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Abstract

Frequent association rules (e.g., AA B = C to say that when prop-
erties A and B are true in a record then, C tends to be also true)
have become a popular way to summarize huge datasets. The last 5
years, there has been a lot of research on association rule mining and
more precisely, the tractable discovery of interesting rules among the
frequent ones. We consider now the problem of mining association rules
that may involve negations e.g., AA B = -C or "A A B = (. Mining
such rules is difficult and remains an open problem. We identify several
possibilities for a tractable approach in practical cases. Among others,
we discuss the effective use of constraints for mining generalized sets.
We propose a generic algorithm and discuss the use of constraints (e.g.,
the set must contain at most n negative attributes or at least p positive
attributes) to mine the generalized sets from which rules with negations
can be derived. An experimental validation of this approach on the
mushroom benchmark is reported.

1 Introduction

The design of semiautomatic methods for locating interesting information in
the masses of unanalyzed or under-analyzed data, the so-called data mining
techniques, has become an important research area. Mining association rules
[1] is a popular data mining technique that has been proved useful for real
data analysis (see e.g., its application to basket analysis or [16] for alarm data
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analysis). During a typical association rule mining process, one first computes
frequent patterns using (expensive) data mining algorithms. Then, we have to
compute and/or query these collections for the needed post-processing phases
(e.g., deriving rules and ranking them according to various objective measures
of interestingness such as confidence [2], conviction [8], J-measure [22] or in-
tensity of implication [13]).

A problem with such a process is that (a) the selection of interesting patterns
has to be performed only on frequent patterns, and (b) standard association
rules are not enough expressive for some applications. Mining all infrequent
rules is known to be intractable, but is it interesting? Indeed, infrequent pat-
terns can be considered as the result of noisy data. However, the frequency
threshold that characterizes interesting rules for an application might be too
low from the computational complexity point of view. Looking for more ex-
pressive rules, we can consider various generalizations, e.g., the introduction
of taxinomies on items [14], associations between multiple relations [10] or
general boolean rules [18]. In this paper, we consider generalized rules, a
special case of boolean rules, namely association rules with negations. We
want to find associations involving positive attributes and, eventually, nega-
tive ones (a negative attribute is the negation of a positive attribute). Mining
frequent (generalized) rules turns to be intractable in practical cases, e.g., for
frequency thresholds that enable the discovery of “standard” association rules.
We would like to identify possibilities for a tractable approach to the computa-
tion of generalized (frequent) sets (i.e. sets that involve positive and negative
attributes) and their post-processing into generalized association rules. We
believe that the inductive querying framework [15, 7, 11] also called by some
authors constraint-based pattern discovery [20, 17, 12] point out promising
issues.

The contribution of this paper is as follows. First, we explain why a naive
approach (i.e., the straightforward encoding of both positive and negative at-
tributes and the use of standard algorithms like APRIORI) cannot be used.
Then we consider how it is possible to derive some generalized rules using
only the information about positive attributes. Finally, we consider induc-
tive queries that return generalized sets (from which rules with negations can
be derived) and discuss their evaluation. Roughly speaking, this means that,
given constraints on desired sets, one must identify which of them can be
“pushed” efficiently into the discovery algorithm. Using results from [6], we
consider relevant constraints for mining association rules with negations and
report practical experiments on a well-known benchmark. A preliminary ver-
sion of that work has been published in [4]. However, [4] neither discusses rule
generation issues nor experimental validation of these ideas.

Section 2 provides a simple formalization of the kind of inductive query we
have to process. In Section 3, using an abstract presentation of the classical



APRIORI algorithm, we introduce the standard approach to association rule
discovery and discuss the problems when rules with negations are desired. In
Section 4, we identify several kinds of constraints that can be used for the
effective discovery of rules with negations. In that section, we report also an
experimental study on a benchmark dataset (the so-called mushroom dataset)
that confirms the validity of the constraint-based framework. Finally, Section
5 concludes.

2 Inductive Databases and Inductive Queries

We consider the formalization of inductive databases [7] and the concept of
inductive query in our context.

Definition 1 (schema and instance) The schema of an inductive databa-
se is a pair R = (R, (L,E&,V)), where R is a relational database schema, L
15 a countable collection of patterns, V is a set of result values, and £ is the
evaluation function that characterizes patterns. Given a database r over R
and a pattern 6 € L, this function maps (r,0) to an element of V. An instance
(r,s) over R consists of a database r over the schema R and a subset s C L.

Example 1 Assume the minable view is trans (Tid, Item) i.e., a typical schema
of data for basket analysis. Figure 1 provides a toy dataset under a boolean
matriz format. For instance, if trans(2,A) and trans(2,C) define the trans-
action 2, row 2 contains true for columns A and C and false for column B.
It also means that, in row 2 of the “complemented” matriz, A (to denote —A)
and C are false while B is true.

A typical KDD process operates on both of the components of an inductive
database. Queries that concerns only the pattern part, called hereafter in-
ductive queries, specify mining tasks. We use constraints to characterize the
patterns that are interesting.

Definition 2 (constraint) Given the schema R = (R, (L£,&,V)) and the set
DB(R) of all the relational databases over the schema R, a constraint C is a
function from L x DB(R) to the set {true, false}. We say that a pattern
0 € L satisfies a constraint C in the database r € DB(R) if C(0,r) = true.
When it is clear from the context, we omit the reference to data and write C(0).

The classical logical operators are defined over {true, false} and can be used
to construct complex constraints (such as conjunction of constraints).

