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Abstract

Computing frequent itemsets and their frequencies from
large boolean matrices (e.g., to derive association rules)
has been one of the hot topics in data mining. Levelwise
algorithms (e.g., the APRIORI algorithm) have been proved
effective for frequent itemset mining from sparse data. How-
ever, in many practical applications, the computation turns
to be intractable for the user-given frequency threshold and
the lack of focus leads to huge collections of frequent item-
sets. The last three years, two promising issues have been
investigated: the use of user defined constraints and closed
sets mining. To the best of our knowledge, combining these
two frameworks has not been studied yet. In this paper, we
show that the benefit of these two approaches can be com-
bined into levelwise algorithms. An experimental validation
related to the discovery of association rules with negations
is reported.

1. Introduction

One of the obvious hot topics of data mining research
in the past years has been frequent set discovery from
large boolean matrices (millions of rows and hundreds of
columns). It concerns the discovery of sets of columns that
are true within a same row often enough. The user defines
the desired frequency threshold and when every frequent
itemset has to be found with its frequency (for instance,
when association rules [1] are to be derived), it gives rise to
challenging algorithmic issues due to the exponential size
of the search space.

Levelwise algorithms, e.g., the well-know APRIORI al-
gorithm [2], have been proved effective for frequent itemset
mining when the matrix is sparse and the data is lowly cor-
related. A prototypical application domain where it works
is the popular basket analysis problem. However, in most of

the other applications we know, the extraction is not always
tractable for the user-given frequency thresholds. This hap-
pens when the data is dense and/or highly correlated, i.e.,
when the number of frequent itemsets explodes. Further-
more, even if it is tractable, the size of the output can be
huge and is often larger than the size of the original data.
The lack of focus leads to huge collections of frequent item-
sets from which too many uninteresting patterns or rules
will be derived.

During the last three years, two promising issues have
been investigated to tackle these problems.

First, one can assume that only a subset of the collection
of frequent itemsets is interesting: it leads to constraint-
based extraction of the frequent itemsets [18, 13, 10, 7].
These studies have considered various kinds of constraints,
including “syntactic” constraints (e.g., an item must not
appear in the itemsets) and constraints related to the so-
called objective measures of itemset interestingness (e.g.,
the itemsets must be frequent). Using constraints enables to
decrease the size of the output while improving user guid-
ance. The problem is to “push” efficiently the constraint
checking step during itemset extraction, i.e., not to apply
a simple “generate and test” strategy. Nice results have
been discovered concerning the so-called anti-monotone,
succinct and monotone constraints [13, 7], i.e., a wide range
of constraints. This framework has been also studied for
other kinds of properties like rules [10] or correlations [9].

Another promising approach concerns the condensed
representation of frequent itemsets [11]. The intuition is that
instead of mining all the frequent patterns, one can extract
a particular subset of the frequent pattern collection such
that it is possible to regenerate from it the whole collection.
Ideally, this subset is much smaller than the original col-
lection and can be extracted more efficiently, while allow-
ing a fast regeneration of the whole collection of frequent
patterns. Several researchers have investigated the use of
closed frequent sets as a valuable condensed representation
[15, 4, 6, 17, 19].
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To the best of our knowledge, combining these two
frameworks has not been studied yet.

In this paper, we show that the benefit of these two ap-
proaches can be combined into levelwise algorithms. Doing
so, new mining tasks can be considered like frequent itemset
mining for low frequency thresholds or the discovery of fre-
quent generalized itemsets (sets that combine positive and
negative items). An experimental validation related to the
discovery of association rules with negations is reported.

In Section 2, we recall the APRIORI algorithm and out-
line the effective processing for anti-monotone constraints.
In Section 3, we discuss the use of monotone constraints in
order to get effective levelwise algorithms for a rather wide
class of constraints. In Section 4, we revisit the CLOSE al-
gorithm [15] that computes closed frequent sets and we dis-
cuss its extension towards the constraint-based discovery of
itemsets. Section 5 points out a practical validation of this
combined framework and Section 6 is a short conclusion.

