left tables of each three areas. These tables rep-
resent the occurrence lists of cSpade for patterns A, B, C, A → B, A → C and
A → B → C, with supMin = 2, gapMin = 2, gapMax = 5 and winMax = 10.
In the tables, the column sid corresponds to the identifier of the sequence in
which the pattern occurs, eid corresponds to the timestamp of the last event of
this occurrence, and diff corresponds to the difference between the timestamps
of the first and the last event of the occurrence (used by cSpade to check the
time window constraint).

We propose a notion of constrained generalized occurrence (generalized occur-
rence for short) to compact such consecutive occurrences. This notion is straight-
forward for pattern of size 1, but not so trivial for longer patterns since it has
to enable the handling of the various constraints. For a pattern z, the form of a
generalized occurrence is 〈sid, tBeg, [min, max], gmax〉, and contains:

– An identifier sid that corresponds to identifier of a sequence where pattern
z occurs.

– A timestamp tBeg that corresponds to the timestamp of an occurrence of
the first event of the pattern z (the detailed construction of tBeg will be
given in Algorithm 2).

– An interval [min,max] corresponding to eids of consecutive occurrences of
the last event of pattern z.

– A value gmax that indicates the timestamp of the last occurrence of the last
event of pattern z respecting the gapMax constraint. If no such occurrence
exists then gmax is set to −1.

Examples of generalized occurrences for the toy database are given in Fig-
ure 2, in the right tables of each three areas. In the case of pattern B, it is
possible to reduce its 10 consecutive occurrences in the first sequence to a single
generalized occurrence 〈1, 6, [6, 15], 15〉, where the interval [6,15] compacts all 10
eids. It should be noticed that for patterns of size 1 the fields tBeg and gmax
are useless. However this is not the case for longer patterns. For example, let
us consider the last generalized occurrence of the constrained generalized oc-
currence list of pattern A → B. This generalized occurrence is 〈3, 2, [4, 9], 7〉,
indicating that it appears in sequence 3 and starts at timestamp 2. The interval
[4,9] means that it represents several occurrences ending from 4 to 9. The gmax
value of 7 notifies that occurrences ending from 4 to 7 satisfy the maxGap con-
straint, while for occurrences ending strictly after timestamp 7 only the prefix
of the occurrence satisfies maxGap.

In the case of a generalized occurrence that does not represent any occurrence
that satisfy the maxGap constraint for all its events, but that represents only
occurrences satisfying this constraint up to this its last event, then the gmax

308 Marion Leleu et al.

Fig. 2. Occurrence lists vs. Generalized occurrence lists for patterns A, B, C, A → B,
A → C and A → B → C, with supMin = 2, gapMin = 2, gapMax = 5 and winMax =
10.

value is set to -1 (as for example in the generalized occurrence 〈3, 2, [8, 12], −1〉
of pattern A → C in Figure 2).

3.2 Dedicated Join Algorithm

The GoSpec Algorithm is an instance of the abstract algorithm 1 using a join
designed for the generalized occurrence lists.

The join process is called when the merge operation has been done. It com-
putes the constrained generalized occurrence list of a candidate pattern z, from
the occLists of two generator patterns z1 and z2 having the same prefix.

Two different procedures are called depending on the level of the extraction
process, JoinLevel2 (Algorithm 4) and Join (Algorithm 3). The first one is
a specific algorithm dedicated to the particular case of a 2-pattern candidate
and the second one to the general case of a k-pattern candidate with k > 2.
These two algorithms use a common function, LocalJoin (Algorithm 2), that
computes a generalized occurrence v = 〈sid, tBeg, [min, max], gmax〉 of z from
a single generalized occurrence of z1 and a single generalized occurrence of z2.

The LocalJoin(Algorithm 2), first verifies that the input generalized occur-
rences satisfy necessary conditions to be joined, performing the tests of line
3 and that the two generalized occurrences are from a same sequence, that is
sid1 = sid2 (line 4). One line 3, the first comparison verifies that there exists
at least one suffix of an instance of 〈sid2, tBeg2, [min2, max2], gmax2〉 that fol-
lows the first suffix of an instance of 〈sid1, tBeg1, [min1, max1], gmax1〉 and that
satisfies the gapMin constraint. The second comparison checks that there ex-
ists at least one suffix of an instance of 〈sid2, tBeg2, [min2, max2], gmax2〉 that
satisfies the winMax constraint wrt. tBeg1. The last comparison ensures that

