
Frequent Closures as a Concise Representation
for Binary Data Mining

Jean-Frangois Boulicaut and Artur Bykowski

Laboratoire d'Ingenierie des Systemes d'Information
Institut NationaJ des Sciences Appliquees de Lyon, Batiment 501

F-69621 Villeurbanne cedex, France
{Jeem-Fremcois.Boulicaut,Artur.Bykowski}01isi.insa-lyon.fr

Abstract. Frequent set discovery from binary data is an important
problem in data mining. It concerns the discovery of a concise repre
sentation of large tables from which descriptive rules can be derived,
e.g., the popular association rules. Our work concerns the study of two
representations, namely frequent sets and frequent closures. N. Pasquier
and colleagues designed the close algorithm that provides frequent sets
via the discovery of frequent closures. When one mines highly corre
lated data, apriori-based algorithms clearly fail while close remains
tractable. We discuss our implementation of close and the experimental
evidence we got from two real-life binary data mining processes. Then,
we introduce the concept of almost-closure (generation of every frequent
set from frequent almost-closures remains possible but with a bounded
error on frequency). To the best of our knowledge, this is a new concept
and, here again, we provide some experimental evidence of its add-value.

1 Context and Motivations

One of the obvious hot topics of data mining research in the last five years has
been frequent set discovery from binary data. It concerns the discovery of set
of attributes from large binary tables such that these attributes are true within
a same line often enough. It is then easy to derive rules that describe the data
e.g., the popular association rules [2] though the interest of frequent sets goes
further [8]. In this paper, we discuss the computation and the use of frequent
sets considered as an interesting descriptive representation of binary table for
typical rule mining processes.

When looking for a generic statement, it is possible to formulate a data
mining task as a query over an intensionally defined collection of patterns [4].
Given a schema R for a database, let (P R , £, V) denote the pattern domain
where VYL is a language of patterns, £ is an evaluation function that defines
pattern semantics, and V is a set of result values. Given r, an instance of R, 8
maps each 6 € P R to an element of V. Then, a mining task is the computation of
the subset of T'R that fulfil interestingness requirements. This can be formalized
as the computation of T/i(r, P R , q) = [6 & VR \ q{T, 9) is true} where predicate q
indicates whether a sentence is considered interesting. Typically, this predicate is

T. Terano, H.Liu, and A.L.P. Chen (Eds.); PAKDD 2000, LNAI 1805, pp. 62-73 , 2000.
© Springer-Verlag Berlin Heidelberg 2000

Frequent Closures as a Concise Representation for Binary Data Mining 63

A
1
1
1
0
1
0

B
1
0
1
1
1
0

c
1
1
1
1
1
0

D
1
0
1
0
0
0

E
1
0
0
0
0
1

£.support(C, r) = 5/6 = 0.83
£.support(AC, r) = 4/6 = 0.67
f .support(yl => C, r) = 0.67
f .confidence(yl =i> C, r) = 4/4 = 1
f .confidence(C => A, r) = 4/5 = 0.8

Fig. 1. A binary dataset r and the behavior of some patterns

a conjunction of constraints that involves the evaluation function. This approach
has been more or less explicitely used for various data mining tasks [13].

Example 1. Given a schema R = { J 4 I , . . . ,.A„} of attributes with domain {0,1}
and a relation r over R, the support of a set X C R, ^.support(X,r), denotes the
fraction of rows of r that have a 1 in each column of X. FVequent set discovery
in r consists in computing every subset from R such that its support is higher
than a given threshold a. Here, P R is 2^, V is [0,1] and the predicate q is
.S'.support(^, r) > a. For instance, in Figure 1, supports of {C} and {A,C} in a
dataset are given. Notice that we often use a string notation (e.g., AC) to denote
a set of attributes. D

An explicit interestingness evaluation of all the patterns of P R in a dataset is not
tractable in general. Though an exponential search space is concerned, frequent
sets can be computed in real-life large datasets thanks to the support threshold
on one hand and safe pruning criteria that drastically reduces the search space
on the other hand (e.g., the so-called apriori trick [2]). However, there is still an
active research on algorithms, not only for the frequent set discovery task when
apriori-based algorithms fail (e.g., in the case of highly correlated data) but
also for new related mining tasks, e.g., the discovery of maximal (long) frequent
sets only [3].

