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ABSTRACT: There is a critical need for new and efficient computational methods aimed at discovering putative transcription
factor binding sites (TFBSs) in promoter sequences. Among the existing methods, two families can be distinguished: statistical
or stochastic approaches, and combinatorial approaches. Here we focus on a complete approach incorporating a combinatorial
exhaustive motif extraction, together with a statistical Twilight Zone Indicator (TZI), in two datasets: a positive set and a
negative one, which represents the result of a classical differential expression experiment. Our approach relies on the existence
of prior biological information in the form of two sets of promoters of differentially expressed genes. We describe the complete
procedure used for extracting either exact or degenerated motifs, ranking these motifs, and finding their known related TFBSs.
We exemplify this approach using two different sets of promoters. The first set consists in promoters of genes either repressed or
not by the transforming form of the v-erbA oncogene. The second set consists in genes the expression of which varies between
self-renewing and differentiating progenitors. The biological meaning of the found TFBSs is discussed and, for one TF, its
biological involvement is demonstrated. This study therefore illustrates the power of using relevant biological information, in
the form of a set of differentially expressed genes that is a classical outcome in most of transcriptomics studies. This allows
to severely reduce the search space and to design an adapted statistical indicator. Taken together, this allows the biologist to
concentrate on a small number of putatively interesting TFs.

KEYWORDS: Promoter, differential expression, complete pattern extraction, transcription factor, transcription factor binding
site, twilight zone, extraction parameter tuning, exact matching pattern, soft matching pattern

INTRODUCTION

To understand the regulation of gene expression remains one of the major challenges in molecular
biology. One of the elements through which the regulation works is the initiation of the transcription
by the interaction between gene promoter elements at the level of DNA sequence and multiple activator
and repressor proteins called transcription factors (TFs). This interaction occurs when a TF binds on its
binding site on a gene promoter. Numerous efforts have given rise to a variety of computational methods
to discover putative transcription factor binding sites (TFBSs) in sets of promoters of co-regulated genes.
Among them two families can be distinguished: statistical or stochastic approaches, and combinatorial
approaches [1].
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Concerning the family of statistical and stochastic approaches, a recent review of the most widely
used algorithms exhibits rather limited results [2], and concludes to the necessity to go on exploring
alternative methods. There are several reasons for their limited success, but it seems that the difficulty
to separate the patterns from the random background is among the principal ones. Statistical methods
make hypothesis about the distribution models and assumptions for computational as well as statistical
reasons, but no one knows the correct stochastic process that nature uses, and what is the biological
randomness. Moreover, this stochastic process seems to be different from species to species: many tools
perform much better on the yeast datasets than on other species [2,3]. In addition to this, considering
the employed measures of interest, statistical significance is very dependent on the choice of the length
of the promoter sequences: considering longer promoters would allow to identify regulatory elements
located further upstream, but conversely then random motifs become statistically as significant as the
regulatory elements [4].

In this paper we focus on the family of combinatorial approaches that aims at an exhaustive motif
extraction without a priori hypothesis on the underlying stochastic process. Exhaustive algorithms
enumerate all objects they were built to find. According to [5], probably the best tools for finding
consensus-based motifs in DNA sequences are the pattern-driven algorithms that test all the 4 L different
patterns of L letters, score each pattern by the number of approximate occurrences and find the high-
scoring patterns. The exhaustive search through all these 4L patterns becomes impractical for large L,
but the length of binding sites in promoter sequences is estimated to be between 5 and 15 base-pairs
(bp) [6] and the mean of these lengths in TRANSFAC [7] is 14.3 bp with standard deviation 4.7
bp [8]. These rather reasonable values of L turn the search to be tractable in practice. However, the
exhaustive methods are often not selective enough to discriminate true sites from false positives, and
thus, because of the large number of patterns obtained, the user has to rank them by different statistical
measures of interest computed under different hypothesis. An effort on developing exhaustive and
optimal approaches (i.e., with guarantee to find all the patterns having the highest or demanded fitness
values) for the discovery of patterns in biosequences has resulted in a number of algorithms to search for
putative TFBS, e.g., [9–15] (a systematized survey of main algorithmic ideas can be found in [16]). In
practice, they all required some fitness measure used as a ranking and/or a selection criterion to help an
user to differentiate the true positive from the false ones. Many different measures have been proposed,
e.g., statistical significance [10,15], information content [11,17], ratio of the score of a pattern in a
positive dataset divided by the score of the same pattern in a random dataset [14]. The approach of [3]
takes one step further and, after having ranked the extracted patterns according to a measure of fitness,
use the most significant ones as the seeds to build the motifs modelling the TFBSs (in the concrete, the
position specific scoring matrices (PSSMs)).

Having in mind the difficulties to model statistically the biological randomness, we propose to postpone
the phase of significant pattern selection, based on a statistical measure, and to use beforehand the
supplementary biological information to constrain the search and reduce the number of extracted patterns.
This additional information comes in the form of a second dataset representing an opposite biological
situation. To collect this information, the method starts with a classical operation used in molecular
biology: the search for differentially expressed genes.1 This allows to obtain two groups of genes from
which one can derive two sets of promoters. To look for putative TFBSs regulating the overexpressed
genes, we choose the first set (the promoters of the over-expressed genes) to be used as a positive set,

1It consists in comparing two biological situations, A and B, in order to obtain two groups of genes: one that is up-regulated,
and the other one that is down-regulated, when going from A to B.
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and the second set as a negative one.2 Then our method consists in finding the patterns occurring on at
least αmin promoters from the positive set and on at most αmax promoters from the negative set, where
the parameter αmin (resp. αmax) is supposed to be a large (resp. small) threshold value. The originality
of the proposed method w.r.t the other combinatorial algorithms, which allow to extract patterns from
several datasets (e.g., SPEXS [14] or DRIM [18]), is that the maximal support threshold is set explicitly.
This is particularly interesting, when there is a clear semantic cut between positive and negative datasets,
and the negative dataset has an opposite biological sense (presence/absence of a mutation; addition or
not of a given drug, etc.), and does not just represent random background. Two kinds of patterns are
handled by our method: patterns having exact matches in the sequences, called Exact Matching Patterns
(EMPs) and patterns having approximate matches within a maximum Hamming distance, called Soft
Matching Patterns (SMPs). Interestingly, in both cases, the enrichment of the pattern discovery context,
using a negative dataset, reduces the size of the solution set by several orders of magnitude. Even then,
the set of the extracted patterns remains large, and thus we develop a set of complementary solutions to
help to tune the parameters in order to focus on a manageable and potentially interesting set of patterns.
In particular, we use a notion of rising patterns, and we rank/select the exceptional patterns according to
a measure called Twilight Zone Indicator (TZI), based on subtlety [4]: a pattern M is considered to be
subtle if we expect that some random patterns could occur at least as often as M in the positive dataset
and at the same time no more often than M in the negative dataset. In the case of SMPs, we also cluster
the patterns (hierarchical clustering) and compute the consensus pattern of each cluster of SMPs using a
multiple alignment tool. Then, for both EMPs and consensus SMPs, we verify which patterns are known
TFBSs in the TRANSFAC database. Identification of the TFs that can bind on the patterns specific to
the positive dataset can help to discover new regulators of the concerned biological process. Patterns
that do not correspond to known TFBSs are equally interesting since they can be unknown elements of
regulation.