Example 2 Assuming that V is [0,1] and £ returns the frequency of 0 in r
(to be defined later), C(0,r) = E(r,0) > 0.5 is a constraint that is satisfied by
patterns 0 such that €(r,0) > 0.5.



Definition 3 (inductive query) Given an inductive database instance (r, s)
whose schema is (R, (L,E,V)), an inductive query is denoted as oc(s) and
specifies the patterns from s that are interesting. C is a conjunction of con-
straints that must be fulfilled by the desired patterns. The result of the inductive
query s the set of patterns of s that satisfy the constraint C and is denoted
SAT:(s) ={0 € s, C(0) = true}.

We see from the previous example that checking some of the conjuncts may
need for the evaluation of £ on r and involve data scans.

2.1 Generalized Set and Rule Mining Frameworks

The databases r we consider are boolean matrixes. The rows of the matrixes
are called transactions and the columns are positive attributes. The positive
attributes are denoted with capital letters A, B, C... the set of the positive
attributes is denoted Items™ = {A, B,C,...}. Let Items™ be a set of same
cardinality as Itemst. Its elements are denoted A, B, C,... and called the
negative attributes. Finally, let Ttems = Items™ U Items , its elements are
called the attributes. A generalized set S is a subset of Items.

Given a generalized set T € 2168 ot NNT(T) denote the number of negative
attributes in T, PT(7T") denote the set of positive attributes in T', P(T") denote
the set of attributes in 7" all turned to their positive counterparts. We often
use a string notation for sets e.g., ABC for {A, B, C}.

Example 3 NNT(ABC) = 2, PT(ABC) = C, P(ABC) = ABC.

A generalized set S C Items is present in a transaction T (a row of the boolean
matrix) iff

e for each positive attribute X € S, there is a 1 in the corresponding
column at row T,

e for each negative attribute X € S, there is a 0 in the column correspond-
ing to X at row T.

The frequency, F(S,r), of a generalized set S in r is the ratio of the number
of line in which S is present over the total number of line of the matrix.

A generalized set S is y-frequent in r if F(S,r) > 7. We denote by Cp,eq(S) =
F(S,r) > v the constraint that is true iff S is y-frequent in r.

Definition 4 (generalized set mining task) Mining generalized set is the
evaluation of the inductive query oe(21P8MS) where C is a constraint. The
pattern part of the associated inductive database is (QItems,}-’ [0,1]) Mining

frequent generalized sets means that C contains Cypeq.
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Example 4 Given data from Figure 1, Ttems = {A, B,C, A, B,C}. IfCjeq(X) =
F(X,r) > 0.5, the query acfreq(21tems) returns {A, B,C,C, AB, AC, BC}.
Assume that Cy;re (Tesp., Crmiss) denotes the constraint | X | < 2 (resp., {A, B}N

X =0) for a set X.

oc....nc... (21C8MSY veturns { B, C,A,C, BC, BA, BC,CA,CC, AC}.

OC/ eqACsize ACmiss (21tems) returns {B,C,C, BC}.

A B (C -A B -C

1 1 1 1 1 0 0 0

r= 2 1 0 1 Its “complement” is 2 0 1 0
3 0 1 0 3 1 0 1

4 1 1 0 4 0 0 1

Figure 1: A binary dataset r

An association rule is an expression X = Y where X C Items and Y €
Items\X. The typical “behavior” of these rules in an instance r is evaluated by
means of two interestingness measures, namely the support and the confidence.
The support of X = Y in r is equal to F(X U {Y},r) and its confidence is
equal to its support divided by F(X,r).

Definition 5 (association rule mining task) The standard association rule
maning task concerns the discovery of the so-called strong rules whose support

and confidence are greater or equal to user-given thresholds, resp., v and ¢ [2].

In terms of an inductive schema, V is [0,1] x [0,1] and £ provides the pair

<support, confidence>. It corresponds to inductive queries on the language of
rules whose constraint contains at least this selection criterion.

Example 5 With v=0.5 and ¢=0.9, C = B is discovered in data of Figure 1
while B = C' is not (its confidence is too low).

3 Mining Association Rules with Negations

When mining association rules, the expensive step concerns the computation
of the (frequent) sets from which the rules are derived.

Most of the tractable queries involve Cyy.q. SATCfmq(Items) is the collection
of frequent (generalized) sets and we assume that they are stored, with their
frequencies in F'S,. Notice that we need the frequency of every frequent set
since our goal is to derive interesting rules (interest evaluation functions may
avoid data scans if they are provided with the frequency of every frequent set).



3.1 The “Standard” APriORI Algorithm

We consider an abstract definition of the APRIORI algorithm [2]. It takes a
dataset r and, given the thresholds v (frequency) and ¢ (confidence), outputs
every strong association rule.

1. () := set-of-all-singletons(Items)
2. k:=1
3.  while C; # 0 do
4. k:=k+1
5. Phase 1 - frequency constraint is checked - it needs a data scan
Ek,1 = SATCfreq(Okfl)
6. Phase 2 - candidate generation for level k
C} := generate(L;_1)
7. Phase 3 - candidate safe pruning
C), := safe-pruning-on(C})
od
8. FS,:=UL, L
9.  Phase 4 - rule generation
for each X € F'S, do
10. for each Y € X do
11. test-for-output(X \ {V} = {V})
od
od

In step 8, all the frequent sets and their frequencies are stored in F'S, and the
function test-for-output tests if the confidence of the rule is high enough
w.r.t. ¢. In [2], generate(L;_;) provides the candidates by fusion of two ele-
ments from £j_; that share the same k — 2 first elements (in lexicographic or-
der) and safe-pruning-on(C}) just eliminates the candidates for which there
exists a subset of length k& — 1 that is not frequent. In [2], phases 2 and 3 are
merged. We provide here an abstract formulation of these procedures that will
be used hereafter. The first one contains the join-based method that provides
new candidates (generate). The second defines safe-pruning-on: it prunes
candidates which can not be frequent according to the anti-monotonicity of
Cfreq (one of their subsets is not frequent).