Example 2. Association rules have been extensively studied since their intro
duction in [1]. Given the schema R={yl i , . . . ,yl„}, an association rule is an
expression X =^ y where X C R and Y € R \ X. P R is the (finite) collection
of such sentences. The typical "behavior" of these rules in an instance r over
R is evaluated by means of two interestingness measures called "support" or
"confidence". The support of a rule X =^Y is equal to the support oi XUY (as
defined in Example 1) while its confidence is equal to its support divided by the
support of X. V is [0,1] x [0,1] and the evaluation function provides the support
(5.support) and the confidence (£^.confidence). The "classical" association rule
mining task concerns the discovery of rules whose support and confidence are
greater or equal to user-given thresholds, resp., a and </>. The predicate q is de
fined as £.support(^, v) > a A £.confidence(0, r) > (j>. For example, with a=0.b
and (^=0.9, A =^ C is discovered in the data of Figure 1 while C =^ A'ls not. •

In the case of association rules, left-hand and right-hand sides denote conjunc
tions of properties. We can consider the case of generalized rules where other
boolean operators, like negation and disjunction, are allowed.

64 J.-F. Boulicaut and A. Bykowski

Example 3. The rule A/\-^E => C is an example of a generalized rule which might
be extracted from the data in Figure 1. Its support is 0.5 and its confidence is
1. Mining such rules is very complex and we do not know any efficient strategy
to explore the search space for generalized rules. D

As we are interested in very large datasets, an important issue is whether the
explicit interestingness evaluation of a collection of patterns remains tractable.
The answer can come from the computation of concise representations as defined
in [8]. Given a database schema R, a dataset r and a language of patterns V-R.,
a concise representation for r and 'PR, is a structure that makes possible to
answer queries of the form "How many times p € T'R occur in r" approximately
correctly and more efficiently than by looking at r itself. By the way, some concise
representations might enable to provide exact answers.

This paper deals with two related concise representations of binary data,
namely frequent sets and frequent closures. Not only the extraction of these rep
resentations is discussed but we also point out their specific add-value when con
sidered as concise representations for rule mining. Beside well-studied a p r i o r i -
based algorithms, we consider the c lose algorithm that provides frequent clo
sures [10]. We implemented it and made experiments over real data. Furthermore,
we propose the new concept of almost-do sure and sketch the min-ex algorithm
to mine it. The main idea here is to accept a small incertitude on set frequency
since, at that cost, more useful mining tasks become tractable.

2 Frequent Sets As a Concise Representat ion
of Binciry Data

At first, we adapt the formal definition of [8] to the kind of concise representation
we need. Formally, if an evaluation function Q, a member of 0 (the class of
evaluation functions), is an application from a class of structures 5={sj | i € / }
into the interval [0,1], an e-adequate representation for 5 with respect to O is
a class of structures W={ri] i S / } and an alternative evaluation function m:
0 x W -> [0,1] such that for all Q G ©ands j € 5 we have:] Q{si)-m{Q,ri) \< e.
I denotes a finite (or infinite) index set of S.

Example 4- Let us illustrate the definition on classical concepts from program
ming languages. Assume <S is a class, e.g. float, Sj is an instance of S, e.g. 0.02,
and 0 is the set of proper functions on that class, e.g. {sin, cos}. A concise rep
resentation can be the couple {H,m), Ti being another class, e.g. short, and m
an alternative way to evaluate Q, e.g. using a table of values of sin and cos for all
angles from {0, 1, . . . , 359}. Now, there is an alternative way to compute sin{x)
and cos{x). Instead of Si=0.02, we store ri—round{0.02 x 360/27r) mod 360, i.e.,
1. When the value of sin(0.02) is needed, we can use Tn{sin, 1) that returns the
value stored in the table associated to sin. Clearly, the result is approximate,
but the error is bound and the result is known at a much lower cost. •

If the functions from 0 share a lot of intermediate results, and the number of
evaluations justifies it, a concise representation can be made of the intermediate

Frequent Closures as a Concise Representation for Binary Data Mining 65

results from which all functions from Q can be evaluated. Such a concise rep
resentation avoids going back to the data. The alternative data representation
memory requirement might be smaller as well.