METHODS

The pattern discovery tool Marguerite

To extract the patterns from gene promoter sequences, we use a tool called Marguerite. This tool
performs a differential extraction of patterns between two sets of promoter sequences: set D+, a dataset
representing a positive situation, and D−, a dataset representing a negative one. To run an extraction,
the user has to set the four following constraints: Lmin the minimal length of the patterns, Lmax their
maximal length, αmin their minimal support in D+, and αmax their maximal support in D−, where
the support of a pattern in a dataset D is simply the number of sequences in D containing at least one
occurrence of the pattern. Marguerite is complete in the sense that it finds all possible patterns satisfying
the constraints according to the user setting.

Through minimum support constraint on D+ and maximum support constraint on D−, Marguerite
enables differential extractions. Another approach to perform differential extractions is to use only a
minimum support constraint on D+ and to filter the patterns according to a score, which is a ratio of
sequences, containing a pattern in D+, divided by a ratio of sequences, containing a pattern in a D− [14].

2Notice that to characterize the promoters of the repressed genes, one simply has to choose the repressed genes as the positive
set.
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These two approaches are not equivalent. The latter one is convenient, when D− is a random dataset,
since it picks out the patterns that are overrepresented in D+ w.r.t. D−. However, when D− represents an
opposite biological situation, and we want to extract patterns that are not implied in a biological process
of that situation, we need to explicitly push an upper bound for pattern support in D−.

It should be noticed that other existing tools to perform complete differential extractions, such as
SPEXS [14], could be used in the process presented in this paper. In this case, the whole process remains
unchanged, except that if different constraints are used, then we may have to change the way the TZI
measure (see section “Twilight Zone Indicator”) is computed. For instance, in the case of SPEXS, we
have a slightly different parameter space, and the TZI needs to be adapted accordingly.

Marguerite can be used to compute both Exact Matching Patterns (EMPs) and Soft Matching Patterns
(SMPs). Moreover, it does not use a predefined alphabet, and can, for instance, be used on sequences
containing extra symbols, like the symbol N to indicate undefined bases. For EMPs, the support of a
pattern M is the number of sequences containing at least one exact occurrence of M , while in the case
of SMPs this is the number of sequences containing at least one soft occurrence of M (i.e., at least
one approximated occurrence of M). A substring S is termed a soft occurrence of a pattern M if their
Hamming distance (i.e., the number of substitutions necessary to obtain M from S) is at most αdist,
where αdist is a user-specified threshold. When αmin, αmax and αdist are given, Marguerite finds all
SMP patterns M such that: (1) M has at least αmin soft occurrences in D+, (2) M has at most αmax

soft occurrences in D−, and (3) M has at least one exact occurrence in D+ (i.e., M occurs at least one
time without modification in the positive dataset).

Marguerite is based on the generic algorithm FAVST [19],designed for the efficient extraction of strings
under combination of constraints, taking advantage of the so called Version Space Tree (VST) [20] data
structure. Marguerite [21,22] extends FAVST to degenerated patterns discovery through similarity and
soft-support constraints. It is implemented in C/C++ and compiled for GNU/Linux, Mac OS and
Windows operating systems. It is available upon request to the authors. On a MAC OS platform (Intel
2 Ghz processor, 1Gb of RAM), for the extractions reported in this study, the extraction times ranged
from a few seconds (in the case of EMPs) to a few tens of minutes (for SMPs).

Procedure to find rising patterns

Let Tmin (resp. Tmax) be a set of possible values for αmin (resp. αmax) ordered by increasing values.
Finding the rising patterns in the parameter space Tmin × Tmax, is performed as follows:

1. Let αmin (resp. αmax) be the first element in Tmin (resp. Tmax).
2. Let Sp be the set of patterns obtained when running an extraction under the conjunction of constraints

αmin and αmax.
3. If Sp is empty and αmax is not the last element in Tmax then set αmax to the next value in Tmax.

Goto step (2).
4. Output Sp as a set of rising patterns.
5. If αmin is not the last element in Tmin then set αmin to the next value in Tmin. Goto step (2).

It should be noticed that if the set S is empty for a conjunction of constraints αmin and αmax, then S is
also empty for any conjunction α’min and αmax where α’min � αmin. The procedure avoids the test of
such useless conjunctions.

A more formal view of finding rising patterns would be to consider it as a multi-objective optimization
problem [23]: maximizing αmin, minimizing αmax, under the constraint N > 0, where N is the number
of patterns satisfying the αmin and αmax thresholds. However, in practice, a pure maximization of αmin
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is too restrictive, because a value of αmin, that is slightly lesser than an optimal one, can lead to a few
more patterns, and can also be interesting. Thus, we consider as rising patterns (in their definition and
in the procedure to find them) the points in the parameter space that are solutions of this optimization
problem (the Pareto optimal set), and also points that are suboptimal solutions (for each αmin value we
find the minimal αmax such that N > 0) and extract the patterns for all these points in the parameter
space.

Twilight Zone Indicator

The notion of twilight zone (TZ) [4] has been originally proposed to characterize the subtle motifs,
i.e., motifs that can not be distinguished (in the statistical sense) from random patterns (patterns due
to the random background). In this context the TZ was defined as the set of values of the scoring
function for which we can expect to have some random patterns exhibiting such score values. Let
us consider the notion of extraction parameters in a broad sense, including structural properties of the
dataset (e.g., number of sequences, length of the sequences) and extraction constraints (e.g., selection
threshold according to one or several measures, length of the patterns). Then, the TZ can be seen as a
region (or set of regions) in the parameter space, where we are likely to obtain random patterns among
the extracted patterns, these random pattern having scores as good (or even better) than the true patterns.

Having this view in mind, we define a Twilight Zone Indicator (TZI) to rank the patterns in the case of
differential extractions. Let M be a pattern, occurring in support+(M) sequences of the positive dataset,
and in support−(M) sequences of the negative dataset. Then, TZI(M) is an estimate of the number
of random patterns, having the same length as M , that will be extracted using αmin = support+(M)
and αmax = support−(M), i.e., using the most selective constraints that still permit to obtain M (since
for larger αmin and/or lower αmax threshold values, M will not satisfy the constraints and will not be
retained during the extraction). The higher is TZI(M), the deeper is M in the twilight zone.

We consider that all the sequences have the same length, denoted G. In this context, we want to
estimate the number of SMP patterns of length L that will be extracted under the thresholds αmin, αmax

and αdist (see section “The pattern discovery tool Marguerite”, in Methods). Notice that estimating
the number of EMPs is a particular case, where αdist is set to 0. As in [4], we suppose that the data
sequences are composed of independent and uniformly distributed symbols, having the same occurrence
probability, and that the overlapping of the occurrences of the patterns has a negligible impact on the
number of patterns extracted (since L << G). Additionally, we suppose that the two datasets are
independent.