The notation r.item; denotes the i element (i.e., itemset) from r.

Example 6 Considering the data from Figure 1 and the thresholds v = 0.5
and ¢ =1, APRIORI outputs only C' = A and C' = B.

APRIORI can work fine for huge datasets. Its practical time complexity is O(nx
nc) where n is the number of transactions and nc the number of candidates (i.e.,

6



generate

insert into C}

select r.itemy, r.items,, ..., r.item;_q, q.itemy_;

from £k—1 T, £k—1 q

where r.item; = q.itemy, r.itemy, = q.item,, ...,
r.item, o = q.itemy_o, r.itemy_; < q.itemy_;

Ol W o=

safe-pruning-on

6. for all C € () do

7. for all 7' C C such that |T| =%k —1 do
8. if T¢ Ly

9. then delete C from C|

10. fi

11. od

12. od

13.  output C}

the size of F'S, plus the size of its negative border Bd~(F'S,) [19]). Bd~(F'S,)
is the collection of infrequent sets whose every subset is frequent. Deriving
rules is cheap when checking the selection criterion needs only F'S, (e.g., when
the selection is based on the confidence evaluation for frequent rules).

3.2 Problems with Negations ... and Potential Solutions
3.2.1 A Naive Approach

Assume the use of APRIORI on a dataset that has been “complemented”.
Considering the boolean matrix representation, it means that for each column
A, one adds a column A. In a row, i.e., for a given transaction, the value of A
is the boolean negation of the value for A.

The problem with that approach is that for reasonable frequency thresholds,
the number of frequent sets explodes. For instance, assume you have 100
positive attributes with a maximum attribute frequency of 0.1 and a frequency
threshold v = 0.05. It turns out that every set of negative attributes up to
size 9 is frequent. In that case, it leads to more than (180) > 10'2 frequent sets
[18]. In practice, it means that we have to take higher frequency thresholds,
possibly leading to uninteresting mining phases. Furthermore, even if the
extraction of the frequent sets remains tractable, most of them will involve
only negative attributes and, most of the derived rules (with high confidence)



will concern only negative attributes as well. This is unfortunate for many
application domains. In fact, this encoding also introduces a high correlation
in the dataset: many association rules with high confidence hold in it. Notice
also that the positive part of the data can be already highly-correlated so that
APRIORI can even not tackle the computation of F'ST i.e., subsets of Items™
that are frequent.

3.2.2 “Approximation” of Association Rules with Negations

Assume in this subsection that we compute F'ST i.e., the collection of 7-
frequent sets for the positive attributes only. We already know that this
problem is easier to solve. Using only that (positive) information, it remains
possible to mine some association rules with negations.

Theorem 1 The support of a generalized set T can be computed using the
collection F'ST if P(T') € F'ST and is equal to:

F(Trx) = Y ()"IFEX),r) (1)

PT(T)CXCT
Proof sketch: Note that if T is of the form T,,_; U {A4,},
f(Tv I‘) = f(Tn—la I‘) - f(Tn—l U {An}a I‘).

Example 7 Considering data from Figure 1, FSys = {A,B,C,AB, AC}'.
Since P(AB) = AB € FSg5, F(AB,r) = F(A,r) — F(AB,r) is known ezactly
(=0.25). P(ABC) = ABC ¢ FS;, and F(ABC,r) = F(AB,r) — F(ABC,r)

can not be evaluated exactly.

Theorem 2 The support of all subsets of a set T can be derived from the
collection F'ST if P(T') € F'ST.

Proof: Let S C T. Then P(S) C P(T). If P(T) € FS7, all subsets of P(T)
belong to FS;r including P(S). From the previous theorem, the support of S
may therefore be computed from the collection FS;’.

The support of some generalized sets can be computed exactly from the positive
frequent sets only. In such a case, the number of terms of the sum in formula
(1) is growing exponentially with the number of negative attributes in the set.
However, it can not be higher than |FS;’|, which is the number of all possible
terms of the sum. Therefore, the computation of the support of a generalized
set remains tractable when the computation of F S;“ is tractable.

!'Notice also that the frequency in r is associated to each frequent set in FSy



Consider now the generation of rules from a frequent set X € F S;’ . Let Ax
be a generalized set involving the same properties than X. There are 2/¥l
such generalized sets from which the Phase 4 of the APRIORI algorithm can
be performed. This way, we can generate a lot of generalized rules, but the
collection is not complete w.r.t. the support and confidence criteria: there is no
guarantee that it computes all the strong generalized rules. Our experiments
have shown that it can even be far from the intended result.

