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Abstract. In many application domains (e.g., WWW mining, molecular biology),
large string datasets are available and yet under-exploited. The inductive database
framework assumes that both such datasets and the various patterns holding within
them might be queryable. In this setting, queries which return patterns are called in-
ductive queries and solving them is one of the core research topics for data mining.
Indeed, constraint-based mining techniques on string datasets have been studied ex-
tensively. Efficient algorithms enable to compute complete collections of patterns
(e.g., substrings) which satisfy conjunctions of monotonic and/or anti-monotonic
constraints in large datasets (e.g., conjunctions of minimal and maximal support
constraints). We consider that fault-tolerance and softness are extremely impor-
tant issues for tackling real-life data analysis. We address some of the open prob-
lems when evaluating soft-support constraint which implies the computations of
pattern soft-occurrences instead of the classical exact matching ones. Solving effi-
ciently soft-support constraints is challenging since it prevents from the clever use
of monotonicity properties. We describe our proposal and we provide an experi-
mental validation on real-life clickstream data which confirms the added value of
this approach.
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Introduction

Collecting huge volumes of sequential data (i.e., the data is a collection of sequences
or strings in a given alphabet) has become far easier in many application domains (e.g.,
E-commerce, networking, life sciences). Our ability to discover actionable patterns from
such datasets remains however limited.

This paper focuses on substring mining, i.e., the searched patterns are strings as well.
Knowledge discovery processes based on substrings in string datasets have been studied
extensively. We study a database perspective on such processes, the so-called inductive
database approach [1,2,3,4]. The idea is that many steps in complex knowledge discov-
ery processes might be considered as queries which returns selected data instances and/or
patterns holding in the data. Designing query languages which would support such a
querying activity remains a long-term goal, and only preliminary results have been ob-
tained for some quite specific scenarios (e.g., rather simple processes based on associa-
tion rule mining [5]). As a needed step towards query languages for inductive databases,
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it is interesting to investigate different pattern domains and this chapter is considering
inductive queries on the string pattern domain. Such queries declaratively express the
constraints that have to be satisfied by the solution patterns. Typical challenges are (a) to
identify useful primitive constraints to specify the a priori interestingness of the patterns
in the data, and (b) to be able to design efficient and (when possible) complete solvers
for computing every pattern which satisfies a combination of primitive constraints.

The state-of-the-art is that efficient algorithms are available for solving specific con-
junctions of primitive constraints on string patterns. For instance, many solvers have
been designed for frequent substring or sequential patterns possibly combined with some
more or less restricted types of syntactic constraints (e.g., [6,7,8,9,10,11]). A promis-
ing approach has been developed by De Raedt and colleagues which consider arbi-
trary Boolean combination of primitive constraints which are either monotonic or anti-
monotonic [12,13,14]. Indeed, a key issue for designing efficient solvers is to con-
sider constraint properties (like anti-monotonicity and its dual monotonicity property)
and exploit them for clever search space pruning. Many useful primitive constraints are
monotonic (e.g., maximal support in a data set, enforcing a given sub-string occurrence)
or anti-monotonic (e.g., minimal support, avoiding a given sub-string occurrence).

Some useful constraints are however neither anti-monotonic nor monotonic. This is
the case of regular expression constraints, i.e., rich syntactic constraints which enforce
the solution patterns to belong to the language of a given regular expression. A typi-
cal application in WWW usage mining would be to look for the frequent sequences of
clicks which are matching a given path through the WWW site (conjunction of a mini-
mal support constraint with a regular expression constraint). Efficient ad-hoc optimiza-
tion strategies have been developed for such a conjunction [15,16,17]. In many applica-
tions, it is also interesting to look for patterns which are similar enough to a reference
pattern. For instance, it might be useful to look for sequences of clicks on a WWW site
which are frequent for a given group of users, infrequent for another group and which
are similar enough to an expected pattern specified by the WWW site designer. Such a
primitive similarity constraint generally lacks from any monotonicity property. In [18],
we have studied a possible decomposition of such a constraint into a conjunction of an
anti-monotonic one and a monotonic one. It was implemented on top of the FAVST al-
gorithm [14] such that it is now possible to combine efficiently that kind of similarity
constraint with other monotonic or anti-monotonic user-defined constraints.