Occurrences at a given position

The data sequences are gene promoter sequences composed of 4 symbols. Then, there are 4 L different
possible strings of length L. The hypotheses made on the distribution of the symbols imply that the
probability that a pattern M of length L has an exact occurrence starting at a given position in a sequence 3

is P (exact occ. of M at one position) = 1/4L.
From an exact occurrence of M , one can construct the soft occurrences of M within a Hamming

distance αdist by placing k substitutions in
(L

k

)
possible ways, with k ∈ {0, . . ., αdist}. Since we have 4

symbols, then for each position where we have a substitution, we have 3 different possible substitutions.

3Except the last L – 1 positions.
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Thus, for a pattern M , there are Σαdist
k=0

(
L
k

) × 3k strings that are soft occurrences of M . Then, the
probability that a pattern has a soft occurrence starting at a given position in a sequence is P (soft occ. of

M at one position) =
Σ

αdist
k=0 (L

k)×3k

4L . In the following, we also need the probability that a pattern M has
a strict soft occurrence starting at a given position (a strict soft occurrence of M , is a soft occurrence of
M that is not an exact occurrence). In this case we have simply P (strict soft occ. of M at one position)

=
Σ

αdist
k=1 (L

k)×3k

4L .

Occurrences in a random sequence

In a sequence there are (G − L + 1) possible positions to place the beginning of an occurrence of M .
Since L << G, for the sake of simplicity we approximate a number of possible positions by G. Then,
the probability that there is no soft occurrence of M in a random sequence is P (no soft occ. of M in a
seq.) = (1 − P (soft occ. of M at one position))G. Thus, the probability that there is at least one soft
occurrence of M in a sequence is P (exists soft occ. of M in a seq.) = 1 − (1 −P (soft occ. of M at one
position))G. Similarly, the probability that there is at least one strict soft occurrence of M is P (exists
strict soft occ. of M in a seq.) = 1 − (1 − P (strict soft occ. of M at one position))G, and the probability
that there is at least one exact occurrence is P (exists exact occ. of M in a seq.) = 1 − (1 − 1/4 L)G.

Minimum support constraint

To determine P (M sat. min. supp.), i.e., the probability of M to satisfy the minimum support constraint,
let us define X as the number of sequences, in the positive dataset, that contains at least one exact
occurrence of M . The probability P (M sat. min. supp.) can be decomposed using the conditional
probability of M sat. min. supp. given the value of X, as follows:

P (M sat. min. supp.) =
N+∑
i=1

(P (X = i) × P (M sat. min. supp.|X = i)) (1)

where N+ is the number of sequences in the positive dataset. Notice that the sum starts at i = 1, and
not at i = 0, since the pattern must have at least one exact occurrence in the positive dataset (see section
“The pattern discovery tool Marguerite”, in Methods).

The variable X follows a binomial distribution B(N+, P (exists exact occ. of M in a seq.)), thus we
have: P (X = i) =

(N+

i

) × P (exists exact occ. of M in a seq.)i× (1 – P (exists exact occ. of M in a

seq.))N
+−i.

P (M sat. min. supp.| X = i) is the probability that M satisfies the minimum support constraint, given
that exactly i sequences contain at least one exact occurrence of M . This also means that (N + − i)
sequences do not have any exact occurrence of a pattern. Then according to i there are two cases:

1. If i � αmin then P (M sat. min. supp.|X = i)) = 1 since the constraint is already satisfied by the i
sequences that contain each at least one exact occurrence of M .

2. If i < αmin then P (M sat. min. supp.|X = i) is equal to the probability that at least (αmin − i)
of the (N+ − i) remaining sequences contain at least one strict soft occurrence. This number of
sequences that contain at least one strict soft occurrence of M also follows a binomial distribution
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B(N+ − i, P (exists strict soft occ. of M in a seq.)). Then we have:

P (M sat. min. supp. |X = i) =
N+−i∑

z=αmin−i

((
N+ − i

z

)
×P (exists strict soft occ. of M in a seq.)z

× (1 − P (exists strict soft occ. of M in a seq.))N+−i−z

)

Thus, we can obtain P (M sat. min. supp.) by computing the sum in equation 1 and P (M sat. min.
supp.|X = i) according to the two cases above.

Maximum Support constraint

Let Y be the number of sequences that support M in the negative dataset. A pattern M satisfies the
maximum support constraint with threshold αmax if Y � αmax. The variable Y follows a binomial
distribution B(N−, P (exists soft occ. of M in a seq.)), where N− is the number of sequences in the
negative dataset. Then the probability that M satisfies the maximum support constraint is P (M sat. max.
supp.) =

∑αmax
z=0

(
N−
z

)×P (exists soft occ. of M in a seq.)z× (1 −P (exists soft occ. of M in a seq.))N
−−z .

Conjunction of Minimum Support and Maximum Support constraints

Given our hypothesis that the positive and negative datasets are independent, the probability that a
pattern satisfies a conjunction of minimum support and maximum support constraints is P (M sat. min.
and max. supp.) = P (M sat. min. supp.) ×P (M sat. max. supp.).

Number of expected patterns and Twilight Zone Indicator

Let ENP (L, αmin, αmax, αdist) be the Expected Number of Patterns of length L that will be extracted
under the thresholds αmin, αmax and αdist. Since there are 4L possible patterns of length L, and from the
hypothesis that the overlapping of the occurrences of the patterns has a negligible impact on the number
of patterns extracted, we can approximate ENP(L, αmin, αmax, αdist) by P (M sat. min. and max. supp.)
× 4L.

Finally, let M be a pattern, occurring in support+(M) sequences of the positive dataset, and in
support−(M) sequences of the negative dataset for a given αdist threshold. Then, TZI(M) is defined as
ENP(length(M), support+(M), support−(M), αdist).

TRANSFAC , Patchlike

PatchTM is a tool integrated in TRANSFAC which identifies known TFBSs in a given sequence. One
can verify whether the extracted patterns are known TFBSs by supplying them as input to Patch TM. The
database TRANSFAC is distributed in plain text files altogether with a graphic interface written in Perl
CGI and C programs that implements various functionalities, including PatchTM.