Let us now consider the class S of binary relational schema over the set of
attributes R. Instances Si £ S are relational tables. A query Q £ 0 over an
instance Si of S, denoted Q{si), is a function whose result is to be found with
an alternative (e-adequate) representation. H denotes the alternative class of
structures and the counterpart of evaluations, denoted by m, must be a mapping
from 0 X H into [0,1]. The error due to the new representation r, of Si (thus
compared to the result of Q{si) on the original structure) must be at most e for
any instance of Sj.

Example 5. Let r denote a binary relation over R = { A i , . . . , J4„} and consider
the set 0={5.support(X, r) | X C R} , where f .support(X, r) is the function
that returns the support of X in r (see Example 1). Given a frequency threshold
a, let FSa denote the collection of all frequent sets with their supports. Let
AltSup{X, FS^) denote the support of a frequent set X. FSa and the function
m{£.suppoTt(X,r),FSty) = AltSup{X,FS^) for X e FS„, 0 elsewhere, is a
(7-adequate representation for O over the binary relations defined on R. D

Let us discuss the use of FS^ as a concise representation for the rule mining
task we introduced in Example 2. The support and the confidence oi X => Y
are exactly known if the support of the rule is at least a, because the first
equals to AltSup{X U Y, FS^) (since X UY € FS„) and the second equals to
AltSup{XuY,FSa)/AltSup{X,FS<,) (since X e FS^, too). If it is not the case
(f .support(X =^ F, r) < cr), the support is bounded by [0, <T]. If moreover the
left-hand side (X) of the rule is frequent, we can bound the confidence of the rule
by [0, a/AltSup{X,FS„)]. Otherwise, the confidence can be any number from
[0, 1]). FS(r turns to be a a-adequate representation for rule support evaluation
and a 0.5-adequate representation for rule confidence evaluation. 0.5-adequacy
for confidence is clearly insufficient for most of the applications. But if we are
interested only in frequent rules (support > cr), we get a 0-adequate representa
tion (so an equivalent representation) for both, the support and the confidence
evaluation functions. It explains the effective strategy for extracting all the po
tentially interesting association rules (w.r.t. frequency and confidence thresholds)
from FScr'- for each X 6 FS^ and for each F c X, the rule X \Y =^ Y is kept
iff it satisfies the minimum confidence criterion.

Generalized rules (see Example 3) can be evaluated using FS,^, too. The
problem is that the collection FS„ might not provide some of the needed sup
ports for the computation of rule support and confidence even if the support of
the rule is above the support threshold.

Example 6. Assume we want to compute the support and the confidence of the
rule AA-IE => D. Applying well-known transformations, we can write the equa
tions: f .support(A A -lE =^ D,r)= f .support(j4D,r) — f .support(AD£^, r) and
£.confidence(^A-i£ => £),r) = <f.support(AA-'E ^ D,T) / (£".support(A, r) -
£.s\xppovt{AE, r)). These measures can be computed exactly only if A, AD, AE
and ADE are frequent sets. •

66 J.-F. Boulicaut and A. Bykowski

If we consider several negations and disjunctions, the number of terms will in
crease and the need for the support of infrequent sets will increase too. Since
the computation of the support of all sets is clearly untractable, infrequent con-
juncts will give rise to an incertitude [8]. However, this might be acceptable for
practical applications. It becomes clear that the adequacy of frequent sets as a
concise representation depends on how frequent are the patterns of interest, i.e.,
the more a pattern is frequent, the less an incertitude will aSect the result.