This paper follows this direction of research and considers the intrinsic limitations
of these previous approaches which are all based on exact matching of candidate patterns
with data instances. We are indeed interested in string database analysis for various ap-
plication domains (e.g., WWW usage mining, seismic or telecommunication data analy-
sis, molecular biology). Even though our raw data is fundamentally sequential (spatially
or temporally ordered), the strings to be mined are generally preprocessed: the data can
be fundamentally noisy due to technological issues w.r.t. measurement, alphabet design
can be somehow exploratory, but also the phenomena we would like to observe can be
fundamentally fuzzy and such that soft computing approaches are needed.

In many application domains, the string alphabet has to be designed and/or com-
puted. For instance, in a WWW usage mining context, assume that the raw data con-
cern facts about “Users who performedOperations from Machines ”. Depending
of the analysis task, many event types and thus alphabets might be considered (e.g., an
operation is performed from a machine, a user has performed something, a user has per-



formed something from a machine) and a meaningful browsing sequence will often be
some kind of consensus between different occurrences of similar browsing sequences.
Also, in many cases of sequential data mining, data are available as numerical time series
that can be analyzed by means of substring pattern algorithms provided that the data is
discretized and thus encoded as a sequence of events in a “computed” alphabet. These
methods are not always robust enough and again, soft-occurrences of patterns might ap-
pear much more meaningful. Finally, the most famous case of degenerated data concerns
molecular biology. We can consider that patterns on gene promoter sequences (e.g., sub-
strings within DNA sequences) play a major role in gene regulation but it is well-known
that evolution has lead to many variants of the “originally” useful patterns. As a result,
when looking at the major scientific question of transcription factor binding site in DNA
sequences, molecular biologists consider consensus regular expressions instead of exact
matching information over the gene promoter sequences.

In this paper, we address some of the open problems when computing soft-
occurrences of patterns within string dataset. This is a significant revision and extension
of the paper [19]. For instance, an original and detailed experimental validation has been
carried out to replace the preliminary results described in [19]. In Section 1, we provide
the needed definitions and the problem setting. Section 2 introduces our definition of
soft-occurrences and our formalization of soft-support constraints. The proofs of prop-
erties are available and can be asked to the authors. They are omitted here because of
space limitation. In Section 4, we provide an in-depth experimental validation on real-
life clickstream data which confirms the added value of our approach. Finally, Section 5
is a short conclusion.

1. Problem Setting

Definition 1 (Basic notions on strings)Let Σ be a finite alphabet, a stringσ overΣ is
a finite sequence of symbols fromΣ, andΣ∗ denotes the set of all strings overΣ. Σ∗ is
our language of patternsL and we consider that the mined data set denotedr is a multi-
set1 of strings built onΣ. |σ| denotes the length of a stringσ and ε denotes the empty
string. We noteσi the ith symbol of a stringσ, 1 ≤ i ≤ |σ|, so thatσ = σ1σ2 . . . σ|σ|.
A sub-stringσ′ of σ is a sequence of contiguous symbols inσ, and we noteσ′ v σ. σ is
thus a super-string ofσ′, and we noteσ w σ′. We assume that, given a patternφ ∈ L,
the supporting set of strings inr is denoted byext(φ, r) = {σ ∈ r | φ v σ}.

Example 1 LetΣ = {a, b, c, d}. abbc, abdbc, ε are examples of strings overΣ. Examples
of sub-strings forabdbc area anddbc. aabdbcd is an example of a super-string ofabdbc.
If r is {abccb, adccba, ccabd}, ext(ccb, r) = {abccb, adccba}.

Definition 2 (Inductive queries) A constraint is a predicate that defines a property of
a pattern and evaluates either totrue or false. An inductive query onL and r with
parametersp is fully specified by a constraintQ and its evaluation needs the computation
of {φ ∈ L | Q(φ, r, p) is true} [20]. In the general case,Q is a Boolean combination of
the so-called primitive constraints.

1Data may contain multiple occurrences of the same sequence.



Definition 3 (Generalisation/specialisation)A patternφ is more general than a pattern
ψ (denotedφ º ψ) iff ∀r ext(φ, r) ⊇ ext(ψ, r). We also say thatψ is more specific than
φ (denotedψ ¹ φ). Two primitive constraints can be defined:MoreGeneral(φ, ψ) is
true iff φ º ψ andMoreSpecific(φ, ψ) is true iffφ ¹ ψ.