A special case of this method can be performed for free during the standard
association rule discovery. It concerns a restricted form of generalized rule:
rules with a set C Items™ at the left—hand side and an attribute from Items
(positive or negative) at the right-hand side. After the computation of F'ST,
for each frequent set X € FS;r and for each Y € X (all of them are frequent,
t00), it is possible to test the confidence of X \{Y'} = {Y} and X\{Y'} = {V}
as well. Testing the confidence of the second rule needs for the evaluation of
1—(F(X,r)/F(X\{Y},r) >¢ie, F(X,r)/F(X\{YV},r) <1— ¢ (note
that F(X,r)/F(X \ {Y},r) is the confidence of the first rule). However, even
limited to this form, some strong rules might be missed by the method. To
be complete, we need to know the frequency of all generalized frequent sets
and we saw that it is not realistic. Therefore, it is possible to trade precision
against completeness.

Consider now the possibility to compute imprecise interestingness measures for
generalized rules by using only positive information. The idea is to substitute
to the unknown terms an interval that bounds the possible values for the
support and the confidence. Thus, it gives rise to an incertitude to the values
of these measures. Let us consider a second dataset in Figure 2.

=
oy
Q
)
=

Set Frequenc

1 1 1 1 0 0 o 50
2 0 0 1 1 1 {B} 6/9
3.0 1 0 0 1 ol Vo
r— 4 1 1 1 0 1 {IEE;} i;g
5 1 1 1 0 0 0 B
6 1 1 0 1 0 %gg% i;g
7 1 0 0 0 1 {B:E} 2/9
8 0 1 1 0 0 16, E} /9
{A,B,C} 3/9

9 1 0 0 1 0

Figure 2: A dataset and the frequency for each set € FSZ/9 U Bd’(FSI/Q)

Example 8 Consider the rule_AE = B. support(AE? B,r) = F(AB,r) —
F(ABE,r) and confidence(AE = B,r) = support(AE = B,r)/(F(A,r) —



F(AE,r)). F(ABE,r) is not available (because ABE is not in F'Sy/9 neither
in Bd~=(FSy9)) but it can be estimated within [0,3/9]: support(AE = B,r) €
[1/9,4/9] and confidence(AE = B,r) € [1/4,1].

This method has been proposed in [18]. It gives rise to several problems.
First, a rule can be interesting (w.r.t. interestingness criteria), uninteresting
or unresolved. The last case arises when intervals for support and/or confidence
cross support and/or minimum confidence thresholds. It happens in Ex. 7. By
substituting an interval of possible values to unknown terms in the support
formula of a generalized set, some sets can not be classified as frequent or
infrequent. Hence, for a complete strong rule generation in the worst case, one
has to enumerate every generalized set that is not known as infrequent (i.e.,
that is frequent or unresolved). If we introduce “large” intervals, it gives rise
to a huge amount of unresolved sets. Lot of them might be infrequent, but it
is not possible to identify which ones.

Example 9 Continuing Ex. 7, from FS’Z“/9 U Bd_(FS’j/g), we infer 14 fre-
quent generalized sets, 19 unresolved ones, and 210 infrequent ones. On this
toy example the number of unresolved generalized sets is above the number of
frequent generalized sets. This would be worse if we had FSZ/9 only because
these numbers become respectively 11, 48 and 184.

Problems related to incertitude amplify with the computation of the confidence
or other interestingness measures. Providing better estimations is important
and worthwhile.

3.2.3 Using Constraints

A third direction of research is the effective use of constraints during the min-
ing process. We focus on the effective computation of SAT: where C is a
conjunction of atomic constraints that specify the interesting sets, and from
which “interesting” rules are to be derived.

We saw that APRIORI uses the constraint Cg,., to prune the search space.
Beside that, it is possible to have a “generate and test” approach for the other
constraints (first generate all frequent generalized sets and then test other
constraints on them) but this is clearly intractable in many cases.

The solution might come from the study of constraint-based discovery of fre-
quent sets [20, 6].

4 A Constraint-based Approach

In this section, we apply part of the work presented in [6] to our problem. A
simple observation is that the APRIORI pruning is not only applicable to the
frequency constraint but also to all anti-monotone constraints.

10



Definition 6 (anti-monotonicity) A constraint C is anti-monotone if and
only if for all sets S, S’: S’ C S A S satisfies C = S’ satisfies C

Example 10 A systematic study of anti-monotone constraints on sets is in
[20]. Continuing our running example, {A, B,C, D} D S and SN{A, B,C} =)
are anti-monotone constraints on S. Indeed, Cyeq is anti-monotone. Another
interesting anti-monotone constraint is |S N Items™| < n, denoted as Comnn,
which states that every itemset must contain at most n negative attributes.
Camin denotes the special case where n = 1.

Conjunctions of anti-monotone constraints are anti-monotone and it is easy
to prove that pushing an anti-monotone constraint inside the search space
exploration leads to less computations. What is challenging is the possibility of
pushing other constraints. This is difficult because the generation and pruning
steps must be rewritten to be complete. Moreover, pushing non anti-monotone
constraints can decrease the performance of the whole process [6].

4.1 A Generic Algorithm G

We consider a generalization of APRIORI to emphasize the potential for opti-
mization. Like in APRIORI, it is a levelwise exploration algorithm of the set
lattice and k denotes the size of the sets that are processed at the current level.
Assume the constraint C can be written as Cy A Csa A Cs6 A Caps A Csg A Cs11.
The notations s4, s6, s8, and s11 refer to the steps in which these conjuncts
are processed in the generic algorithm. Cg, denotes constraints that need a
database scan at checking time and C, denotes constraint checked during the
generation step.