3 Computing Frequent Sets and Frequent Closures

The a p r i o r i algorithm is defined in [2] and we assume that the reader is familiar
with it. It is a levelwise method based on the itemset lattice (i.e., the sets of at
tributes ordered by set inclusion). The algorithm searches in the lattice starting
from singletons and identifies level by level larger frequent sets until the maximal
frequent sets are found, i.e., the collection of sets that are frequent while none of
their supersets is frequent. This collection is denoted by Bd'^{FS,j) and is called
the positive border of FS^ [13]. A safe pruning strategy (supersets of infrequent
sets can not be frequent) has been shown to be the very efficient for the com
putation of FSa in many real-life datasets. One of the identified drawbacks of
apriori-based algorithms is their untractability for highly correlated data min
ing. Data are correlated when the truth value of an attribute or a set of attributes
determine the truth value of another one (in other terms, association rules with
high confidence hold in it). The problem with correlated data originates from
the fact that each rule with high confidence pushes the positive border back by
one level for a significant part of the itemset lattice (when a does not change).
Highly correlated data contain several such rules, thus pushing back the positive
border by several levels. Consequently, the extraction slows down drastically or
can even turn to be untractable. An algorithm that would avoid counting sup
port for a great part of frequent sets would accelerate the process. This is the
assumption of useful algorithms like max-miner [3] that provides Bd'^{FSa) but
not FSa- We will consider hereafter an algorithm that avoids counting support
for many frequent sets though it provides -FS'cr, i.e., every frequent set and its
support.

The experiment summarized in Table 1 emphasizes the influence of high
correlation of data. We provide the output of the frequent set discovery tool
f reddie that implements an a p r i o r i algorithm. The left column corresponds to
a real dataset from ANPE ,̂ the right one corresponds to census data (c20dl0k)
preprocessed at the University of Stanford ^. We kept in both cases the first
10000 objects and for each object, their 17 first variables (each variable might
be encoded in a number of binary attributes). In each column of Table 1, the first
information provides the iteration counter (at level k, the level k of the itemset

^ ANPE is the French national unemployment agency: datalOK contains data about
unemployed people in december 1998.

^ ftp://ftp2.cc.ukans.edu/pub/ippbr/census/pums/pums90ks.zip.

Frequent Closures as a Concise Representation for Binary Data Mining 67

Table 1. Mining frequent sets using f reddie (apriori)

Input i ile : datalOK
Frequency threshold 0.05

Candidate Frequent Time

sets

Iterl :

Iter2 :

Iters :

Iter4 :

Iters :

Iters :

Iter7 :

Iters :

Iter9 :

IterlO

Iterll

Iterl2

Total :

214
2080

2991

5738

7203

6359

3733

1395

304
: 32

: 1

sets

65
602

2347

4935

6623

5957

3558

1359

302
32
1

: No more.

34836 25781

(s)
0.14

18.58

78.76

223.95

367.86

391.79

257.88

105.20

23.13

2.70

0.48

1470.47

Input file : basel7.txt

Frequency threshold :

Candidate

sets

Iterl :

Iter2 :

Iter3 :

Iter4 :

Iters :

Iter6 :

Iter7 :

Iter8 :

Iter9 :

IterlO

Iterll

Iterl2

Iterl3

Iterl4

Total :

317
1275

3075

8101

15454

20720

19973

13859

6811

: 2277

: 479

: 54

: 2

0.05

Frequent Time

sets

51
544

2702

7940

15365

20705

19968

13857

6811

2277

479
54
2

: No more.

97080 90755

(s)
0.15

14.60

92.12

376.87

965.41

1564.63

1777.45

1429.21

798.39

292.68

58.83

5.89

0.74

7376.97

lattice is processed). Then, we get the number of candidates, the number of
frequent sets and finally the duration of the iteration (CPU time).

The " independance analysis" of the data has shown that ANPE data are
slightly correlated while census data are highly correlated. However, the average
level of correlation in ANPE data is not low. Typical basket analysis data are
much less correlated and would bring down the execution time to a few minutes
(and the number of frequent sets would certainly be smaller for a = 0.05).