For strings, constraintSubString(φ, ψ) ≡ φ v ψ (resp.,SuperString(φ, ψ) ≡
φ w ψ) are instances ofMoreGeneral(φ, ψ) (resp.,MoreSpecific(φ, ψ)). In other
terms,∀φ, ψ ∈ L, φ º ψ iff φ v ψ. Given a threshold valuen, one can limit a maximal
number of occurrences ofψ in φ and thus defineContainsAtMost(φ, n, ψ).

Definition 4 (Examples of constraints)Given a threshold valuev, typical syntactic
constraints areMinLen(φ, v) ≡ |φ| ≥ v and MaxLen(φ, v) ≡ |φ| ≤ v. Assume
that Supp(φ, r) denotes the number of strings inr that are super-strings ofφ, i.e.,
|ext(φ, r)|. Given a threshold valuef , MinSupp(φ, r, f) ≡ Supp(φ, r) ≥ f (resp.
MaxSupp(φ, r, f) ≡ Supp(φ, r) ≤ f ) denotes a minimal (resp. maximal) support con-
straint in r.

Example 2 Assumer = {abd, abc, dc, c, dc}, we haveSupp(abd, r) = 1, Supp(dc, r) =
2, Supp(ad, r) = 0, and Supp(ε, r) = 5. MinSupp(dc, r, 2), MaxSupp(abd, r, 2),
MoreGeneral(c, dc), and MinLen(abd, 3) are examples of satisfied constraints.
Q ≡ MinSupp(φ, r, 2) ∧ MaxSupp(φ, r, 4) ∧ MinLen(φ, 2) is an example of an
inductive query whose solution set is{ab, dc}.

The concept of anti-monotonicity and its dual notion of monotonicity is central to
our work. When an anti-monotonic constraint like the minimal support is violated by
a candidate string, none of its more specific strings (i.e., super-strings) can satisfy it
and this gives rise to pruning in the search space. This has been the key property for
the many efficient algorithms which mine frequent strings. Negations of anti-monotonic
constraints are called monotonic, e.g., the maximal support, and can lead to dual pruning
strategies. This has been studied in detail in many papers, e.g., [20,12].

Definition 5 ((Anti-)monotonicity) Let r be a data set,L be the pattern language
and p be parameters. A constraintQ is anti-monotonic iff∀r and ∀φ, ψ ∈ L, φ º
ψ ⇒ Q(ψ, r, p) → Q(φ, r, p). Dually, a constraintQ′ is monotonic iffφ ¹ ψ ⇒
Q′(ψ, r, p) → Q′(φ, r, p).

Notice that conjunctions and disjunctions of anti-monotonic (resp. monotonic) con-
straints are anti-monotonic (resp. monotonic).

Example 3 SuperString(φ, ψ), MinLen(φ, v), andMaxSupp(φ, r, f) are monoto-
nic constraints.SubString(φ, ψ), ContainsAtMost(φ, n, ψ), MaxLen(φ, v), and
MinSupp(φ, r, f) are anti-monotonic ones.

The evaluation of some constraints on a patternφ does not require to scanr (e.g.,
SuperString(φ, ψ), MaxLen(φ, v)), while to evaluate some others, one needs to find
the occurrences ofφ in r. For instance, we have definedMinSupp(φ, r, f) based on a
number of strings whereφ occurs exactly (i.e., the cardinality of{σ ∈ r such thatσ w
φ}). However, in many application domains, measures based on such exact occurrences
may be misleading. We consider it is important to study a support constraint based on



soft-occurrences. The idea is that a stringσ ∈ r supportsφ if σ contains a sub-stringσ′

similar enough toφ. σ′ is then called a soft-occurrence ofφ.
Extensive studies of (anti)-monotonicity properties have given rise to efficient search

space pruning strategies. It is far more complex and sometime impossible to consider
generic algorithms2 for constraints that do not have the monotonicity properties. An
“enumerate and test” strategy is never possible in real-life problems (large alphabets
and/or large input sequences and/or huge number of input sequences). A solution might
be to heuristically compute part of the solution. We are however convinced that com-
pleteness has an invaluable added value, and we prefer to study smart relaxation or de-
composition strategies to solve our inductive queries on strings.
Problem setting.Our objective is to formalize the concept of soft-support constraints
such that they can be processed efficiently, i.e., as combinations of monotonic and
anti-monotonic constraints. This will enable to exploit efficient generic strategies for
solving arbitrary combinations of soft-support constraints with other (anti)-monotonic
constraints [12,13,14]. This is however challenging. Indeed, relevant similarity con-
straints are generally neither monotonic nor anti-monotonic [18] while our understand-
ing of soft-occurrences relies on similarity constraints. As a result, preserving the (anti)-
monotonicity of soft-support constraints can not be guaranteed. Looking for reasonable
conditions under which such properties would be preserved is clearly our main technical
issue.