Algorithm G: computation of o (211S)

1. k:=1; Ly:={0}

2. repeat

3. (Y := generate(Ly;_1) # Candidate generation for level k and Test C,
4. Cp:=CINnSAT,,, # Test Cyy

5.  CF := prune(C}) # Safe pruning using anti-monotone constraints
6. C}:=CinNSAT, # Test Cy

7. lecl = C]:;’ N SATcdbs #Test Cdbs

8. Ek = O;cl N SATng # Test ng

9. k=k+1

10.  until there is no more candidates

11. return Ui.:ll L;NSAT.,,, # Test Cyy
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One problem is to choose how to split C into Cy A Cs4 A Cg6 A Caps A Csg A Cot1,
i.e., at what step of the algorithm should a constraint be tested. Some of
these can be the “true” constraint (the constraint that always evaluates to
true), which causes a no-elimination step. First, a constraint can be pushed
at the candidate generation step (step 3) if it is possible to have an optimized
generation procedure (e.g., C, might contain the conjunct C(S) = A € 5).
Second, it is possible to test constraints on steps 4, 6, 7, 8 and 11. Constraint
checking that needs database scans, e.g., for Cy,q, is performed as step 7. Step
11 corresponds to a “generate and test approach”. Depending on these choices,
the generation and pruning steps might be rewritten to ensure completeness [6].
The safe pruning step (Step 5) can be seen as a constraint checking step
too. Pruning means exactly removing itemsets S that cannot verify an anti-
monotone constraint because we already know (from a previous iteration) that
a subset of S does not verify it. Therefore, Step 6 can be rewritten C? :=
CiNSATg,...., where Cprune(S) is true iff S cannot be pruned.

The kind of data we have to process when mining generalized sets is dense and
highly-correlated. The CLOSE algorithm [21, 3] makes the frequent set discov-
ery tractable in such difficult cases. However, the original CLOSE algorithm
has been designed for mining frequent sets and not constrained itemsets. We
revisited this algorithm in [6]. In fact, the optimization mechanism in CLOSE
can be formalized as a new pruning criterion due to a new anti-monotone
constraint.

Definition 7 (anti-monotone constraint Ccpse) Corose(S) = VS' C S =
S ¢ closure(S’) where closure(S) is the mazimal (for set inclusion) superset
of S which has the same frequency as S.

This anti-monotone constraint gives rise to a new safe pruning criterion (be-
sides the APRIORI trick based on frequency testing). An important property
of the CLOSE algorithm is its completeness, which means that it is possible to
find SATe,,., knowing SATe .. .nc;,e,”-

Example 11 Let us find closure(BC) on example of Figure 2. Items B and
C' are simultaneously present in transactions 1, 4, 5 and 8. We can see that
the mazimal set of attributes (€ Items) that are true within these transactions
is {B,C,D}. Thus closure(BC) = BCD. By the definition of closures,
F(BC,r) = F(BCD,r) (= 4/9). Since closure(B) = B and closure(C) =
C, Coiose(BC) is true and thus BC' can not be pruned (its frequency has to be
computed). Coiose(BCD) is false and it means that it can be excluded from the
counting procedure (as well as each of its supersets).

*It is possible because CLOSE outputs the closures of the sets in SAT¢,,.. ac;..,
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Considering the CLOSE algorithm as an instance of our generic algorithm G
(with the constraint Ceyese) enables to take advantage of CLOSE’s improve-
ments over APRIORI together with the ability to “push” constraints. To keep
the completeness of CLOSE, [6] shows that Algorithm G can be used to search
for sets which satisfy C = Ceipse A Cam A Cry Where C,y, is anti-monotone (e.g.,
it can contain C freq) and C,, is a monotone constraint.

Definition 8 (monotone constraint) A monotone constraint Cy, is the nega-
tion of an anti-monotone constraint. If C,, is monotone, = C,, is anti-monotone:

Crn(S) is true = VS' D S, C,,(S") is true.

Example 12 Continuing our running example, {A,B,C,D} C S and SN
{A, B,C} # 0 are monotone constraints on S. An interesting case of a mono-
tone constraint is S N Items™ # (0. This constraint, denoted as Cop says that
every set has to contain at least 1 positive attribute. It can be generalized as
Caipp to denote that one wants at least p positive attributes.

Monotone constraints are used for the effective candidate generation while
anti-monotone constraints are the basis for safe pruning strategies.

In fact, CLOSE makes use of the fact that in many practical situations, there
is quite much less closed frequent sets than frequent sets. In other terms, a lot
of association rules with confidence 1 hold in the data (indeed, the fact that an
itemset, e.g., BC, is not equal to its closure closure(BC) = BC'D points out
an association rule BC' = D with confidence 1 in r). To increase the potential
for pruning, [3] propose to relax Ccyose by considering almost-closures instead
of closures.

Definition 9 (anti-monotone constraint Cpsiner) Cirines(S) =VS' C S =
S ¢ almost-closure 4(S'). Given ¢ < |r|, if Y denotes the d-almost-
closure of a set S, Y is the mazimal (for set inclusion) superset of S which
has “almost” the same frequency as S: if sup(S) is the absolute frequency of
Sinr, VA€ Y\ S sup(SU{A}) > sup(S) — 6. Clearly, when 6 = 0, an

almost-closure turns to be a closure.

Using Cpriner instead of Cgpose, more candidates can be pruned, but the fre-
quency of some sets is known with some imprecision (related to the 6 param-
eter). This has been formalized recently in [5]. It has also been shown in [5]
that the real imprecision remains very low in practice.