The problem is clearly that a user might want to mine (highly) correlated
data with rather low support thresholds while apriori-based algorithms become
untractable (time, memory) in that cases.

c lose is an algorithm that computes frequent closures in binary data [10]. A
set X is a closure in r when there is no attribute in R \ .X' that is always true
when attributes in X are true. In other words, for each property p not in X,
there is a tuple in r that has all properties of X and does not have the property p.
A closure is called a frequent closure when its support in the database is greater
than a given threshold a.

Example 7. In the data from Figure 1, BC is closed while BD is not closed.
Indeed, the objects 1 and 3 (the only ones that verify B and D) verify A and C,
as well. Furthermore, if <7=0.6, BC is a frequent closure in that data. •

By reducing the number of candidates considered during the extraction (the
lattice of closures is generally quite much smaller than the lattice of itemsets, see
for instance Figure 2 on the left), c lose can be more efficient than a p r i o r i . It is
straightforward to derive all the frequent sets and their supports from frequent
closures.

68 J.-F. Boulicaut and A. Bykowski

BCD ©

CD ©

Fig. 2. Closed set lattice (left) and sub-lattice of itemset lattice w.r.t. generator D
(right) for the data from Example 1

We now sketch the c lose algorithm and introduce our implementation close2.
Formal definitions and proofs of properties about c lose are in [10]. Mining clo
sures as a formal basis for association rule mining has also been suggested in
[12] though no algorithm was proposed in that paper.

Let FCa denote the collection of all frequent closures and their supports. The
positive border of FCa, Bd^{FC„), is the set containing all frequent closures
for which no superset of each of them is in FC„. It has been proven that, for a
given dataset, Bd+{FCa) = Bd+{FS<r).

There are two properties of the itemset lattice on which substantial opti
misations can rely. First, the supports of a set and of its closure are the same
(see the right part of Figure 2 for an example derived from Example 1). Thus,
once identified the closure of a set to be different from this set, we can exclude
the closure and all intermediate sets from the support counting procedure since
they all have the same support. The sets that go through the support counting
procedure are called generators. In Figure 2 on the right, it is emphasized that
counting the support of generator D, whose closure is ABCD, enables to derive
the support for the whole sub-lattice. Second, if the closure oi X is X U C, the
closure of X U y is a superset oi XUYUC. These properties are used as a base
of a safe pruning strategy integrated in close [10].

In our implementation close2, the extraction of frequent sets is performed
in two steps. The first step extracts frequent closures from a binary relation. The
extracted closures correspond to all generators. There may be some duplicates,
in terms of closures, because different generators may have a same closure. The
second step takes that collection of frequent closures, removes duplicates, stores
FCa set and derives FSa- In Table 2, we compare the execution of close2 with
f reddie on ANPE and census data. The given time is the average CPU time
for 2 executions. For close2, the time of each step is given. The I/O overhead
is provided as the number of scans on the data. We notice that the relative
advantage of close2 over f reddie is much higher in case of highly correlated
data. However, in both cases, the use of close2 is worthwhile.

Frequent Closures as a Concise Representation for Binary Data Mining 69

Table 2.

Dataset/cr

ANPE/0.05
census/0.05
ANPE/0.1
census/0.1
ANPE/0.2
census/0.2

Comparison of freddie

freddie (apriori)
Time (s)

1463.9
7377.6
254.5

2316.9
108.4
565.5

FS„

25 781
90 755
6 370
26 307
1 516
5 771

DB scans

11
13
10
12
9
11

(apriori 1 and close2

close2
Time (s)

69.2/6.2
61.7/25.8
25.5/1.1
34.6/6.0
11.8/0.2
18.0/1.1

FCa

11 125
10 513
2 798
4 041
638

1 064

DB scans

9
9
8
9
7
9

As it is possible to generate FS^ from the corresponding FC^ and ||F5ff|| >
||FC<j||, FCa can be considered as a concise representation of the binary relation
which is more compact than FSa, without any loss of information. Beside effi
ciency, notice that the postprocessing of frequent closures to get rules can also
give rise to a faster computation of useful rules. A first study in that direction
concerns the computation of non redundant rules [11].