Constraint-Based Mining of Sequential Patterns 309

Algorithm 2 (LocalJoin)
Input: Two generalized occurrences
〈sid1, tBeg1, [min1, max1], gmax1〉
and 〈sid2, tBeg2, [min2, max2], gmax2〉
Output: 〈v, add〉, where v = 〈sid, tBeg, [min, max], gmax〉 and add is
a boolean value that is false if v cannot be created.
1. let add := false
2. let v := null
3. if (min1 + gapMin ≤ max2) and (tBeg1 + winMax ≥ min2)

and (min1 ≤ gmax1)then
4. if (sid1 = sid2) then
5. let sid := sid1

6. let tBeg := tBeg1

7. find min the minimum element x of [min2, max2]
such that x ≥ min1 + gapMin

8. find max the maximum element x of [min2, max2]
such that x ≤ tBeg1 + winMax

9. find gmax the maximum element x of [min2, max2]
such that x ≤ gmax1 + gapMax

10. fi
11. if (min and max exist) and (min ≤ max) then
12. if (gmax not exists) then let gmax := −1
13. else if (gmax > max) then
14. let gmax := max fi
15. fi
16. let v := 〈sid, tBeg, [min, max], gmax〉
17. let add := true
18. fi
19.fi
20.output 〈v, add〉

Algorithm 3 (Join)
Input: occList(z1) and occList(z2), generalized occurrence lists
of two patterns that share a same prefix.
Used subprograms: Algorithm 2
Output: a new occList

Initialize GoIdList to the empty list.
1.for all occ1 ∈ GoIdList(z1) do
2. for all occ2 ∈ GoIdList(z2) do
3. let 〈v, add〉 := LocalTemporalJoin(occ1, occ2)
4. if add then
5. Insert v in occList
6. fi
7. od
8.od
9.output occList

Fig. 3. LocalJoin and Join algorithms.

310 Marion Leleu et al.

〈sid1, tBeg1, [min1, max1], gmax1〉 has at least one instance that satisfies the
gapMax constraint.

Lines 5 to 9 generate a new generalized occurrence. min is the timestamp
of the earliest suffix of an instance of 〈sid2, tBeg2, [min2, max2], gmax2〉 that
follows the earliest suffix of an instance of 〈sid1, tBeg1, [min1, max1], gmax1〉 and
that verifies the minimum gap constraint. In a same way, max is the timestamp of
the latest suffix of an instance of 〈sid2, tBeg2, [min2, max2], gmax2〉 that verifies
the time window constraint wrt tBeg1. gmax indicates the timestamp of the
latest suffix of an instance of 〈sid2, tBeg2, [min2, max2], gmax2〉 that can form
an occurrence of v that verifies gapMax.

This LocalJoin algorithm is called by Join (Algorithm 3) that generates a
new occList from the occLists of two generator patterns z1 and z2. The Algo-
rithm 3 iterates on the elements of occList(z1) and occList(z2). For each pair
(occ1,occ2) a new constrained generalized occurrence is generated when possible
using LocalJoin. Algorithm 3 is the general join operation used for k-patterns
when k > 2. A dedicated join is needed to generate the occurrence lists of 2-
patterns (i.e., z1 and z2 contain a single item. It is called JoinLevel2 and is
presented as Algorithm 4. Contrarly to the general Join, JoinLevel2 performs
several calls to the LocalJoin procedure. Indeed, the instances of the gener-
alized occurrence 〈sid1, tBeg1, [min1, max1], gmax1〉 must be proceeded sepa-
rately because they correspond, in the data, to different starting timestamps
of the 1-pattern z1. Thus, several calls are made on all generalized occurrences
〈sid1, p, [p, p], p〉 with p varying between the values min1 and max1.

Proofs of the correctness of the representation using generalized occurrences
(and the corresponding join process) can be found in [6].

Algorithm 4 (JoinLevel2)
Input: occList(z1), occList(z2)
Used subprograms: Algorithm 2
Output: a new occList

Initialize occList to the empty list.
1.for all 〈sid1, tBeg1, [min1, max1], gmax1〉 ∈ occList(z1) do
2. for all 〈sid2, tBeg2, [min2, max2], gmax2〉 ∈ occList(z2) do
3. for all p ∈ [min1 , max1] do
4. let 〈v, add〉 := LocalTemporalJoin(〈sid1, p, [p, max1], p〉,

〈sid2, tBeg2, [min2, max2], gmax2〉)
5. if add then
6. Insert v in occList
7. fi
8. od
9. od
10.od
11.output occList

Fig. 4. JoinLevel2 algorithm.