4.2 An experimental validation
4.2.1 Dataset

We studied the use of several constraints for mining association rules with nega-
tions from a popular benchmark, the so-called mushroom data. This dataset is
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a binary matrix of 8124 lines. There are 119 columns for positive attributes.
It contains 23 “1” per line that comes from the binarization of 23 attributes
into exclusive attribute-value pairs. When encoding negative items, it leads to
a matrix with 238 columns whose each line contains 119 “1”.

4.2.2 Constraints

Extracting rules is performed in two steps. First, we generate a collection of
generalized sets, then we derive generalized rules. Concerning the processing
of constraints, we proceed in a two-way process. First, we state the constraints
for rules and then, we derive from them constraints for itemsets. Furthermore,
we have weakened the derived constraints to improve the performances. Last,
we discuss the effects of the selected constraints on the rule generation step,
eventually adjusting it.

Concerning performances, we focus on the influence of constraints mainly for
the generalized set extraction since the computational requirements of this
step are orders of magnitude higher than the ones of the rule generation one.
Concerning the propagation of constraints towards the rule generation step, we
consider a few options, some of them need non-trivial changes to the standard
rule derivation technique.

Desired constraints First, we decided not to consider rules involving only
negative terms at the left-hand side. Formally, we will require the left-hand
side to contain at least p positive items.

Then, we want to extract only frequent rules. Considering the value of the
frequency threshold, we wish the rules to have a frequency of few percents. In
experiments, we will try to reach this value. When we do not succeed (the re-
quired resources are too high), we report the last 3 experiments corresponding
to the lowest 3 values of frequency thresholds for which we succeeded.

We also use a constraint that is based on the confidence measure: we require
the rules to have the confidence of at least 90%.

From constraints on rules to constraints on itemsets The left-hand
side of each extracted rule has to contain at least p positive terms. We observed
that in order to evaluate the support and the confidence of a rule, we need
the frequency of 2 sets: the first is made of all the items of the rule and the
second is its left-hand side. In both, the number of positive items has to be at
least p. Therefore we have to extract itemsets containing at least this number
of positive items. This is expressed by the Cyy, constraint (see Ex. 11).

Since we do not choose which item must be at the right-hand side of the rule,
all itemsets are candidates to produce interesting rules.
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The frequency constraint on rules can be directly applied on itemsets. There-
fore, we use Cyyeq.

The constraint on rule confidence is difficult to transform into a useful con-
straint on itemsets (see, e.g., the discussion in [17]). Given the right-hand side
constraint, the directly-derived constraint would be “extract itemset X if at
least one immediate subset of X has a frequency of at most F(X,r)/0.9 or at
least one immediate superset of X has a frequency of at least F(X,r)*0.9”.
If evaluated directly, this constraint does not lead to less computations since
this evaluation is done within the rule generation step (it corresponds to the
algorithm of generation of high confidence rules from itemsets). We thus do
not derive any constraint on itemsets to cope with the confidence constraint.
C freq has been successfully used to make the association rule discovery tractable
on sparse matrixes. As we will show in the section 4.2.5, Cy,, is severely inef-
ficient, because typical complemented datasets are dense. In the experiments,
we will use additional anti-monotone constraints Ccypse O Casines, Which enable
an effective pruning in such difficult cases.

Improving the choice of constraints on itemsets Even if we first tried
to define strong constraints in order to produce as few as possible superfluous
itemsets for the rule generation step, we now relax one of them for efficiency
reasons.

Cuaipp 1s clearly a monotone constraint that asks for at least p positive attributes.
[6] points out that it is often interesting to transform a monotone constraint
of this type into a weaker constraint (i.e., accepting more sets) that, combined
with pruning strategies, will reduce the number of candidate sets and will make
the overall process much more efficient. In these experiments, instead of Cypp,
we use: Calppoamln = Calpp \% Camln

This constraint enforces at least p positive attributes (a monotone constraint)

or at most 1 negative attribute (an anti-monotone constraint).
Thanks to these two disjuncts, we can:

e use the join-based procedure described in Section 3.1 to generate all
candidates (but singletons),

e push the constraint into the candidate generation step (i.e., the earliest
possible step), and

e prune out most (in our experiments) of the candidate sets of size p and
p + 1 (corresponding to the first 2 passes of the basic version of the
“generic” algorithm with Cqp, alone).

Pruning most of the sets of size p and p + 1 comes from the fact that pruning
strategies such as the one in APRIORI may use as few as one candidate to
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prune several candidates at following levels. It means that for p = 2 (or
above) pairs that are mutually exclusive or occurring infrequently will avoid
counting the frequency of a great part of candidates of size 3 and 4. The
intuition is that all 3- and 4-itemsets that would be candidates under the Cgp)
constraint alone are much more numerous than all frequent sets up to size 4
verifying Cuppoamin A Crreq, thanks to the C,eq conjunct.

Outcome of the improved itemset constraints on the rule generation
At the end of the itemset extraction step, we might apply the original Cgpp
constraint (referred in the Step 11 of the generic algorithm G in Section 4.1),
and thus end up with the initially intended result. It corresponds to a “generate
and test” approach. An alternative is to keep them (with a relatively small
overhead) to use them later, i.e., for some post-processing tasks. For instance,
given the definition of the conviction [8] and of the J-measure [22], additional
frequencies required by these measures (i.e., the frequencies of some singletons)
would be thus available. We sketch later the two algorithms for rule generation
that correspond to the alternative of keeping or rejecting the overhead inherited
from the improved itemset constraints.