4 A New Concise Representat ion: Mining
Almost-Closures

This section concerns the concept of almost-closure in binary data. To the best
of to our knowledge, this is an original concept. Details about the formalization
and the algorithm are available in [6,5].

A fundamental property of set lattices which is used in c lose , is that the
same support of the sub-lattice's bottom and top implies the same support for
all sets of that sub-lattice. The more the data is correlated (many association
rules with confidence 1), the more the collection of frequent closures is compact
compared to the collection of frequent sets. We decided to relax the constraint
equality of supports, which seems to be a very exigent one, with an "almost-
equality" constraint. The new algorithm, called min-ex, does not require any
association rule with confidence 1 to be present in the mined data. Instead, it
can take advantage of a correlation even if it is approximate (the confidence of
association rules holding in the data should be however close to 1). These situa
tions might correspond to exceptions in regular behaviours and/or to erroneous
tuples that survived preprocessing steps. We expect that, in case of real-life data
mining, we will remove much more candidates (w.r.t. close) from the support
counting procedure, given that min-ex pruning strategy is similar to c lose prun
ing strategy. The trade-off consists in accepting a small incertitude on supports
though being able to mine correlated data with lower frequency thresholds. In
the following, we consider that the support of a set is the (absolute) number of
objects (tuples) in which all the attributes of the set are true. This is different
from the definition in Example 1.

Formally, if X (an itemset) "occurs" in t objects within the database, we
say that an attribute A is in the almost-closure of X if the support of X U {A}
is at least t — 6 {6 should be small, not to loose the practical relevancy of the

70 J.-F. Boulicaut and A. Bykowski

extracted information). The almost-closure of X is the set containing all such
attributes. Conceptually, a closure is a special case of an almost-closure when
6=0.

Example 8. In data from Figure 1, considering the generator C, one finds that
A and B are in the almost-closure of C for 6=1 while none of them was in its
closure. D

Now, let us explain where the incertitude comes from. Assume that the almost-
closure of X equals to X U {A,B,C}. Let the support of X be sx , and the
supports of X U {A}, X U {B} and X U {C} be respectively sx — SA, SX — SB
and Sx — sc where SA, SB and sc are positive numbers lower than 6. We have
considered two possibilities for output content. The first stores for each frequent
almost-closure: generator items (elements of X, in the example), generator sup
port (sx) and almost-closure's supplement items {A, B and C). The second
adds to each item a from the almost-closure supplement the difference of sup
port between X and X U {A} (this difference is called miss-number hereafter).
In our example that part corresponds to SA, SB and sc- These values have to
be known, because to decide if an item is in the almost-closure, they must be at
hand. Miss-numbers are values of miss-counters at the end of the corresponding
database pass.

The fact, that, for instance, B and C are in the almost-closure of X only
implies that they occur almost always with X. Assume that we are in the second
case of output (miss-numbers stored). Prom the supports oi X, X U {B} and
X U {C} we can not infer the support of X U {B, C}, because we do not know if
the misses occurred on the same objects (support would be sx — Tnax{sA, SB))
or on disjoint ones (support would he sx — SA — SB)- All intermediate cases are
allowed, too. Storing miss-numbers greatly improves the precision of the resulting
supports, above all when they are small, compared to 6. Therefore, we choose
this solution, even if it increases the volume of output (in terms of quantity of
information, not in terms of number of elements). FaC^ denotes the collection
of all frequent almost-closures for threshold a and is the output of min-ex.

An important property about closures has been preserved. Still, if the almost-
closure oi X is X U C, the almost-closure of X U y is a superset of X U y U C.
Let us prove it. Attribute A is in the almost-closure of X iff £.support(X, r) —
f .support(X U {j4},r) < 6. In other words, the number of objects that have all
properties of X and do not have the property A is at most 6. Clearly, the number
of objects satisfying a set of properties can not grow if we enforce that property
with a new constraint. Therefore, the number of objects that have all properties
of X and all properties of Y and do not have the property A can not be greater
than 6. So, all elements of the almost-closure of X (i.e. C) must be present in
the almost-closure oi X\JY.