Constraint-Based Mining of Sequential Patterns 311

Fig. 5. Experiments using GoSpec and cSpade.

4 Experimental Results

In this section, we present experimental results and compare the behaviors of
GoSpec and of cSpade [13] (one of the most efficient algorithm proposed in the
literature and based on occurrence lists).

Both algorithms have been implemented using Microsoft Visual C++ 6.0,
with the same kind of low level optimization to allow a fair comparison. All
experiments have been performed on a PC with 196 MB of memory and a 500
MHz Pentium III processor under Microsoft Windows 2000.

4.1 Experiments on Synthetic Datasets

The synthetic dataset has been generated using the Dataquest generator of
IBM [1] and the following parameters: C10-T2.5-S4-I1.25-D1K over an alpha-
bet of 100 items (called set1). It contains 1000 sequences with an average size of

312 Marion Leleu et al.

10 events per sequences (see [1] for more details on the generator parameters).
In this dataset, the time interval between two time stamps is 1, and there is one
event per time stamp.

In order to have datasets presenting parameterized consecutive repetitions on
certain items, we performed a post-processing on set1 to add such repetitions.
Each item founded in an event of a sequence has a probability fixed to 10% to
be repeated. When an item is repeated, we simply duplicated it in the next i
consecutive events. If the end of the sequence is reached during the duplication
process the sequence is not extended (no new event is created) and thus, the
current item is not completely duplicated. We denote set1 r{i} the dataset ob-
tained with a repetition parameter of value i. For the sake of uniformity, set1 is
denoted set1 r0. The post-processing on set1 r0 leads to the creation of 5 new
datasets set1 r1,. . ., set1 r5.

The three first graphs (top-left, top-right and middle-left) of Figure 5 show
the results of the extractions performed on datasets set1 r1, set1 r2, . . ., set1 r5
with the following constraints: a support threshold fixed to 2.5%, a window time
limited to 6, a minimum gap fixed to 2 and a maximum gap fixed to 4.

The top-left graph (Figure 5) gives the size of the cSpade and GoSpec occur-
rences lists (in number of elements) for extraction performed on files set1 r1, . . .,
set5 r5. As expected, the total number of occurrences used by cSpade is greater
than the number of constrained generalized occurrences used by GoSpec, and
this reduction increases with the number of repetitions. The top-right graph
shows that this reduction has a direct impact on the join costs (in term of num-
ber of calls to LocalJoin), that results on an important reduction of the total
execution time of the extractions as shown in the middle-left graph of Figure 5.

The middle-right graph of Figure 5 completes these results with the extrac-
tion times on datasets set1 r0 and set1 r5. It shows that the execution time to
find a given number of patterns remains quite the same in presence of repetitions
for GoSpec.

4.2 Experiments on Real Datasets

The first real dataset is a financial dataset provided by the CDC financial com-
pany (Caisse des Dépots et Consignations) and contains the variations of stock
prices over one year. The discretized data results in a set (called set2) of 2830 se-
quences with an average length of 15 events per sequence. These sequences have
been built from an alphabet of 17 items. The extractions have been performed
using the extended version of the algorithm ([6]), that is without any limitation
on the number of item per event composing the generated patterns. The follow-
ing constraints have been used: winMax = 10, maxGap = 4 and minGap = 2.
The bottom-left graph of Figure 5 represents the total execution time of both
cSpade and GoSpec for minimum support thresholds varying from 25% to 50%
and shows that GoSpec offers a significant gain wrt. cSpade.

The second real dataset corresponds to a dataset of DNA sequences called
set3. It contains 1778 sequences with an average length of 102 events composed
by only one item per event over the nucleic alphabet {A,T,G,C}. The extractions

Constraint-Based Mining of Sequential Patterns 313

have been performed using a window time constraint sets to 6, a maximum gap
constraint of 3, no minimum gap constraint, and a minimum support threshold
varying from 5% to 25%. The bottom-left graph of Figure 5 illustrates the total
execution time used by the extractions and shows the advantages of GoSpec in
practice on this second kind of data.