2. Understanding the effective use of con-
straints in APRIORI-like algorithms

2.1. Problem settings and notations

We consider transactional databases. Given a finite set
Items of symbols (denoted by capital letters: Items�
��� �� �� � � ��) a transaction � is a subset of Items. A
transactional database � is a finite and non empty multi-
set � � ���� ��� � � � � ��� of transactions. An itemset is a
subset of Items and a �-itemset is an itemset of size �. A
transaction � supports an itemset � iff � � �. The support
(denoted ����	
����) of an itemset � is the multiset of all
transactions of � that support � (e.g. ����	
���� � � ).
The frequency of an itemset � is defined by ���� �
�����	
�����������	
����� where ��� denote the cardinal-
ity of the multiset (each transaction is counted with its mul-
tiplicity). An itemset � is �-frequent in � if ���� � �.
Figure 1 provides an example of a transactional database
and the supports and the frequencies of some itemsets. No-
tice that we often use a string notations for sets, e.g., �� for
��� ��.

� �

�� ����

�� ��

�� ��

�� ����

�� ��

�� ���

Itemset Support Frequency
� ���� ��� ��� ��� ��� 0.83
� ���� ��� ��� ��� 0.67
�� ���� ��� ��� 0.5
�� ���� ��� ��� ��� ��� 0.83
�� ���� ��� 0.33
��� ���� ��� 0.33

Figure 1. Supports and frequencies of some
itemsets in a transactional database � .

APRIORI algorithm
1. 
�

�
:= ����	�; �� � ���

2. � := �
3. while 
�

� 	� � do
4. Phase 1 - candidate safe pruning


� := safe-pruning-on(
�
������)

5. Phase 2 - frequency constraint - it needs a data scan
�� := �������� �
��

6. Phase 3 - candidate generation for level k+1

�
��� := 
����
�����	
�	����

7. � := � � �
od

8. output
����

		� �	

Definition 1 (constraint) If 
 denotes the set of all trans-
actional databases and �����	 the set of all itemsets, a con-
straint � is a predicate over �����	 � 
 . We say that an
itemset � 
 �����	 satisfies a constraint � in the database
� 
 
 iff ���� � � � �
��. When it is clear from the con-
text, we write ����. Given a subset � of Items, we de-
fine ������� � �� 
 �� � satisfies ��. ���� denotes
������

����	�.

Let ����
��� � ���� � � be the constraint that is true
iff � is �-frequent in � .

Example 1 Consider the dataset of Figure 1 where
Items� ��� �� �� ��. If ����
 specifies that an itemset
must be 0.6-frequent, then �������� � ��� �� �� ��� ���.
Assume that ��	����� � ��� � � and ��	����� �
� 	
 �, then ��������������

� ��� �� �� ��� ��� ��� while
��������������������

� ��� �� ���.

Definition 2 (constrained itemset mining task) Given a
transactional database � and a constraint �, the con-
strained itemset mining task is the computation of the col-
lection of the itemsets that verify � (i.e., ����) together
with their frequencies. It provides �� � ���������� � 

�����.

2.2. Sketching the APRIORI algorithm

We consider an abstract definition of the APRIORI algo-
rithm [2] to support our discussion on the effective use of
constraints. This algorithm performs the constrained item-
set mining task when � is ����
 .

In this algorithm, and in the following ones, the fre-
quency of the itemsets are not explicit for the sake of
clarity (e.g., Line 5 of the algorithm should be �� :=
���������� � 
 �������� �
��� since APRIORI outputs
the frequency of each frequent itemset).



APRIORI is a levelwise exploration of the lattice of item-
sets (w.r.t. set inclusion). During the first pass (when
� � �), it computes frequent 1-itemsets and then it gen-
erates candidate 2-itemsets from frequent 1-itemsets. In the
second pass (� � �), it prunes some candidate 2-itemsets
(those that contain an infrequent subset), it computes their
frequencies and it generates candidate 3-itemsets from fre-
quent 2-itemsets, . . .


�
� denotes the �-itemsets that can be frequent. Dur-

ing Phase 1, some of these �-itemsets are pruned. safe-
pruning-on(
�

� �����) eliminates the candidates for
which a subset of length � is not frequent. This can be justi-
fied by the so-called APRIORI trick: if � is not frequent, ev-
ery superset of � is not frequent and � can be safely pruned.

During Phase 2, a database scan is performed to compute
the frequency of the candidate itemsets. The frequent ones
are stored in �� together with their frequencies.

In Phase 3, frequent �-itemsets are used to compute can-
didate � � �-itemsets. 
����
�����	
�	���� provides the
candidates by fusion of two elements from �� that share
the same � � � first items: 
����
�����	
�	(��)=�� � �,
where ��� 
 ��, � and � share the � � � first items (in
lexicographic order)�. This generation procedure is the key
of the efficiency of the algorithm: it ensures that large por-
tions of the itemset lattice are pruned and that no frequent
itemset is missed.