To analyse the biological sequences we use a Macintosh platform. The programs coming with
TRANSFAC are platform dependent, and unfortunately there is neither compiled distribution for the
Macintosh platform nor source code available. Thus, we developed a tool called Patchlike written in Perl
which takes a collection of sequences as input (in our case, these sequences are the extracted patterns) and
searches in these sequences for the TFBSs listed in the TRANSFAC data files. It means that Patchlike
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Fig. 1. Centroids of the clusters of SMPs and the consensus of these centroids computed by a multiple alignment.
The SMPs used are patterns of size 8 obtained by differential extraction on two sets of promoter sequences: 29 promoter
sequences of genes repressed by the v-ErbA oncogene in the positive dataset, and 21 promoter sequences of genes activated by
v-ErbA in the negative dataset. The 9 centroids (also of size 8) are the centroids of the clusters of these SMPs, obtained by
hierarchical clustering. The consensus corresponds to a binding site of the TF c-Myb-isomorf1. A base is weakly conserved if
it is shared by at least 50% of the patterns and highly conserved if it is shared by at least 90% of the patterns (out of 9 centroids,
it means that the base must be conserved in all centroids). Bases that are highly conserved appear in red in the patterns and as
uppercase letters in the consensus. Bases that are weakly conserved appear in green in the patterns and as lowercase letters in
the consensus. Not conserved bases appear in black in the patterns. Positions with no conserved bases are indicated by dots in
the consensus. Dots on the left and on the right of the centroids have no particular meaning (centroids are of size 8).

not only mimics but also serializes the search that can be made with PatchTM. For a given sequence M ,
Patchlike searches through the TFBSs of the TRANSFAC data files, to find the ones that are contained
in M (equal to M or that are substring of M). In Patchlike we only use the vertebrate data files, and
do not allow mismatches between an input pattern and a TFBS. However, such searches can result in a
quite large number of TFBSs that might burden the analysis, so we retrieve only the longest TFBS that
are contained in M . Finally, Patchlike considers an input sequence and its reverse complement to look
for the TFBSs in forward and reverse direction.

Hierarchical clustering of SMPs

The hierarchical clustering of the SMP patterns is performed using the hclust function of the package
stat of the R environment [24]. The proximity between clusters is computed using the complete linkage
method. To construct a distance matrix we estimate the dissimilarity of each pair of SMPs as follows.
For each pair < M1, M2 > we compute its optimal pairwise global alignment [25] with the following
parameters: the score for a mismatch is 1, the score for a match is 0, the insertions and deletions inside an
alignment are not allowed, the terminal gaps are not penalised, and the length of an alignment (terminal
gaps are not included in the alignment length) must be at least a half of the shortest pattern in the pair
(i.e., must be of size greater or equal to min(length(M1), length(M2))/2). Then, the dissimilarity of
the pair of SMPs is computed as the score of the best alignment divided by its length. To ameliorate
the quality and efficiency of the clustering we process the SMPs by groups of patterns having the same
length.
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Finding a consensus pattern of a cluster

To find the consensus pattern of each cluster of SMPs we align the patterns in each cluster using the
multiple alignment tool MultAlin [26]. We use the following alignment scoring parameters: gap creation
and extension penalty is −5, terminal gaps are not penalized, score for a match is 2, and score for any
mismatch is 0. Once a consensus SMP is computed we can use Patchlike or consult TRANSFAC to
check whether it is a known TFBS. Figure 1 gives an example of a cluster whose consensus SMP is a
binding site of the TF c-Myb-isomorf1.

Data selection

The promoter sequences were obtained as presented in [27]. We refer the reader to this previous work
for the details. If the sequences are too short, or if we have a very small number of sequences then many
TFBSs will be absent from the data, or poorly represented, and the random background itself will be
underrepresented. As this can only degrade the result of differential extractions, we selected the largest
datasets available. However, the datasets should not be too large, in the sense that they must remain
specific to TFBSs locations and to biological situations. Thus the selected genes (29 in the positive
dataset and 21 in the negative one, out of the 110 differentially expressed genes, for the main study
reported in section “Results and discussion”) are chosen because they are known to play a role in the
corresponding biological situations. Concerning the parts of the genes retained to form the sequences,
we should avoid to incorporate in the datasets portions that are not likely to contain binding sites, thus
we selected sequences composed of 3000 bp upstream and 1000 bp downstream, a portion known to be
rich in TFBSs [28].

RESULTS

Self-renewal is a characteristic property of stem cells, the molecular basis of which is still elusive.
Deregulation of this process occurs frequently during cancer generation. We have decided to investigate
this question through the discovery of differentially expressed genes by using the SAGE technique [29]
on our primary model of T2ECs, that are normal chicken erythroid progenitors [30]. These cells can be
induced to self-renew or to differentiate when normal. The expression of the v-erbA oncogene induces
transformation by blocking their differentiation process [31]. We therefore decided to identify v-ErbA
target genes responsible for the transformation process induced by v-ErbA. For this we have compared
the transcriptome of T2ECs expressing an oncogenic form of v-ErbA with the transcriptome of T2ECs
expressing the S61G mutant of v-ErbA. This mutant is defective in its ability to inhibit differentiation
and to induce erythroid transformation [32]. Thus, the comparison between the transcriptome of cells
expressing either the transforming form of v-ErbA or the S61G mutant of v-ErbA allowed us to generate
a list of 110 differentially expressed genes between these two conditions [27]. We used this v-ErbA
dataset throughout the present paper to exemplify the potential of our motif discovery method. In order
to assess the generality of our approach, we also applied our method to a second data set, made from the
promoters of genes showing differential expression, as assessed by SAGE, between self-renewing and
differentiating erythroid progenitors [33].
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Taking in account biological information in combinatorial pattern extraction

This work is based on the hypothesis that the transforming activity of v-ErbA arises from the repression
of a set of genes and that at least some of these genes share some regulating TFs, which will be absent from
most genes activated by v-ErbA. The motivation underlying the development of the method presented
here is to help to discover the TFs that participate in the v-ErbA-induced transformation process. A
classical approach would consist of identifying the genes repressed by v-ErbA and then extracting the
putative TFBSs that are the patterns shared by the promoter sequences of these genes. The problem is
that a combinatorial pattern extraction in such a context results in a large solution set containing many
false positives. It is then very hard to pick out manually true positives from such a plethora of extracted
patterns. Our approach is to first refine a pattern extraction task by introducing a negative dataset that
represents the opposite biological situation and thereby reduce the number of false positives.

In order to find signature motifs for v-ErbA target genes, we first created two sets of promoter
sequences of differentially expressed genes: (1) a dataset denoted R, for the genes repressed by the
v-erbA oncogene, composed of 29 promoters, and (2) a dataset denoted A, for the genes activated by
v-ErbA, composed of 21 promoters. Promoter sequences were extracted as previously described in [27],
and are composed of 4000 bp (3000 bp upstream and 1000 bp downstream). Datasets R and A represent
two biologically opposite situations of interest, and are used respectively as the positive and the negative
dataset. A priori interesting patterns are strings that have many occurrences in the positive dataset but
only a few in the negative dataset. We focus the search on putative TFBSs that could be used to regulate
the transcription of the genes of the positive dataset while they are not likely to have an important impact
on the regulation of the genes of the other set.4 We extract the patterns by using a minimum support
threshold αmin (i.e., at least αmin sequences must contain occurrences of the pattern) on the positive
dataset and a maximum support threshold αmax (i.e., at most αmax sequences can contain occurrences
of the pattern) on the negative dataset. We consider two kinds of patterns: Exact Matching Patterns
(EMPs) and Soft Matching Patterns (SMPs). Both are strings of bases, but they differ in the way their
supports are defined. The support of an EMP in a dataset is the number of sequences of the dataset
that contain at least one exact occurrence of this EMP. Let αdist be a given threshold, termed the soft
matching threshold, then the support of a SMP is the number of sequences containing at least one soft
occurrence of the pattern, where a soft occurrence is a part of the sequence different from the pattern in at
most αdist positions (i.e. the Hamming distance between this part of the sequence and the pattern is less
or equal to αdist). Both SMPs and EMPs are necessary: SMPs allow to gather the degenerated TFBSs
while EMPs are dedicated to pick out the conserved ones. The two kinds of patterns are extracted using
the tool Marguerite (see section “The pattern discovery tool Marguerite”, in Methods). Figure 2 shows
the reduction in the number of patterns when using two datasets (positive and negative) instead of using
the positive one only.