2. Defining Soft-Occurrences and Soft-Support Constraints

The soft support of a patternψ is derived from a number of its soft-occurrencesφ, i.e.,
patternsφ such thatsim(φ, ψ) wheresim returns true when the two patterns are similar.
It enables to use the similarity approach from [18], slightly modifying the monotonic
sub-constraint such that its parameters become less connected to|ψ|.

Definition 6 (Longest Common Subsequence)Let x be a pattern fromL. A subse-
quence ofx is any stringw that can be obtained fromx by deleting zero or more (not
necessarily consecutive) symbols. More formally,w is a subsequence ofx if there exists
integersi1 < i2 < . . . < in s.t.w1 = xi1 , w2 = xi2 , . . . , wn = xin . w is a Longest
Common Subsequence (LCS) ofx andφ if it is a subsequence ofx, a subsequence ofφ,
and its length is maximal. Notice that|w| = lcs(φ, x) and, in general,w is not unique.

Definition 7 (Insertions, Deletions)Let x be the reference pattern,φ be a candidate
pattern fromL. Let fix any LCS ofφ andx, and denote the symbols ofφ (resp.x) that
do not belong to a LCS as deletions (resp. insertion). The number of deletions (resp.
insertions) isDels(φ, x) = |φ| − lcs(φ, x) (resp.Ins(φ, x) = |x| − lcs(φ, x)). Notice
that x can be produced fromφ by deleting fromφ the deletions and inserting intoφ the
insertions.

Lemma 1 Assumex, φ ∈ L, φ′ v φ, w one LCS ofφ andx, andw′ one LCS ofφ′ and
x. We have|w| = lcs(φ, x) ≥ lcs(φ′, x) = |w′|.

2Algorithms not dedicated to a specific combination of primitive constraints



The formal proofs of this lemma and the other propositions or properties are avail-
able and can be asked to the authors.

Definition 8 (Max Insertions constraint) Let x be the reference pattern,φ be a candi-
date pattern fromL, and ins a threshold value. The Maximum Insertions constraint is
defined asMaxIns(φ, x, ins) ≡ Ins(φ, x) ≤ ins.

Proposition 1 MaxIns(φ, x, ins) is monotonic.

Example 4 Assumex = cbcddda. Patternsφ1 = dbddda and φ2 = bcddada satisfy
MaxIns(φ, x, 2): Ins(φ1, x) = |x| − |bddda| = 2 andIns(φ2, x) = |x| − |bcddda| =
1. Patternφ3 = accadcdccccdddd also satisfies it:Ins(φ3, x) = |x| − |ccddd| = 2.

ConstraintMaxIns(φ, x, ins) enables to specify a degree of similarity (i.e., a max-
imum number of non matching symbols on reference), and thus to capture patterns which
are similar to the reference one. Note however thatMinLCS(φ, x, l) does not restrict
the dissimilarity of a candidate. Thus, we need for a second constraint that would bound
the number of ”errors“ within a candidate.

Definition 9 (Max Deletions constraint) Let x be the reference pattern,φ be a candi-
date pattern fromL, anddels a threshold value. The Maximum Deletions constraint is
defined asMaxDels(φ, x, dels) ≡ Dels(φ, x) ≤ dels.

Proposition 2 MaxDels(φ, x, d) is anti-monotonic.

Definition 10 (Similarity constraint) Given a reference patternx and two thresh-
olds ins and dels, our similarity constraint for a patternφ w.r.t. x is defined as
Csim(φ, x, ins, dels) ≡ MaxIns(φ, x, ins) ∧MaxDels(φ, x, dels).

Example 5 Continuing Example 4, patternsφ1 andφ2 satisfyCsim(φ, x, 2, 1). Pattern
φ4 = dbdddca satisfiesCsim(φ, x, 2, 2) sincelcs(φ4, x) = |x| − |bddda| = 2. Pattern
φ3 does not satisfy neitherCsim(φ, x, 2, 1) nor Csim(φ, x, 2, 2).