Example 2 Let us focus on an extract from the execution of
APRIORI on the data of Figure 1 with a frequency threshold
� � ���. At Iteration 2 (� � �) Phase 2, one can verify
that �� = ���� ��� ��� ��� ���. Then Phase 3 provides the
collection of candidates 
 �

� = ����� ���� ���� (��� is not
generated since �� 	
 �� and therefore ��� cannot be fre-
quent). At Iteration 3 Phase 1 the pruning step provides 
�

= ����� ���� since �� 	
 �� (and therefore ��� cannot be
frequent).

It can be proved by induction on � that APRIORI is cor-
rect and complete, i.e., ����

		� �	 � �������� .

2.3. Effective use of anti-monotone constraints

It is well-known that the completeness of APRIORI (i.e.,
it does not prune any frequent itemset) relies on the anti-
monotonicity of ����
.

Definition 3 (Anti-monotonicity) An anti-monotone con-
straint is a constraint � such that for all itemsets �, � �:
(�� � � � � satisfies �) � �� satisfies �.

Notice that a disjunction or a conjunction of anti-
monotone constraints is an anti-monotone constraint.

Example 3 ����
 , ���� � � 	
 �, � � ��� �� �� and
� � ��� �� �� � � are examples of anti-monotone con-
straints. Many other anti-monotone constraints are pre-
sented in [13].

Let ��� be an anti-monotone constraint eventually in-
cluding ����
 (i.e., ��� could contain 
�
�� or not): if
� does not satisfy ���, every superset of � does not sat-
isfy ���. Therefore, if Step 5 of the APRIORI algo-
rithm is replaced by �� := ����	��
��, it is still cor-
rect and complete. It means that APRIORI can be used to
mine constrained itemsets when the given constraint is anti-
monotone.

3. Testing Monotone Constraints

If the effective use of anti-monotone constraints is easy
to understand, it is far more complex in the general case. In
other terms, given an arbitrary constraint �, it is not possi-
ble to use it in APRIORI by simply replacing Step 5 with
�� := �����
��. Doing this leads to the loss of the com-
pleteness of APRIORI. Indeed, there is two problems: the
generation step and the pruning step. The generation step
must be complete, i.e., it must not miss any itemset satisfy-
ing �, and also the pruning step (Phase 1) must be correct,
i.e., it must not prune an itemset that verify the constraint.

Example 4 Assume the constraint is ���� � � 
 �. The
itemset ��� should be generated by 
����
�����	
�	 from
�� and �� but since ����� � �����, ��� is not generated
whereas ������ � �
��.

If the constraint is ���� � � 
 �. The itemset ��� is
then correctly generated by 
����
�����	
�	 from �� and
�� but since ����� � �����, ��� is incorrectly pruned
whereas ������ � �
��.

To overcome these problems, we propose a generation
procedure and a pruning procedure which allow to push
conjunctions of anti-monotone and monotone constraints,
i.e., when � can be written as ��� � ��. A monotone con-
straint �� is the negation of an anti-monotone constraint
and it motivates the notation �� ��� for ��. The main prop-
erty of a monotone constraint is: � � ����	, ����� is true
� ��� � �, ������ is true.

Example 5 Continuing our running example,
��� �� �� �� � � and � � ��� �� �� 	� � are monotone
constraints. Assuming that items in S are correlated is
monotone too [9].

Generation procedure The next theorem gives a new
complete generation procedure when the constraint is the
conjunction of a monotone and an anti-monotone con-
straint. We use the concept of negative border [12]. If ���



denotes an anti-monotone constraint, ����	� is the collec-
tion of the minimal (w.r.t. the set inclusion) itemsets that do
not satisfy ���.

Let us now consider two generating procedures,

����
������� � �� � �, where � 
 �� and �
is a 1-itemset� and 
����
��

�
���� � �� � �, where

��� 
 ���. Notice that a naive algorithm that computes

����
��

�
will produce many duplicates (see [8]).

Our new generation procedure is denoted 
����
���
and is defined by the next theorem.

Theorem 1 Assume � � ��� � ����� and
�� � Max �����

��	�

���.

If 
����
��� is defined by :

����
������� � �����	� � ����	� and, for � � �,
if � � ��, 
����
������� � 
����
��

�
�����

������	� � ����	����;
if � � ��, 
����
������� � 
����
��

�
����;

if � � ��, 
����
������� � 
����
��
�
����;

then this candidate generation procedure is complete and
ensures that every candidate itemset verifies �� ���.