Ranking patterns by a Twilight Zone Indicator

Even if refining the extraction context with a negative dataset, corresponding to the opposite biological
situation, reduces the number of extracted patterns up to several orders of magnitude, there are still too

4However, we keep in mind that a single TF might be both an activator in the positive set and inhibitor in the negative one
(the role of a TF can be determined by the molecular context around its binding site), but in this case we can detect its influence
only if it has a TFBS in the positive dataset different from its TFBS in the negative dataset.
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Fig. 2. Reduction in the number of patterns when using two datasets (positive and negative) instead of using the positive one
only. Graph A (resp. B) gives the number of EMPs (resp. SMPs) satisfying only a minimum support constraint in the positive
dataset R w.r.t. the number of EMPs (resp. SMPs) satisfying both a minimum support constraint in the positive dataset R and
a maximum support constraint in the negative dataset A. The plots represent the number of patterns of length from 5 to 11,
extracted when the minimum support varies from 1 to 29, and the maximum support is set to 7. In the case of SMPs the allowed
Hamming distance is set to 1.

many of them to be verified manually. A classical approach is to associate to the patterns a measure
of interest and select those having the most relevant measure value. In order to assess the significance
of a pattern we used the notion of Twilight Zone (TZ) [4] to build a Twilight Zone Indicator (TZI). A
zone TZ is a zone in a parameter space, where we are likely to obtain patterns produced by the random
background. Let M be a pattern of length length(M), occurring in support+(M) sequences of the
positive dataset and in support−(M) sequences of the negative dataset. Then TZI(M) is an estimate
of the minimum number of patterns of length length(M) due to the random background, that will be
extracted together with M . This minimum value is obtained in the most stringent conditions (i.e., with
the strongest constraints) that still lead to the extraction of M . These conditions are obtained when we
choose αmin = support+(M) and αmax = support−(M). The computation of the TZI is detailed in
section “Twilight Zone Indicator”, in Methods. It is based on the same hypothesis made in [4]: the
data sequences are composed of independent and uniformly distributed nucleotides, and the possible
overlapping of the occurrences of the patterns is considered to have a limited impact on the number of
extracted patterns. In addition, we suppose that the positive and the negative datasets are independent.

To validate empirically the computation of the TZI, i.e., of the expected number of patterns, we
compared it with the number of patterns extracted from random datasets and biological datasets R and
A. Two pairs of random datasets that mimic the biological datasets R and A were constructed using the
tool RanDNA [34]: (1) pair (R*,A*), where R* (resp. A*) have the same number of sequences and
the same total number of nucleotides per sequence as R (resp. A), and are built from independent and
uniformly distributed nucleotides with a homogeneous nucleotide composition (i.e., 25% of A, C, G and
T); (2) pair (R**,A**), where R** and A** are generated using the same constraints as (R*,A*), except
for the relative nucleotide composition. For R** (resp. A**) the relative nucleotide composition is the
same as the one of R (resp. A). Moreover, the same sequencing uncertainties (N regions) 5 as in R (resp.
A) have been implanted in R** (resp. A**). The graphs in Fig. 3 depict the number of patterns extracted
with parameter settings chosen to be pertinent w.r.t. our biological problem.6 The value of αmin varies

5Notice that Marguerite does not require a predefined αbet, and can therefore handle sequences containing undefined bases,
denoted by the symbol N.

6These settings are also representative, and other settings lead to a similar global behavior.
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Fig. 3. Number of patterns satisfying both a minimum support constraint in the positive dataset and a maximum support
constraint in the negative dataset. The plots represent the number of patterns, when the minimum support varies from 1 to 29,
and the maximum support is set to 7. In the case of SMPs the allowed Hamming distance is set to 1. The numbers of patterns
are given for pattern lengths from 5 to 11, and also accumulated for all these lengths. Graph A gives the number of expected
EMPs computed using the TZI. Graph D (resp. B and C) gives the number of EMPs extracted from the pair of datasets (R, A)
(resp. (R*, A*) and (R**, A**)). The corresponding plots in the case of SMPs are given in graphs E, H, F and G.
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from 1 to 29, and αmax is set to 7. The extractions were run using Marguerite that finds all patterns
satisfying the αmin, αmax thresholds (and αdist threshold for SMPs). Since Marguerite is complete,
there is no need to run it several times with the same parameter values (contrarily to approaches based
on incomplete heuristics). For each parameter setting, αmin, αmax (and αdist for SMPs), we compute
the number of expected patterns due to the random background using the TZI formula.

The graphs depicted in Fig. 3 allow to compare the expected number of patterns with the number
of patterns extracted in random and biological datasets (the extractions used for the illustration are
representative, i.e., the behaviour remains the same also for other αmax values). The number of patterns
extracted in datasets (R*,A*) coincides with the expected number (graphs A vs. B and E vs. F in
Fig. 3). This argues in favor of the correctness of the hypothesis made concerning the limited impact
of the overlapping of the occurrences of the patterns on the number of extracted patterns. The number
of patterns extracted in the datasets (R**,A**) (with the exceptions of the EMPs of length 6 and of
the SMPs of length 8) is still well modeled by the computed number of expected patterns (graphs A
vs. C and E vs. G in Fig. 3). This confirms that the simplification of considering an equiprobable
nucleotide distribution and not taking into account the sequencing uncertainties do not modify the counts
significantly. The number of the patterns extracted in the biological datasets R, A deviates more from
the expected number and is greater than in the random datasets, but the estimations still model well the
tendencies, especially in the range of parameters that are interesting to our problem, i.e., when αmin is
large and αmax is small (graphs D and H in Fig. 3). This indicates that at least a part of the hidden
structure of the biological dataset pair (R, A) (absent from the model of random background and absent
from the random datasets) seems to be captured by the extracted patterns.