4.2.3 Implementing constraints on itemset extraction

To accomplish the pruning phase in the APRIORI algorithm, the frequency of
every immediate subset of an itemset is checked. Here, we check the frequency
of every immediate subset only if it verifies the Coppoamin constraint.

Pushing the Cuppoamin constraint into the candidate generation procedure re-
quires a detailed explanation of some implementation issues and involves prop-
erties of the constraint itself.

The generate procedure (given in Section 3.1) contains a join-based procedure
that generates a collection of candidates of size k from a collection of frequent
sets of size k—1. It considers a candidate (of size k) iff its two lexicographically-
first subsets of size £ — 1 are frequent. Let us notice that in order obtain the
two lexicographically-first £ — 1-item subsets of a k-itemset X, we remove from
X the last or the last but one item.

If we decide that negative items are ordered after all the positive ones (i.e.,
A < Z, whereas Z < A), we observe that for an itemset of size k that verifies
Calppoamin, two lexicographically-first subsets of size k — 1 verify Coippoamin t00.
In order to prove it, let us consider first an itemset verifying the Cuippoamin
constraint that has at most 1 negative item (i.e., verifying the Cq,1, disjunct).
Removing one item, we cannot increase the number of negative items, therefore
all subsets (including the ones required by the joint-based procedure) verify
the Cymin disjunct.

Consider now an itemset verifying the Caippoamin constraint that has 2 or more
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negative items. Since it does not verify the disjunct Cyp1p, it must verify Cgpp.
As we stated before, to obtain required subsets, we remove one of the last two
items and we said that negative items are ordered after the positive ones. It
follows that we remove one of the negative items (there are at least 2 of them
at the end). Thus, the number of positive ones does not change and the subset
verifies Cgipp-

We have just seen, that every itemset of size k verifying the Cuippogmin cOD-
straint may be produced with generate procedure starting from itemsets of
size k — 1 verifying the Caippoamin constraint (the required subsets verify that
constraint). We may turn this property into an operational statement: if one
of two lexicographically-first subsets of size k — 1 of an itemset of size k ver-
ifying the Cappoami1n constraint is missing from the output of the candidate
generation procedure it is due to an other constraint. The above proof holds
if all the combined constraints are anti-monotone (i.e., the conjunction or the
disjunction with C,¢, is anti-monotone). In that case, pruning is known to be
safe.

So, the steps 8-9 of the safe-pruning-on procedure (see Section 3.1) are
replaced with:

8. if (Cal(k—l)p(T) or Camln(T)) and 7T’ € £k—1
9. then delete C from C},

Cai(k—1)p denotes the constraint that checks for at least (k-1) positive attributes
in a candidate set.

How to push now the constraint itself into the candidate generation step? It is
relatively simple and efficient: after the generation of a k-item candidate with
the join-based function, we check that when k is lesser or equal to p + 1, the
(k — 1)" item of the ordered candidate is a positive item.

So, the steps 4-5 of the generate procedure (see Section 3.1) become:

4. where r.item; = q¢.itemy, r.item, = q.item,, ...,
D. r.itemy_o = q.itemy_o, r.itemy_; < q.itemy_q,
5. (k>p+1orr.itemy_; € Items™)

4.2.4 Implementing constraints on rule derivation

The original APRIORI algorithm derives frequent association rules (i.e., using
Cfreq) as explained in Section 3.1. Let us recall this rule generation part:
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9.  Phase 4 - rule generation
for each X € F'S, do
10. for each Y € X do
11. test-for-output(X \ {Y} = {V})

When the criterion for selecting a rule is that its confidence must be greater
or equal to the threshold ¢, test-for-output is defined as follows:

if 7(X,r)/F(X\{Y},r) > ¢
then output (X \ {Y} = {Y})

Assuming that we only have the frequent sets that verify Cqy,, i.e., the input

collection is now F'S,NSATg,, , the rule generation algorithm is the following:

9’.  Phase 4 - rule generation under Cypp A Cpreq

for each X € F'S, NnSATg,,,, do
10°. for each Y € X such that Cy,,(X \ {Y'}) do
11" test-for-output(X \ {V} = {V})

Notice, that testing Cgypyp (in Line 10°) is reduced here to the test if X \ {Y'} is
a member of the input collection (every frequent set verifying C,,, belongs to
the input collection).

Let us assume now that we know the frequent sets that verify Coppoamin, i-€.,
the input collection is now F'S, N SATg,, .. .. . Since we keep more itemsets,
at the rule generation step we must pay attention to this fact in order to not
to produce too many rules. The algorithm is:

9”.  Phase 4 - rule generation under Cuippoamin A Creq
for each X € F'S,NSATe,, ... such that Cyy,(X) do
10”. for each Y € X such that C,,,(X \ {Y}) do

117. test-for-output(X \ {V} = {V})

Given the implementation issues described in the previous subsection, notice
that the tests in Lines 9” and 10” are very efficient: besides the membership
test (to be done in line 10” as for rule generation under Cypp A Cjreq), We must
check that there are at least p items and that X.item, is a positive item i.e.,
is a member of Items™.

As previously pointed out, the side effect of the improved itemset constraint is
that we can compute other interestingness measures for a rule X \{Y'} = {Y'}.
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For instance, consider conv(X \ {Y} = {Y'},r), the conviction measure as
defined in [8]:

FXN{Y} r) =« F({V} 1))

CO?’LU(X \ {Y} = {Y}7 I‘) = f(X \ {Y} U {?}, I‘)

(2)

It can be computed from the collection of itemsets that verify Cuppoamin ACfreq-
Provided the frequencies of X and of X \ {Y'}, we can easily compute the
conviction of the same rule as follows:

FXN\N{Y}r) = F({Y} 1)) 3)
FX\{Y}r) = F(X,r)

conv( X\ {Y} = {YV},r) =

However, formula (3) requires the value of F(Y,r), which will be generally
present only in the collection corresponding to the improved itemset mining
step (i.e., {Y} verifies Coippoamin, independently of the value p and of whether
Y is a positive or a negative item).