The fact that every candidate itemset verify �� � �����
makes useless any verification of this constraint after the
candidate generation step.

Safe pruning procedure Let us now introduce a correct
and complete pruning algorithm.

Pruning: algorithm ������
for all � 
 
�

��� and for all � � � � such that �� �� � �
do if �� 	
 �� and ������ � �
��

then delete � from 
�
��� od

Theorem 2 The pruning algorithm ������ is correct and
complete.

This algorithm is correct because it does not prune any
itemset that verify � � ��� � ��. Its completeness means
that if an itemset is not pruned then every proper subset
of that itemset verify ���. Intuitively, it is not possible to
prune more itemsets without affecting the completeness.

Generic algorithm We can now give a generic algorithm
for a constraint � � ��� � �� � ��� � ����� using the
structure of APRIORI and our procedures 
����
��� and
������
�.

generic algorithm
1. 
�

� :=�����	� � ����	� ; �� � ���

2. � := �
3. while 
�

� 	� � do
4. Phase 1 - candidate safe pruning


� := ������
��

�
� �����)

5. Phase 2 anti-monotone constraint checking
�� := ����	��
��

6. Phase 3 - candidate generation for level k+1

�
��� := 
����
�������

7. � := � � �
od

8. output
����

		� �	

Note that it is not necessary to check �� during Phase
2 since Theorem 1 ensures that every generated itemset
verifies it.

Related work Our generic algorithm is inspired by sev-
eral algorithms [18, 8, 13] and can be considered as a gen-
eralization of them. Conjunctions of monotone and anti-
monotone constraints encompass every kind of constraints
that have been “pushed” inside a levelwise algorithm (an-
other kind of interesting constraint, the convertible con-
straints [16], can be pushed in depth-first exploration algo-
rithms). The framework of succinct constraints introduced
in [13] allows to find an effective generation procedure (i.e.,
an effective computation of the negative border �����	� of
Theorem 1).

4. Revisiting the CLOSE Algorithm

It is now interesting to revisit the algorithms CLOSE

[15], Charm [19] and MIN-EX [4]. These algorithms com-
pute frequent closed itemsets, i.e., condensed representa-
tions of frequent itemsets. They allow tractable frequent
itemset extractions from dense and highly-correlated data,
i.e., tractable extractions for thresholds on which APRIORI

is clearly intractable.

4.1. How CLOSE algorithm has been defined so far

The APRIORI algorithm explores the itemset lattice to
find all the frequent itemsets. However, the number of fre-
quent itemsets can be exponential in the size of Items. If
the size of Items is �, the size of the itemset lattice is ��

and many of these itemsets can be frequent for the given
frequency threshold. This is the case in highly-correlated
data like for instance census data.

The CLOSE algorithm (and related algorithms) operates
on a different lattice: the closed itemset lattice.

Definition 4 (closed itemset lattice) The closure of an
itemset � (denoted by closure���) is the maximal (for
set inclusion) superset of � which has the same support as
�. A closed itemset is an itemset that is equal to its closure.
The set of closed itemset is a lattice called the closed itemset
lattice.



In CLOSE, the exploration of this lattice is done in a lev-
elwise manner like APRIORI. The efficiency of these al-
gorithms comes from the fact that this lattice is generally
several order of magnitude smaller than the itemset lattice.

These algorithms output the set of frequent closed item-
sets. Frequent closed itemsets are interesting for several rea-
sons:

� they are far less numerous than frequent itemsets (and
therefore faster to compute, easier to store and manip-
ulate),

� if necessary, it is possible to generate efficiently all fre-
quent itemsets (and their frequencies) from the closed
ones,

� it is possible to derive (non redundant) association
rules directly from closed frequent itemsets without
generating all frequent non-closed ones (see, e.g.,
[19, 14]).

4.2. A new constraint

We show how to consider the CLOSE algorithm as an
exploration of the classical itemset lattice with a new con-
straint �����. Then in Section 4.3, we will be able to use
this constraint in our generic algorithm together with other
constraints and therefore achieve constrained free-set min-
ing. We first define a constraint � �����.

Definition 5 (A constraint for CLOSE) � �������� � �� �
� � � 	� closure����.

The itemsets which verify this constraint are exactly the
0-free sets introduced in [6] and it motivates the chosen
name of the constraint.