Definition 11 (Soft-occurrence)If a string σ ∈ r containsφ s.t.Csim(φ, ψ, ins, dels)
is satisfied, we say thatφ is a soft-occurrence ofψ denoted assOcc(ψ, ins, dels).

Let us now introduce our new support constraints.

Definition 12 (Soft-support) If sOcc(φ, ins, dels)1, . . ., sOcc(φ, ins, dels)n are the
soft-occurrences forφ in r, the soft-support ofφ (denotedSoftSupp(φ, r, ins, dels)) is
|ext(sOcc(φ, ins, dels)1, r) ∪ . . . ∪ ext(sOcc(φ, ins, dels)n), r)|.
Definition 13 (Minimum/Maximum soft-support) Given a user-defined thresholdf ,
the Minimum Soft-support constraint is defined asMinSoftSupp(φ, r, f, ins, dels) ≡
SoftSupp(φ, r, ins, dels) ≥ f . The Maximum Soft-support constraint is defined as
MaxSoftSupp(φ, r, f, ins, dels) ≡ SoftSupp(φ, r, ins, dels) ≤ f .

Example 6 Continuing Example 2,SoftSupp(abd, r, 1, 1) = 2 and{bd, abc, abd, ab}
are the soft-occurrences ofabd on r. SoftSupp(dc, r, 1, 1) = 5 and {c, dc, d, bc, bd}
are the soft-occurrences of patterndc. Examples of constraints which are satisfied are
MinSoftSupp(dc, r, 4, 1, 1) andMaxSoftSupp(abd, r, 2, 1, 1).



Table 1. Support and soft-support

Supp Supp×100%
SoftS(1,1)

Supp×100%
SoftS(1,2)

Supp×100%
SoftS(2,1)

SoftS(1,1)
SoftS(1,2)

SoftS(1,1)
SoftS(2,1)

Mean val 57.89 14.61 12.37 6.9 0.76 0.37

Stand Dev 70.63 21.26 20.6 14.72 0.09 0.18

Min val 23 1.53 1.14 0.54 0.45 0.06

Max val 843 100 100 97.6 1 0.99

Proposition 3 Constraint MinSoftSupp(φ, r, ins, dels) is anti-monotonic (dually,
constraintMaxSoftSupp(φ, r, ins, dels) is monotonic) whendels ≥ ins.

3. Experimental Validation

We have performed a number of experiments to empirically evaluate the properties of
the MinSoftSupp(φ, r, ins, dels) constraint. To the best of our knowledge, FAVST
[14] algorithm is among the best algorithms for mining strings that satisfy arbitrary
conjunctions of (anti)-monotonic constraints. As a result, the FAVST framework en-
ables to push constraintsCsim(φ, x, ins, dels), MinSoftSupp(φ, r, ins, dels) and
MaxSoftSupp(φ, r, ins, dels) (when dels ≥ ins), and their arbitrary conjunctions
with other anti-(monotonic) constraints. We have developed in C our own implementa-
tion of the FAVST algorithm. Our experimental validation has been carried out on the
KDD Cup 2000 real-world clickstream datasets [21], using a Intel(R) Pentium(R) M
1.69GHz processor (1GB main memory).

To produce time ordered sequences of templates requested for each session, we have
extracted attributes ”Session ID“, ”Request Sequence“, ”Request Template“. There are
137 different request templates, i.e., these sequences are strings over an alphabet of137
symbols. The produced dataset, referredS, contains234, 954 strings. The shortest string
is of length1 while the largest one is of length5, 487. We have also extracted the at-
tributes ”Session First Request Day Of Week“ and ”Session First Request Hour Of Day“
to split the datasetS into four datasets:SWEfor sessions requested on Saturday or Sun-
day (47, 229 strings),SWDfor sessions requested on workdays (187, 725 strings),SD
for sessions requested from8 am till 7 pm (137, 593 strings), andSN for the sessions
requested from7 pm to8 am (97, 361 strings).