This property may be used as a basis of an efficient safe pruning strategy,
analogously to the pruning strategy of close. We have been looking for such a
strategy. The one implemented in the actual implementation of min-ex seems to
be reliable [6]. However, in spite of numerous tries, we did not establish a proof
that it is safe. We have not found either a counterexample. We checked the

Frequent Closures as a Concise Representation for Binaxy Data Mining 71

completeness in our practical experiments. However, proving the incompleteness
or the completeness of our algorithm remains an open problem though it does
not prevent its use for practical applications.

Deriving frequent sets from frequent almost-closures is as straightforward as
for close. The difference is that now there is an incertitude on the support of
some frequent sets.

The sub-lattices (corresponding to almost-closures) of which the support
range, due to S, crosses the threshold is kept in the result set, leading to the
collection FaC„ that enables to derive a superset of FS^r- This is a safety mea
sure: we do not want to prune out sub-lattices of which some itemsets are known
to be frequent, for the sake of completeness.

We did several experiments using min-ex on census and ANPE datasets (see
Table 3). A first remark is that it confirms that c lose and min-ex with 6=0
are functionally equivalent. In the case of closeg, the reduction of the size of
FCa w.r.t. the corresponding FS^ highlights the tight-correlation level (relative
number of rules with confidence 1) of the data. In the same way, the further
reduction of output (FaC,r compared to FCa^) for different
values of 6, points out the loose-correlation level (relative number of association
rules that are nearly "logical" ones).

Let us now discuss the add-value of min-ex w.r.t. c lose for highly correlated
data mining like census data mining. First of all, we must recall that a too high
value of 6 might provide a "fuzzy" FaC„ collection, leading to, e.g., rules with
too high incertitude on evaluation functions.

Consider the CPU time needed by the extraction of FaC^. It has been more
than halved (census data) for 5=6 and the tested frequency thresholds. Next,
the I/O activity (number of database passes) has been reduced, an important
criterion if the I/O turns to be a bottleneck of the system. A third advantage is
that the output collection size has shrunk and we assume that further subsequent
knowledge extraction steps will be faster.

Another way to demonstrate the add-value of min-ex can be derived from
Table 3. We can extract the following concise representations of census data:
either FCQ.OI with c lose or FaCo.oos with min-ex and 5 = 2. It took the same
time (154.3 vs. 155.2 sec, 10 passes for both executions) and we got a similar-
sized output collection (52166 vs. 55401 itemsets). It is possible without incerti
tude (FCo.oi) or with a very good precision [5=2) on the frequent set supports
{FaCo.oos)- The difference is that, using min-ex, we gained knowledge about
all phenomena of frequency between 0.5% and 1% at almost no price. However,
we must notice that in case of uncorrelated data, the memory consumption and
CPU load due to maintaining miss-counters may affect the performances (See in
Table 3 the extraction time evolution for ANPE/cr=:0.05). Only, with a signifi
cant reduction of number of candidates (thus only in case of correlated data), the
memory consumption will recover (e.g., see A N P E / C T = 0 . 0 0 5 or census/o-=0.05).

Applications. A promising application of min-ex would be to enable the discov
ery of repetitive but scarce behaviours. Another application concerns generalized
rule mining. Generalized rules, if generated from FS„, have an incertitude on

72 J.-F. Boulicaut and A. Bykowski

Table 3. Evaluations of implementations close2 and min-ex

Dataset/(7

ANPE/0.005

census/0.005

ANPE/0.01

census/0.01

ANPE/0.05

census/0.05

close2
Time (s)

816.7

197.8

421.8

154.3

69.2

61.7

FC^

412 092

85 950

161 855

52 166

11 125

10 513

DB scans

11

10

11

10

9

9

min-ex
5

0
2
4
6
0
2
4
6
0
2
4
6
0
2
4
6
0
2
4
6
0
2
4
6

Time (s)

851.3
759.5
639.7
553.0
216.2
155.2
118.4
98.5

450.4
466.8
445.1
416.4
166.2
124.9
95.0
79.0
71.5
79.7
85.3
88.4
64.4
50.2
38.2
32.2