Setting parameters to focus on patterns satisfying the most stringent criteria

Even if we use some domain knowledge to construct a positive and a negative datasets, a poor constraint
setting can lead to the extraction of many patterns likely to be due to the random background. Therefore
we want to choose the parameter values to focus on the patterns satisfying the most stringent constraints
(i.e., having a large support on the positive dataset and a small one on the negative dataset). Such patterns
are interesting, since they are exceptionally conserved in the context of positive and negative datasets,
and thus might be there to accomplish a biological function. To find these patterns, we use a parameter
tuning method based on the following remark. When αmin is very large and αmax very small, we are
likely to have no pattern satisfying the two constraints. Then if we decrease αmin and/or increase αmax

(i.e., weaken the constraints) we go towards points in the parameter space for which we will start to
obtain some patterns. Consistently, if from one of this point we go on decreasing αmin and/or increasing
αmax, we reach points in the parameter space for which we obtain more and more patterns satisfying the
constraints. The parameter tuning method is based on the notion of rising pattern defined as follows.
For a given value of αmin we consider the minimal value of αmax such that we have at least one pattern
M satisfying support+(M) � αmin and support−(M) � αmax. The patterns obtained for this αmin and
αmax values are the rising patterns, i.e., there is no pattern for lower αmax values, and for larger αmax

values we will have more patterns (or at least an equal number). Thus the rising patterns are located in
the parameter space along a border that corresponds to the most stringent constraints that still lead to the
extraction of at least one pattern. To find these rising patterns and corresponding parameter values we
run an automated serialization of extractions (the algorithm is described in section “Procedure to find
rising patterns”, in Methods).

Graph A in Fig. 4 gives the numbers of rising EMPs of length 6 found in the datasets (R,A) (the
exploration of the parameter is not made for αmin values less than 15 since we are not likely to be
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Fig. 4. Number of rising patterns and number of expected random patterns. For a point MinSupp, MaxSupp in the parameter
space the color in the background corresponds to the log10 of the number of expected random patterns (i.e., the log10 of the
TZI value for αmin = MinSupp and αmax = MaxSupp) in the dataset R, A. The values in the white circles give the number of
rising patterns that were extracted for αmin = MinSupp and αmax = MaxSupp. The dashed line indicates the border of the TZ.

interested in patterns occurring in less than 15 sequences out of 29). Graph B in Fig. 4 gives the numbers
of rising SMPs of length 8 with αdist = 1 in the same datasets. The colors of the background of the
graphs correspond to the TZI values and indicates the number of expected random patterns. We observe
that, consistently with the notion of TZI, the rising patterns are situated outside or in the very beginning
of the estimated TZ.

It should be noticed that for the SMPs the increase of execution time7 can, in some cases, prevent the
possibility to run the extractions in a systematic way to explore the parameter space. In this situation
we can still compute very efficiently the expected number of random patterns using the TZI and thus
locate the TZ border. Then, the points along this border can be used as initial guess to find the rising
patterns and their corresponding parameter settings. Moreover, the rising patterns are located along a
rather regular contour, thus if the extraction time for SMPs is really too high, we can compute them only
for a few αmin values, and still have an idea of the whole curve.

The graphs in Fig. 4 give a global picture of the parameter space and are used to guide the setting of
the parameters. For instance, if we are looking for an EMP with a high support in the positive dataset
(e.g., αmin = 27), we have to accept a rather high support in the negative dataset (αmax = 10). Or, on

7Due to the soft occurrences handling and to the increase of the number of patterns satisfying the αmin threshold [22].
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the contrary, we can use the graph to choose a moderate support in the positive dataset (e.g., α min =
17), and in this case we know that we can get some patterns having a low support (αmax = 4) on the
negative dataset. Moreover, since this point (αmin = 17, αmax = 4) in the parameter space is not in the
TZ, we can decide to increase a little the αmax value to run an extraction to try to get a few more patterns.
Of course, in this case we will enter the beginning of the TZ, and thus, among the patterns that will be
obtained, several of them are likely to be due to the random background.

The length of the patterns is also a parameter in itself, and in order to ease its setting we use for the
pattern extraction a tool that performs an exhaustive extraction within a range of length (from Lmin to
Lmax, see section “The pattern discovery tool Marguerite”, in Methods). In practice, no pattern, or no
interpretable pattern was found for a length out of the range Lmin = 6 and Lmax = 10. Finally, the
last parameter αdist (used for SMPs) should be kept as low as possible. When αdist increases, a pattern
matches occurrences that are more degenerated, and then is likely to be less specific to one of the two
datasets and/or to be harder to interpret. In this study, the reasonable choice for αdist is limited to αdist =
1 or 2, and patterns that we could interpret, in a useful way, were found only for αdist = 1.

Workflow of the motif-discovery process

Finding signature motifs characteristic of a given positive promoter set w.r.t. a negative set is only the
first step of the process. The diagram given in Fig. 5 depicts the complete workflow ultimately designed
to find putative TFBSs specific for a given promoter set. Using the tool Marguerite we extract patterns
(EMPs or SMPs) specific to the positive dataset, i.e., all patterns satisfying a minimum support constraint
in the positive dataset and a maximum support constraint in the negative one.

Then, the measure TZI (see section “Ranking patterns by a Twilight Zone Indicator”, in Results and
Discussion) is computed for every extracted pattern. For EMPs, we also compute as an additional
measure the following ratio: the pattern support in the positive dataset divided by the pattern support in
the negative dataset. The higher is the value of this ratio, the more specific to the positive dataset is the
pattern. In the case of SMPs, the number of extracted patterns is much larger than the number of EMPs
(see graphs H and D in Fig. 3), and in the result of an extraction many SMPs are similar to other SMPs
obtained at the same time (due to the similarity based matching). Thus, we grouped the similar SMPs
by performing a hierarchical clustering (see section “Hierarchical clustering of SMPs”, in Methods) of
the patterns. For each cluster we compute the average of the TZI of the patterns in the cluster. In each
cluster, we also align the patterns with the multiple alignment tool MultAlin [26] to build a consensus
SMP of each cluster (see section “Finding a consensus pattern of a cluster”, in Methods). Finally, for
both SMPs and EMPs, we use the tool Patchlike (see section “TRANSFAC , Patchlike”, in Methods)
to check w.r.t. the TRANSFAC database, which patterns are known TFBSs.8 We are particularly
interested in patterns that are the TFBSs of the TFs, involved in v-ErbA transforming activity. Untill this
point, the extraction process does not rely upon any collection of known motifs. It is therefore obvious
that some of the extracted motifs will not correspond to any known TFBS, either in TRANSFAC or in
any other database. Those motifs can be qualified as putative unknown binding sites, and are candidates
for experimental analysis.

8Note, that Patchlike also considers the patterns originating from the reverse complemented sequence and thus search for
TFBSs in both directions.
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Fig. 5. Diagram depicting the steps of the whole motif-discovery process.

Patterns that are putative binding sites of TFs involved in v-ErbA transforming activity

The particularity of our method to use both a positive and a negative dataset, representing opposite
biological situations, is a major reason why it would not be relevant to test our algorithm on a classical
benchmark, such as [2] or [35], which uses only one set of sequences. Furthermore, as pointed out
by [3], we lack an absolute standard against which to measure the correctness of any motif-finding tool.
Therefore, to assess our approach, we will concentrate on the biological interpretation of some of the
extracted patterns.