Definition 6 (Free itemsets) Free itemsets are itemsets
that are not included in any closure of their proper sub-set.
Equivalently, free itemsets are itemsets that verify � �����.

A fundamental property of free itemesets is that no logi-
cal rule (i.e., association rule with a confidence of 1) holds
between their attributes. In other words, if � is a free item-
set, then there does not exist two distinct subset � and � of
� with � 	� � such that the rule � � � has a confidence
of 1. Also, the frequency of itemsets that are not free can be
inferred from the frequency of free itemsets [6].

Example 6 Let us compute closure���� on our running
example. Items � and � are simultaneously in transac-
tions 1, 4 and 6. We notice that item � is the only other
item that is also present in these three transactions, thus
closure���� � ���. We also have closure��� � ��

and closure��� � ��, so �� 	� closure��� and

�� 	� closure���. Therefore � ��������� is true. If
the frequency threshold is � � ���, �����������
��� �

���� ��� ��� ���� ���� where the notation ��� means that
���������� is true and that closure���� � ���.

Notice that when the closure of an itemset � is a proper
superset of � , say � , it means that an association rule� �
� holds with confidence �. In other terms, it means that the
more you have such correlations in your data, the less you
have free itemsets and thus the less you have to count for
frequencies when looking for frequent itemsets.

Proposition 1 The � ����� constraint is anti-monotone.

This constraint is another example of an anti-monotone
constraint which needs a database pass to be checked (a
database pass is needed to compute the closure of an item-
set). Checking this constraint seems expensive if the clo-
sure of every subset of � has to be computed. We can use
an equivalent constraint �������� � ��� � � � ���� �
��� � �� � � 	� closure����. The equivalence means
that ��������� is true iff �������� is true.

So we only need the closure of every subset of � of size
�����. We are now able to test the constraint on � 
 ����:
for each � � � � such that �� �� � ��� � � we must know
closure����. In the CLOSE algorithm, the closure of each
candidate itemset of size � and its frequency are computed
during the database pass at level �. If the closure of � � is not
computed, it means that � � does not verify ����
 � �����

(i.e., an anti-monotone constraint) and therefore � cannot
verify ����
 � �����. Finally, either the closure of � � is
known and we can check if � � closure�� �� or it is not
known and it means that ����
������������ is false. This
strategy which uses the anti-monotonicity of � ����� enables
to test the constraint with only a little extra cost during the
database pass.

4.3. Incorporating constraints

Now, it seems straightforward to search for itemsets
which verify a constraint � � ����� � ��� � �� using the
generic algorithm (since ����� is anti-monotone). How-
ever, there are two problems. First (due to ��), the closures
of some candidates of level � are not computed thus making
the ����� checking impossible at level � � � (it is not
possible to check if an itemset of size � � � is included in
the closure of one of its proper subset). Second, we loose
an important property of CLOSE: ����
�����	���� will
no longer enables to compute ����	���� .

Assume we replace � ����� with ���������
��� � ��� �

� � ������� � � 	� closure���� and ����� with:
����������� � ��� � � � ���� � ��� � � � ������� �
� 	� closure����. Then we have the following theorem.



Theorem 3 The constraints �������� and � ��������
are

equivalent and anti-monotone. The set ����	���� can be
efficiently computed using the same method as in CLOSE

using ����
��������	���� , i.e., the output of the generic
algorithm with the constraint � � �������� � ��� � ��.

This theorem means that we can find free-itemsets that
verify conjunctions of anti-monotone and monotone con-
straints.

4.4. MIN-EX algorithm

The MIN-EX algorithm is an extension of the CLOSE al-
gorithm [4]. The concept of closure is extended, providing
new possibilities for pruning. However, we must trade this
efficiency improvement against precision: the frequency of
the frequent itemsets are only known within and bounded
error. If Æ is an integer, let closureÆ(S) be the maxi-
mal (for the set inclusion) superset � of � such that for
every item � 
 � � �, ���������� � ����� is at least
������������ � Æ (with Æ � �, it is the same closure op-
erator than CLOSE i.e., closure� � closure). Larger
values of Æ leads to more efficiency improvement and larger
errors on the frequencies of itemsets. By replacing this
new closure operator in the definition of ����� we define
�Æ����� and �Æ�������� and Theorem 3 is true with these
new constraints. The sets that fulfill �Æ����� are the so-
called Æ-free sets from [6]. Here again, one can say that the
more you have almost logical association rules that hold in
your data (rules with confidence close to � since only Æ ex-
ceptions are allowed), the less you have Æ-free sets. It has
been shown that when the frequency of a frequent itemset
is approximated by using the frequency of a Æ-free set, the
error on frequency can remain very low in practice [6].