5 Conclusion

In this paper we presented an algorithm that enables to manage efficiently the
constraint-based mining task when the sequential databases contain consecutive
repetitions of their items. Such a situation can appear in several domains (e.g.,
discretized quantitative time series and DNA sequences). This can cause an
explosion of the number of pattern occurrences and thus to an important loss of
efficiency for algorithms based on an occurrence list approach (e.g., [8,12,14,3,13],
while this algorithm family has shown its interest in many situations (e.g., low
support mining and active constraint handling)). The algorithm presented in this
paper, extends this family to tackle with these domains. It is based on the notion
of constrained generalized occurrences, that have the particularity to compact
several consecutive occurrences of patterns while keeping enough information for
a constraint-based mining process. We showed by means of experiments , that
the gain in term of memory space and execution time is important and that
it increases with the number of consecutive repetitions contained in the input
sequences.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of the 11th Inter-
national Conference on Data Engineering (ICDE’95), pages 3–14, Taipei, Taiwan,
March 1995. IEEE Computer Society.

2. H. Albert-Lorincz and J.-F. Boulicaut. Mining frequent sequential patterns under
regular expressions: a highly adaptive strategy for pushing constraints. In Proceed-
ings of the Third SIAM International Conference on Data Mining SDM 2003, San
Francisco, USA, May 2003.

3. J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using
bitmap representation. In Proc. of the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, July 2002.

4. M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern mining with
regular expression constraints. In Proc. of the 25th International Conference on
Very Large Databases (VLDB’99), pages 223–234, Edinburgh, United Kingdom,
September 1999.

5. J. Han, J. Pei, B. Han Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu. Freespan:
Frequent pattern-projected sequential pattern mining. In Proc. 2000 Int. Conf.
Knowledge Discovery and Data Mining (KDD’00), pages 355–359, Boston, MA,
USA, August 2000.

6. M. Leleu, C. Rigotti, J.-F. Boulicaut, and G. Euvrard. Constrained-based mining
of sequential patterns over datasets with consecutive repetitions. Technical report,
LIRIS, INSA Lyon, Bat. Blaise Pascal, 69621 Villeurbanne Cedex, France, 2003.

314 Marion Leleu et al.

7. M. Leleu, C. Rigotti, J.-F. Boulicaut, and G. Euvrard. Go-spade: Mining sequen-
tial patterns over datasets with consecutive repetitions. In Proc.2003 Int. Conf.
Machine Learning and Data Mining (MLDM’03), Leipsig, Germany, July 2003.

8. H. Mannila, H. Toivonen, and A. Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, 1(3):259–298, November 1997.

9. F. Masseglia, F. Cathalat, and P. Poncelet. The PSP approach for mining sequen-
tial patterns. In Proc. of the 2nd European Symposium on Principles of Data Min-
ing and Knowledge Discovery in Databases (PKDD’98), pages 176–184, Nantes,
France, September 1998. Lecture Notes in Artificial Intelligence, Springer Verlag.

10. J. Pei, B. Han, B. Mortazavi-Asl, and H. Pinto. Prefixspan: Mining sequential
patterns efficiently by prefix-projected pattern growth. In Proc. of the 17th Inter-
national Conference on Data Engineering (ICDE’01), 2001.

11. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and per-
formance improvements. In Proc. of the 5th International Conference on Extending
Database Technology (EDBT’96), pages 3–17, Avignon, France, September 1996.

12. M. Zaki. Efficient enumeration of frequent sequences. In Proc. of the 7th Interna-
tional Conference on Information and Knowledge Management (CIKM’98), pages
68–75, November 1998.

13. M. Zaki. Sequence mining in categorical domains: incorporating constraints. In
Proc. of the 9th International Conference on Information and Knowledge Manage-
ment (CIKM’00), pages 422–429, Washington, DC, USA, November 2000.

14. M. Zaki. Spade: an efficient algorithm for mining frequent sequences. Machine
Learning, Special issue on Unsupervised Learning, 42(1/2):31–60, Jan/Feb 2001.

	1 Introduction
	2 Problem Statement and Abstract Algorithm
	2.1 Constrained Sequential Pattern
	2.2 Abstract Mining Algorithm

	3 Generalized Occurrences and {\em GoSpec} Algorithm
	3.1 Constrained Generalized Occurrences
	3.2 Dedicated Join Algorithm

	4 Experimental Results
	4.1 Experiments on Synthetic Datasets
	4.2 Experiments on Real Datasets

	5 Conclusion
	References