Exact Matching Patterns (EMPs)

We first extracted rising EMPs (see section “Procedure to find rising patterns”, in Methods) of length
from 5 to 10 within an interval of thresholds for minimum support from 15 to 29 (corresponding to a
relative support ranging from 51.7% to 100% of the sequences) in dataset R and an interval of thresholds
for maximum support from 0 to 11 (corresponding to a relative support ranging from 0% to 52.4%
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Table 1
EMPs that are putative TFBSs bound by TFs involved in the v-ErbA transforming activity

EMP Supp in R Ratio TZI TFBS TF
Supp in R
Supp in A

GGAAACA 18 6 0.02 GGAAAC (+) Net
TGTTTC (−) AR, GR-α

CGCTGCG 17 5.67 0.09 GCTGC (+) CTCF
TGCAAAC 17 5.67 0.09 GTTTG (−) ZEB (1124 AA)
CAGTTA 19 4.75 0.1 CAGTTA (+) c-Myb, c-Myb-isoform1

TAACTG (−) c-Myb
TAACT (−) RXR-α

AGATAT 17 4.25 0.2 AGATAT (+) GATA-3/3 isoform 1/ 4/5A/5B/6A/6B
ATATCT (−) GATA-1/1 isoform 1/3/3 isoform-1
AGATA (+) GATA-1/3/4/6
TATCT (−) GATA-1

Rising EMPs that are known binding sites of TFs implicated into self-renewal process. The sign indicates
the direction of the match: (+) forward and (−) reverse complement.

of the sequences) in dataset A. These intervals are rather large, and the worst case (αmin = 15 and
αmax = 11) is likely to lead to uninteresting patterns (not biologically founded). However on datasets
containing an underlying structure, the procedure to find rising patterns does not reach such extreme
cases, since rising patterns are obtained before, for more interesting αmin and αmax values. This is
actually the case for datasets R and A, where, for the rising patterns, αmin was always greater than 2.4 ×
αmax. In these extractions we obtained 33 rising EMPs, for each of them we computed its TZI measure
and its support ratio (support in dataset R divided by its support in dataset A), and looked at putative
binding TFs with Patchlike. After visual inspection of this information, we selected five rising EMPs
as candidates for further biological exploration, because they had a high support in the positive datasets
R, a high support ratio, an interesting TZI value (i.e., low value) and meaningful putative binding TFs
(Table 1). These patterns were extracted for the following (αmin, αmax) pairs: (17,3); (18,3); (19,4).
Some other EMPs have quite high support ratio, high support in dataset R, and low TZI value, but are
not known TFBS in TRANSFAC (not shown). This is one of the benefit of such an unsupervised
approach to allow such unknown motif discovery. Since our knowledge of TFs-TFBSs relationship is
still very incomplete, the best rated of those motifs could be used for functional assay using reporter gene
transfection, and may lead to the discovery of new TFs, relevant for v-ErbA-induced transformation.
Among the EMPs displayed in Table 1, one of the most interesting is CAGTTA, that is a known binding
site for the transcription factor c-Myb. This pattern has a quite high support ratio (4.75), a high support
in dataset R (19 out of 29 promoters), and an interesting TZI value of 0.1. Since this pattern appeared
in a previous exploration of the same set of promoters, we had the opportunity to assess its putative
relevance for the v-ErbA-induced transformation process. We indeed could demonstrate the existence of
a functional interaction between v-ErbA and c-Myb [27], thereby demonstrating the biological relevance
of this approach. Some other patterns are also of interest, and can be expected knowing the molecular
action of v-ErbA. Indeed this oncogene is known to interfere with nuclear receptors, including RXR and
GR [36]. Since v-ErbA is known to block the erythroid differentiation process [31], it is also expected
to see some overlap between v-ErbA target genes and genes containing binding sites for the erythroid
specific TF GATA-1 [37]. A similar reasoning can apply for the chromatin modifier CTCF [38,39] and
the trancriptional repressor ZEB [40] that are both involved in the erythroid differentiation process. It
would be of interest to verify the functional interaction between those TFs and v-ErbA by a reporter
assay similar to the one used for c-Myb.
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Table 2
SMPs that are putative TFBSs bound by TFs involved in the v-ErbA transforming activity

Consensus SMP Nb of SMPs in cluster Mean of TZI TFBS TF
ta.cTaTg 9 16.7 TAACT (+) RXR-α

TATCT (+) GATA-1
AGATA (−) GATA-1/4/6

TaGttag 11 24 TAACT (−) RXR-α
aTagTg.t 13 34.9 AGTGGT (+) GR, GR-α
t.TCAACt 6 35.8 TCAACT (+) CAR2:RXR-α

CAR/PXR:RXR
AGTTGA (−) RAR-α1, RXR-α
CAACT (+) c-Myb-isoform1

aCgTt.a 17 36.9 TGAACG (−) HOXA9
TAACG (−) c-Myb-isoform1
GTTCA (+) RAR-α1, T3R-α

Consensus SMPs that are known binding sites of TFs implicated into self-renewal process. The
sign indicates the direction of the match: (+) forward and (−) reverse complement.

A similar search can of course be performed using the A set of promoter sequences as the positive set.
In this case, one should note that, although patterns are, by construction, specific of a given promoter set,
TFs binding those patterns can appear on both datasets (of course, in this case, the same TF will bind
different patterns in the two sets). The user can perform both searches using sequentially both promoter
sets as the positive set, and then either focus only on set-specific TFs or on TFs shared by the two sets.

Soft Matching Patterns (SMPs)

In the case of SMPs, we estimated analytically (as described in section “Setting parameters to focus
on patterns satisfying the most stringent criteria”, in Results and Discussion) that with minimum support
threshold equal to 17 (it correspond to 58.6% in relative support) on a dataset R* and maximum support
threshold equal to 10 (it correspond to 47.6% in relative support) on a dataset A* the SMPs of length
between 7 and 11 are outside or in the beginning of the TZ. Thus we extracted the SMPs satisfying the
length and support constraints with these parameters in datasets R and A. Table 2 gives five consensus
SMPs (see section “Finding a consensus pattern of a cluster”, in Methods) that have the best mean of
TZI and are known TFBSs. These consensus SMPs are issued from hierarchical clustering of SMPs of
length 8 using complete linkage method and a cut-off level of 50% (see section “Hierarchical clustering
of SMPs”, in Methods).

One can note an extensive similarity between the TFs binding to the SMPs and those binding to
the EMPs. This concerns both the sites bound by nuclear receptors (RXR, RAR and GR) and those
bound by GATA-1. Among the unexpected factors, one finds the HoxA9 homeobox factor. It is very
interesting to note the mounting evidence suggesting that HoxA9 plays an important role in both normal
hematopoiesis [41] as well as in leukemogenesis [42]. It would be of interest to examine the possibility
that v-ErbA interferes with HoxA9 during the transformation process of erythroid progenitors.