3.1. Comparative Study of Support, Soft-Support and Degrees of Softness

Solving MinSoftSupp(φ, r, ins, dels) for φ means to solveCsim(ψ, φ, ins, dels) to
find all patternsψ that are soft-occurrences ofφ given parametersins anddels. We
performed experiments to assess the soft-support w.r.t. support, and the impact of dif-
ferent combinations of parametersins anddels on resulting “softness”. We have com-
putedSoftSupp(ψ, S, 1, 1), SoftSupp(ψ, S, 1, 2), andSoftSupp(ψ, S, 2, 1) for 796
patterns that are the solutions toIQ1 ≡ MinSupp(ψ, S, 0.01%) ∧ MinLen(ψ, 7) ∧
MaxLen(ψ, 7). We took the patterns of the same length so that soft support would not
be influenced by variable length but only byins anddels values. We got796 solution
patterns. Table 1 provides a statistical summary.



Figure 1. Selectivity ofMinSupp(φ, r, f) andMinSoftSupp(φ, r, sf, ins, dels)

We observe that, in most cases, the support of a pattern is quite small w.r.t. its
soft-support. Also,SoftSupp(ψ, S, 1, 1) tends to be smaller thanSoftSupp(φ, S, 1, 2)
and SoftSupp(φ, S, 2, 1). Finally, SoftSupp(φ, S, 1, 2) tends to be smaller than
SoftSupp(φ, S, 2, 1).

3.2. Selectivity of Minimal (Soft)-Support Constraints

To compare the selectivity ofMinSoftSupp(φ, r, f, ins, dels) andMinSupp(φ, r, f)
constraints we computed solutions to

IQ2 ≡ MinSupp(φ, S, f) ∧MinLen(φ, 5) ∧MaxLen(φ, 10),
IQ3 ≡ MinSoftSupp(φ, S, f, 1, 1) ∧MinLen(φ, 5) ∧MaxLen(φ, 10)
IQ4 ≡ MinSoftSupp(φ, S, f, 1, 2) ∧MinLen(φ, 5) ∧MaxLen(φ, 10)
IQ5 ≡ MinSoftSupp(φ, S, f, 1, 0) ∧MinLen(φ, 5) ∧MaxLen(φ, 10)
IQ6 ≡ MinSoftSupp(φ, S, f, 1, 2) ∧MinLen(φ, 4) ∧MaxLen(φ, 10)
The size of the corresponding solutions is plotted against differentf thresholds in

the graph given in Figure 1
For MinSupp(φ, S, f), we started atf = 0.01%. This is a pretty small value

and it appears fair to consider that patterns which do not satisfy this constraint are
not interesting. ForMinSoftSupp(φ, S, sf, ins, dels), we started atf = 0.5% be-
cause of consumed time restrictions (see Section 3.4). For both constraints, we increased
f value until the corresponding solution set became empty. In all, there are767, 238
patterns satisfyingMinLen(φ, 4) ∧ MaxLen(φ, 10), and727, 873 patterns satisfying
MinLen(φ, 5) ∧MaxLen(φ, 10).

Observe thatMinSupp(φ, S, f) with even very small support thresholds drasti-
cally prunes, while the same support values forMinSoftSupp(φ, S, f, ins, dels) are
not selective at all. It emphasizes the added value forMinSoftSupp(φ, S, f, ins, dels):
one might assume that at least1% of the sessions share common requested tem-
plates, andMinSoftSupp(φ, S, 1%, ins, dels) enables to extract these regularities
while MinSupp(φ, S, 1%) leads to an empty collection.



Figure 2. Number of soft-occurrences

Figure 2 plots the mean values of the number of soft-occurrences for patterns that
are solutions toIQ3, IQ4, IQ5 andIQ6. It reveals that, in general, the greater pattern
soft-support the more soft-occurrences, or similar patterns, it has. This is however not a
theorem.

3.3. Empirical Assessment of Soft-Support Constraint

We strongly believe that softness is needed to find valid regularities or patterns when
data or the phenomenon we would like to capture is somehow noisy. We performed
experiments to assess this expected added value. In the examples of extracted patterns,
i.e., sequences of requested templates, we denote a template by a latin alphabet majuscule
letter (see Table 2).