Details about this rule generation technique and the prototype used in these
experiments are in [9].

4.2.5 Experimental results

The running prototype is implemented in C+4. We use a PC with 512 MB of
memory and a 500 MHz Pentium III processor under Linux operating system.
Let us introduce the collection of constraints we used in our experiments.

CO = Cfreq A Cal3poam1n
Cl = Cfreq A CC’lose A Callpoamln

CQ = Cfreq A CClose A Cal?poamln
C3 = Cfreq A CClose A Cal3poam1n
C4 = Cfreq A CMinem A Callpoamln
C5 = Cfreq A CMinem A Cal2poam1n

CB = Cfreq A CMinem A CalSpoamln

In the different experiments we set different values of p, from the quite un-
constraining requirement of 1 positive (in C; and Cy4), through the moderately
constraining requirement of 2 positives (in Cy and Cs) to the quite restrictive
requirement of 3 positives (in Cy, C3 and Cg).

The value of the frequency threshold (7) is changed over experiments in order
to observe the trend. Since we discovered an (expected) exponential trend, we
draw the graphs with logarithmically scaled axes.

In these experiments, we also compare the performances of Cgjose and Chrines
(note, the pairs C; - Cy, Cy - C5 and C3 - Cg).

The value of the § parameter in the Cyner constraint is set to 200 in these
experiments (recall that the number of lines is 8124).

19



Curines can take more advantage of correlations in data compared to Cgjose,
especially when the maximal frequent sets are long (above 20 items) and obvi-
ously, the introduction of dense columns containing negative information gives
rise to long frequent sets. As shown in [5], the trade off is to accept small incer-
titude (depending on the value of the mentioned J parameter) on the itemset
frequencies. This incertitude can be in practice very low compared with the
theoretical error bound that is related to ¢ for a given mining task. Clearly,
this incertitude also affects rule’s support and confidence measures but it can
be accepted in practical situations.

We included the use of Cy into the experiments to emphasize the intractability
when using only Cf..q. We had to use with it the strongest version of the
positive item inclusion constraint, i.e., Cy3,. And even with the highest value
of v that we used (i.e., 95%), the extraction based on Cy,., was still intractable.
We analyzed the partial result and we observed that there is only 1 frequent set
composed of 3 positive items only. Even though, the number of sets verifying
Co (frequent sets made of this positive 3-itemset and various negative items)
was so huge that the program could not tackle them with reasonable resources.
As we have just seen, Cf,., combined with the most favorable case of Cqpp
still leads to an intractable extractions. We also observed that the collection
of < frequentset, support > pairs in this case was highly redundant. We
thus used Cpiner OF Copose in the next experiments in order to get condensed
representations of these generalized sets. The extractions were tractable and
we have been able to lower the frequency threshold.

On Figure 3, we observe that the conjunct Cp;,e, drastically improves the per-
formances when compared to Ccjose under similar conditions. By using Cy/ines
instead of Cgyose, We trade some precision against the threshold frequency or
the expressive power of left-hand side (lower p leads to a richer descriptive
“language”).

Let us see it on an example. Assume that we proceed with CLOSE (i.e., con-
straints Crreq and Ceyose pushed at step 5 in the abstract algorithm) to extract
itemsets with at least 3 positive items (p=3) at the value 65% for the frequency
threshold (see 1 on Figure 3). It takes about 4500 seconds and still the col-
lection of rules seems to be limited to very strange cases. Indeed, each rule
must involve at least 65% tuples and must have 3 or more positive items at
the left-hand side.

If we want to generate rules with less constrained left-hand side (e.g., at p = 2),
the frequent set extraction would require to rise the frequency threshold to
about 90% in order to keep the extraction time similar (see 2 on Figure 3).
With such a threshold, it probably outputs only trivial rules.

With a similar extraction time (about 4200 seconds), we discover frequent sets
concerning at least 20% of tuples by using Cpriner (see 3 on Figure 3). If we
now want rules with less restricted left-hand sides, i.e., p=2, resp. p=1, we
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Figure 3: Experimental results on mushroom

can extract them within a similar time for rules concerning at least 50% (see
4 on Figure 3), resp. 65% (see 5 on Figure 3) of the tuples.

We used also the variation of frequency threshold and of the corresponding
extraction times as a measure of the complexity of the process, given all other
constraints. Observing the slope of the lines, we deduce that the complexity is
much reduced by Cprine, (lesser relative change due to v than in case of Cepse)-

5 Conclusion

We discussed the possibility to derive association rules with negations using
only the information about positive attributes. It gives rise to approximations
of rule interestingness measures but has to be considered as a valuable direction
of research. Then, we considered how given constraints on the desired rules can
be “pushed” efficiently into a set mining algorithm. Using results from [6], we
proposed useful constraints for mining association rules with negations, namely
anti-monotone constraints (e.g., frequency constraint or constraint based on
closures) and monotone constraints (e.g., ensuring the presence of positive
attributes in the mined sets). This is an ongoing research and an experimental
validation a benchmark dataset has been performed. We are now considering
real-life datasets.
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