FaC„

412 092
265 964
182 829
135 136
85 950
55 401
39 036
29 848
161 855
130 765
104 162
84 318
52 166
33 992
24 109
18 822
11 125
11 066
10 931
10 588
10 513
7 294
5 090
4 086

DB scans

11
11
10
10
10
10
8
8
11
11
10
10
10
10
8
8
9
9
9
9
9
9
8
8

measures like support and confidence due to unknown infrequent set supports
[8]. Using min-ex, it is possible to reduce the bounds of error on evaluation
value by supplying the support value for many more itemsets. The incertitude
introduced by min-ex to some terms of generalized rule evaluation functions can
be negligible (w.r.t. function result) compared to the contribution made by the
larger number of known terms. Another interesting use is when an approximate
result of the data mining step is sufficient. For instance, consider the "sampling"
algorithm [7] during its "guess" phase. This phase is supposed to provide an ap
proximation of the collection of frequent sets. An error is inherent to the use of
sampling. If we keep the error introduced by the use of almost-closures negligible
against the error due to sampling, the guess will be as good as before, but will
be computed faster.

5 Conclusion

We studied several concise representations of binary data when data mining
processes make use of set support (e.g., when looking for association rules). We
studied the close algorithm and beside its introduction in [10], we provide a new

Frequent Closures as a Concise Representation for Binary Data Mining 73

implementation and experimental evidences about its add-value for the concise
representation of (highly) correlated data . It has lead us to the definition of the
concept of almost-closure and, here again, we provided experimental evidences
of its interest when we are looking for concise representation in difficult cases
(correlated da ta and low frequency thresholds). The discovery of almost-closed
frequent sets gave rise to tricky problems w.r.t. the completeness of the mining
task. Completeness of min-ex remains an open problem at tha t t ime and we are
currently working on it.

A c k n o w l e d g e m e n t s . The authors thank H. Toivonen from the University of
Helsinki for letting us use the f r e d d i e software tool and the Rhone depar tmenta l
direction of A N P E who provided data . Last but not least, we want to thank C.
Rigotti for stimulating discussions.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases. In: Proc. SIGMOD'93, Washington DC (USA), pages
207 - 216, May 1993, ACM Press.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery
of association rules. In: Advances in Knowledge Discovery and Data Mining, pages
307 - 328, 1996, AAAI Press.

3. R.J. Bayardo. Efficiently mining of long patterns from databases. In: Proc. SIG-
MOD'98, Seattle (USA), pages 85 - 93, June 1998, ACM Press.

4. J-F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling KDD processes within
the Inductive Database Framework. In: Proc. DaWak'99, Florence (I), pages 293 -
302, September 1999, Springer-Verlag, LNCS 1676.

5. J-F. Boulicaut, A. Bykowski, and C. Rigotti. Mining almost-closures in highly
correlated data. Research Report LISI INSA Lyon, 2000, 20 pages.

6. A. Bykowski. Frequent set discovery in highly correlated data. Master of Science
thesis, INSA Lyon, July 1999, 30 pages.

7. H. Toivonen. Sampling large databases for association rules. In: Proc. VLDB'96,
Mumbay (India), pages 134 - 145, September 1996, Morgan Kaufmann.

8. H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed rep
resentations. In; Proc. KDD'96, Portland (USA), pages 189 - 194, August 1996,
AAAI Press.

9. H. Mannila. Inductive databases and condensed representations for data mining.
In: Proc. ILPS'97, Port Jefferson, Long Island N.Y. (USA), pages 21 - 30, October
1997, MIT Press.

10. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association
rules using closed itemset lattices. Information Systems, Volume 24 (1), pages
25 - 46, 1999.

11. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Closed set discovery of small
covers for association rules. In: Proc. BDA'99, Bordeaux (F), pages 53 - 68,
October 1999.

12. M. Zaki and M. Ogihara. Theoretical foundations of association rules. In: Proc.
Workshop post-SIGMOD DMKD'98, Seattle (USA), pages 85 - 93, June 1998.

13. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241 - 258, 1997.