Figure 3. Number of candidates to soft-occurrences



Table 2. Identificators of templates

ID Template

A main/home\.jhtm

B main/departments\.jhtml

C main/search_results\.jhtml

D products/productDetailLegwear\.jhtml

E main/shopping_cart\.jhtml

F main/login2\.jhtml

G main/registration\.jhtml

H main/welcome\.jhtml

I checkout/expressCheckout\.jhtml

J main/boutique\.jhtml

K main/assortment\.jhtml

L main/vendor\.jhtml

M main/leg_news\.jhtml

N products/productDetailLegcare\.jhtml

We have already mentioned that soft-support constraint helps to identify regularities
whose exact-support does not appear discriminant (i.e., using exact support, the relevant
pattern is blurred among many other other ones). For instance, solving

IQ7 ≡ MinSoftSupp(φ, S, 2%, 1, 1) ∧MinLen(φ, 5) ∧MaxLen(φ, 10),
we retrieve the patternABCCDhaving the highest soft-support (2.9%) among patterns
whose length is at least5. Its exact-support is only0.18%. As a second example, solving

IQ8 ≡ MinSoftSupp(φ, S, 0.5%, 1, 1) ∧MinLen(φ, 7) ∧MaxLen(φ, 10),
we find the patternDCDDDDDof maximal soft support (0.8%) among the patterns whose
length is at least7. Its exact-support is0.06% only.

Finally, among the solution patterns to
IQ9 ≡ MinSoftSupp(φ, S, 0.5%, 1, 1) ∧ ContainsAtMost(φ, 3, D) ∧

MinLen(φ, 7) ∧MaxLen(φ, 10),
the maximal soft-support is0.6% for the patternCDEFGHIwhile its exact-support is
0.09%.

To get some empirical feedback on both the soft-support and its corresponding
exact-support ratio, we evaluated on the query

IQ10 ≡ MinSoftSupp(φ, S, 0.5%, 1, 1) ∧MinLen(φ, 5) ∧MaxLen(φ, 10)
Table 3 gives the number of patterns for the intervals of the ratio exact-support/soft-
support. We observe that the value of exact-support is not discriminant for the major part
of the solutions toIQ10.

Next, we have been looking for sequences of templates that might be specific to
workdays (resp. daytime), i.e., frequent among the sessions requested during workdays
(resp. daytime) and not frequent among the sessions requested during weekends (resp.
nighttime), and vice versa. There were no such sequences of length at least5 when
searching for soft-occurrences with parametersins = 1 anddels = 1. We thus relaxed
theMinLen(φ, 5) constraint and restricted the similarity parameters accordingly. It has
given the query



Table 3. Number of patterns for exact-support/soft-support intervals

exact-support/soft-support, r Nb of patterns

0.0002 ≤ r < 0.001 2131

0.001 ≤ r < 0.01 3159

0.01 ≤ r < 0.1 1720

0.1 ≤ r < 0.5 419

r ≥ 0.5 5

IQ11 ≡ MinSoftSupp(φ, SWD, 0.6%, 0, 1)∧MaxSoftSupp(φ, SWE, 0.3%, 0, 1)∧
MinLen(φ, 4) ∧MaxLen(φ, 10).

We found3 patterns in the solution set forIQ11: JBCC, KBCC, andKKKJ. Similarly,
solving

IQ12 ≡ MinSoftSupp(φ, SD, 0.6%, 0, 1) ∧ MaxSoftSupp(φ, SN, 0.3%, 0, 1) ∧
MinLen(φ, 4) ∧MaxLen(φ, 10)

has given one solution pattern only:DEDE.
In a number of cases, the exact-support and the soft-support of patterns do

not coincide. When looking for dataset-characteristic patterns, exact-support can dif-
fer significantly, while soft-supports are similar. We extracted patterns satisfying
MinSupp(φ, r1, f1) ∧ MaxSupp(φ, r2, f2) constraints and we evaluated their soft-
support (with parametersins = 1, dels = 1 when |φ| ≥ 5, andins = 0, dels = 1
otherwise). For instance, the patternADDDis a solution pattern to

IQ13 ≡ MinSupp(φ, SWE, 0.01%)∧MaxSupp(φ, SWD, 0.005%)∧MinLen(φ, 4)∧
MaxLen(φ, 10),

but its soft-support inSWEis 0.5% and inSWDis 0.4%. Similarly, the patternAMALA
belongs to the solution set of

IQ14 ≡ MinSupp(φ, SN, 0.1%) ∧ MaxSupp(φ, SD, 0.05%) ∧ MinLen(φ, 4) ∧
MaxLen(φ, 10),

but its soft-support inSNis 0.5% and inSDis 0.4%.
Exact-support and soft-support values can be even contradictory. For instance, the

patternsDBDBNandABDBDBbelong to the solution set of
IQ15 ≡ MinSupp(φ, SN, 0.1%) ∧ MaxSupp(φ, SD, 0.07%) ∧ MinLen(φ, 4) ∧

MaxLen(φ, 10),
but their soft-supports inSNare0.3% while they are0.8% in SD.