Patterns that are putative binding sites of TFs involved in the self-renewal of eryhroid progenitors

In order to assess the generality of our approach, we also applied our method to a second data set,
made from the promoters of genes showing differential expression, as assessed by SAGE, between
self-renewing and differentiating erythroid progenitors [33]. In this case we only applied the EMP-based
strategy, in order to isolate TFBSs specific for the promoters of genes significantly more expressed in
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Table 3
EMPs that are putative TFBSs bound by TFs involved in the self-renewal of
normal erythroid progenitors

EMP Supp in AR Ratio TZI TF
Supp in AR
Supp in Diff

CAGTTCT 16 5.3 0.41 c-Myb
CTGCTGG 21 3.5 0.000042 c-Maf (long form)
ATGCAGC 17 5.7 0.078 CTCF
CACCCAC 15 7.5 1.05 EKLF

Rising EMPs that are known binding sites of TFs implicated into self-renewal
process.

the self-renewal condition than after inducing differentiation. The data set was made of 28 promoter
sequences in the positive set, denoted AR, and of 16 promoter sequences in the negative set, denoted
Diff (promoters of genes the expression of which is up-regulated during the first 24 hours of differentia-
tion [33]). An exhaustive search for rising SMPs returned 55 different motifs. As previously described,
motifs were selected for further analysis based upon: 1. their TZ value, 2: their min to max ratio, and
3. their TRANSFAC identification. This left us with 4 motifs (Table 3), the biological significance of
which was further assessed.

We first notice the presence of a c-Myb-binding site. Since the transcription of c-myc is typically
down-regulated during the erythroid cell maturation process [43] and since its constitutive expression
blocks erythroid differentiation [44], the presence of a c-Myb-binding motif was expected among the
self-renewal-specific set of promoters. One should note that a c-Myb binding motif has been revealed by
our approach both in the case of normal and deregulated self-renewal induced by the v-erbA oncogene
(see upper), although the exact sequence of the two motifs was subtly different. This nevertheless
reinforce the biological involvement of c-Myb in the self-renewal process in our erythroid progenitors.

The case of the second motif illustrates one difficulty of the in silico approaches. Indeed there is a
large number of members of the Maf family of basic region/leucine zipper (bZIP) transcription factors
that play an essential role in growth and development by regulating tissue-specific gene expression.
These proteins activate or repress transcription depending on their particular protein partner and the
context of the target promoter [45] (and references therein). For example c-Maf has been shown to
bind to c-myb resulting in the inhibition of Myb-dependent gene transcription [45]. Therefore those in
silico approaches would have to be complemented by experimental approaches, like ChIP (chromatin
immunoprecipitation [46]) for identifying the nature of the Maf members bound to the putative c-Maf-
binding sites in vivo. Furthermore reporter assay should help understand the role of the context of the
promoter.

Similarly, the last two motifs illustrate a fundamental limitation of any in silico method for identifying
TFBSs, that is that the method does not provide the functional result of the putative binding of a given
transcription factor. Indeed the CTCF factor has been shown to be a “dual functionality” protein that
has divergent effects on different gene regulation systems [47] (and references therein). It is mainly
involved in silencing the regions outside the active globin genes in erythroid cells, so its function in
the self-renewal maintenance is still elusive. Similarly, the EKLF transcription factor is a known factor
involved positively in the erythroid differentiation process [48]. One may imagine that the finding of
such a site in the set of self-renewal specific genes points toward the possibility that EKLF promotes
differentiation by, on one hand, activating differentiation-related genes, but also, on the other hand, by
repressing a subset of self-renewal specific genes. But of course such an hypothesis still awaits an
experimental validation that is beyond the goal of the present work.
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DISCUSSION

An important research effort has been dedicated to the extraction of motifs to find putative TFBSs,
but even the best today techniques report limited results in practice [2,3,35]. These techniques, based
on combinations of efficient extraction strategies together with dedicated statistical measures, often still
suffer from high false positive rates and/or from the difficulty to select appropriate parameters. We
have used a new method that incorporates as a central aspect the use of background knowledge, in the
extraction algorithm itself, to reduce the number of false positives, and that makes use of an effective
parameter tuning strategy. To help the user to pick up the most promising patterns among the ones
extracted, the whole process also includes the two following additional steps: (1) the computation of an
interestingness measure based on the notion of Twilight Zone [4], and (2) the automated retrieval of the
TFBSs known in TRANSFAC (together with the corresponding TFs), for the TFBSs that are similar
to the extracted patterns. The current knowledge about TFs and TFBSs does not permit to determine
the set of true positives (the set of TFBSs in a gene promoter sequence involved in the regulation of this
gene), and thus we do not provide an estimate of the number of true positive TBFSs that may be missed
by the method.

The major strength of the whole approach is that it does not only rely on a model of the random
background to assess the interestingness of the patterns, but uses one dataset in which the patterns are
searched, and incorporates as background knowledge a second dataset in which the patterns of interest
are not likely to appear. Although it seems simple, this strategy is not supported by the state of the
art techniques to find putative TFBSs. In fact, putting at work this strategy is not straightforward in
practice, in particular we have to face a large parameter space (one frequency threshold for each of
the two datasets, the size of the patterns, the degree of approximated matching allowed) and selecting
appropriated parameter values is a difficult task that may even turn to be prohibitive. Thus, the second
main point of the proposed method is to provide an explicit parameter tuning technique, that turns out to
be effective in practice.

This power is exemplified by using two pairs of promoter sets, each pair consisting of positive
examples, and negative ones, derived from differential gene expression experiments. The first analyzed
pair resulted from a SAGE-based analysis of v-ErbA-induced gene expression regulation. The v-erbA
oncogene, carried by the Avian Erythroblastosis Virus, derives from the c-erbA proto-oncogene that
encodes the nuclear receptor for triiodothyronine (T3R). v-ErbA transforms erythroid progenitors in
vitro by blocking their differentiation [49], supposedly by interference with T3R and RAR (retinoic acid
receptor) [36]. However, when v-ErbA target genes involved in its transforming activity were identified
using a SAGE-based approach, it turned out that a vast majority of them were not regulated neither by
T3R nor RAR, suggesting the involvement of new unanticipated mechanisms of v-ErbA action [27].
One open question therefore concerns the mechanisms through which v-ErbA represses the expression
of those genes. The present study points toward promising leads in this regard:

– We re-identify a TFBS bound by the c-Myb proto-oncogene product. The importance of this TF in
the v-ErbA-induced phenotype has been validated by experimental evidence showing that v-ErbA
can indeed functionally interact directly or indirectly with the transcriptional activity of endogenous
c-Myb in chicken erythroid progenitors [27].

– A second lead has yet to be functionally investigated. It concerns the putative role of the HoxA9
gene in the v-ErbA-induced phenotype. Testing this hypothesis would require overexpression or
sh-RNA mediated repression of expression, using a previously described strategy [50].
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The second pair of sets of promoters was derived from a SAGE experiment aiming at finding genes
the expression of which was modulated during the decision-making process between selfrenewal and
differentiation [33]. One should note that functional analysis of one of this gene revealed that it was
indeed functionally involved in the self-renewal process [50]. This analysis reinforced the putative role
of c-myb in the control of the self-renewal of erythroid progenitors, and also pointed into directions that
will require additional experimental work.

CONCLUSION

We demonstrate the power of using relevant biological information, in the form of a set of differentially
expressed genes that is a classical outcome in most of transcriptomics studies. This allows to severely
reduce the search space and to design an adapted statistical indicator. Taken together this allows the
biologist to concentrate on a small number of putatively interesting TFs.
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