These examples emphasize that soft-support constraint are needed to avoid mislead-
ing hypothesis on dataset characterization.

3.4. Time Efficiency

The runtime to solveIQ2, IQ3, IQ4, IQ5 and IQ6 is given in Figure 4. The fact
we get a rather poor time efficiency to computeMinSoftSupp(φ, S, f, ins, dels)
is not surprising. Firstly,MinSoftSupp(φ, S, f, ins, dels) is far less selective than
MinSupp(φ, S, f) (see Figure 1). Then, the evaluation ofSoftSupp(φ, r, ins, dels) is
much more expensive then exact-support counting: even if we push deeply into the ex-
traction phase the (anti)-monotonic conjunctsMaxDels(ψ, φ, dels) andMaxIns(ψ, φ,
ins) (parts of similarity constraintCsim(ψ, φ, ins, dels)), the number of candidates for



which Csim(ψ, φ, ins, dels) still has to be evaluated can be huge (e.g., hundreds of
thousands, see Figure 3).

The evaluation ofCsim(ψ, φ, ins, dels) is expensive as well: to compute the
Longest Common Subsequence we have employed a classical dynamic programming
approach of time complexity O(nm) [22]. There is clearly a room for improvements here
(see, e.g., [23] for a survey). Also, whenins = dels, one can exploit the symmetric
property of the underlying similarity relation. In addition, computations can be tuned by
choosing dynamically the order of constraints to push.

Let us notice however that, even though soft-support counting may take hours
(as we see in Figure 4), it does not prevent from optimizing sequences of inductive
queries involving soft-support constraints. Indeed, it is possible to evaluate once the
soft-support for patterns in a dataset for some minimal valueα (resp. maximal value
β) before solving queries which involveMinSoftSupp(φ, r, f, ins, dels) for f ≥ α

(resp.MaxSoftSupp(φ, r, f, ins, dels) for f ≤ β). Also, when computing a conjunc-
tionMinSoftSupp(φ, r1, f1, ins1, dels1)∧MaxSoftSupp(φ, r2, f2, ins2, dels2), the
evaluation ofMaxSoftSupp(φ, r2, f2, ins2, dels2) is far less expensive since we prune
its search space by the anti-monotonic constraintMinSoftSupp(φ, r1, f1, ins1, dels1)
and computeMaxSoftSupp(φ, r2, f2, ins2, dels2) by starting at theS border for the
anti-monotonic constraintMinSoftSupp(φ, r1, f1, ins1, dels1) (see, e.g., [24]), as-
cending towards more general patterns. Figure 5 provides the needed time for solv-
ing MaxSoftSupp(φ, SN, β, ins, dels) when 1% ≤ β ≤ 5% in a conjunction
MinSoftSupp(φ, SD, α = 0.5%, ins, dels) ∧MaxSoftSupp(φ, SN, β, ins, dels) for
pairs of parametersins = 0, dels = 1 andins = 1, dels = 1. Notice also that we can
store the computed patterns and their soft-supports such that the future extractions can
be drastically optimized.

Figure 4. Time efficiency



Figure 5. Time efficiency forMaxSoftSupp(φ, SN, β, ins, dels)

4. Conclusion

The vision of the inductive database framework is that expert data owners might be able
to query both the data and the patterns holding in the data. In this paper, we have consid-
ered the so-called inductive querying problem on string datasets, i.e., the evaluation of
constraints which specify declaratively the desired properties for string patterns. Solving
arbitrary combinations of useful primitive constraints by means of generic algorithms is
challenging. In this paper, we revisited the popular support constraints when introducing
soft occurrences. It might be quite useful when dealing with intrinsically noisy data sets.
We formalized an approach to soft-support constraint checking which can take the most
from efficient strategies for solving conjunctions of monotonic and anti-monotonicity
constraints. As a result, the analysts can combine our soft-support constraints with many
other user-defined constraints of interest.
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