5. An experimental validation

We consider an experiment motivated by the search for
association rules with negations [5]. Only some results con-
cerning the discovery of generalized sets (from with associ-
ation rules with negations are derived) are given here.

Notations Let ����	� � ��� �� ���� be a finite set of sym-
bols called the positive items and a set ����	� of same car-
dinality as ����	� whose elements are denoted �, �, . . . and
called the negative items. Given a transactional database 

over ����	�, let us define a complemented transactional
database over ����	 � ����	� � ����	� as follows: for
a given transaction � 
 
 , we add to � negative items cor-
responding to positive items not present in �. Generalized
itemsets are subsets of ����	 and can contain positive and
negative items.

Constraints We want to extract frequent itemsets (����
)
that do not involve only negative items (�����). ��������
is true when � involves at least � positive items. This is
obviously a monotone constraint. First experiments have
shown that it was interesting to relax such a monotone con-
straint (i.e., accepting more sets) in order to give rise to
more pruning (see [5] for a complete discussion). Follow-
ing that guideline, instead of �����, we used the constraint
�����
���� = ����� � �����

This constraint enforces at least � positive attributes (a
monotone constraint) or at most � negative attribute (an
anti-monotone constraint).

Let us introduce the collection of constraints that have
been used.

����

�� = ����
 � �����
����

�� = ����
 � �����
����

�� = ����
 � �����
����

��� = ����
 � �������� � �����
����

��� = ����
 � �������� � �����
����

��� = ����
 � �������� � �����
����

��� = ����
 � �Æ�������� � �����
����

��� = ����
 � �Æ�������� � �����
����

��� = ����
 � �Æ�������� � �����
����

With these constraints, we are able to compare different
approaches :

� using only the frequency constraint;

� using the frequency constraint and �����
���� con-
straint with � � �, 2, 3 (���, ��� and ���);

� using ����
 and �����
���� in conjunction with
�������� or �Æ�������� .

Datasets We studied the use of these constraints on two
dataset. The first one is a benchmark, the so-called mush-
room data. This dataset is a binary matrix of 8124 rows.
Each row contains 23 discrete attributes. Theses attributes
are binarized into exclusive attribute-value pairs. This leads
to a binary matrix with 119 columns and 23 “1” per row.
When encoding negative items, it leads to a matrix with 238
columns whose each row contains 119 “1”.

The second dataset is from the French national institute
of statistics (INSEE). In this dataset, each row represents
a French town and each column represents a kind of ser-
vice (e.g., bank, insurance company, etc), a “1” in “bank”
column means that there is at least one bank in the town.
In this dataset, there are about 37000 rows and 59 columns
with an average number of “1” per row of 4. When encod-
ing negative items, it leads to a matrix with 118 columns
whose each row contains 59 “1”.

The former dataset is quite small but it is known to be
tough due to the high correlation between the attributes and



its density (for positive attributes). The latter dataset is
larger but it is sparse (4 “1” per row on average for positive
attributes) and less correlated. These two different datasets
let us compare our approach on different types of datasets.
Indeed the results show a great difference between these two
experiments.

Experiments The experiments were conducted on a 500
MHz Pentium III with 768 MB of memory. The value of
the frequency threshold (�) is changed over experiments in
order to observe the trend. Logarithmically scaled axes are
used. The value of the Æ parameter in the �Æ����� con-
straint is set to 200 for the mushroom database and to 100
for the INSEE database (in this latter database there was
only a slight difference in execution time between Æ � ���
and Æ � ��� but Æ � ��� gives more accurate results as
explained in Section 4.4).
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Figure 2. Mining generalized sets from mush-
room dataset.

Figure 2 shows the results of the experiments on the
mushroom dataset with the constraints ���, ���, ���, ���,
��� and ���. The extractions using the other constraints
(
�
��, ��, �� and ��) were intractable even at high fre-
quency threshold (95%) and with the strongest requirement
on the number of positive items (��). On this dataset the
use of �Æ�������� as opposed to �Æ�������� clearly im-
proves the results. With ���, a frequency threshold of 65%
is reached whereas using ��� allows to reach a frequency of
20% within about the same time. Finally, on the mushroom
dataset,

� ����
 combined with the most favorable case of �����
still leads to an intractable extraction;

� ����
 combined with only �Æ����� or ����� does not
allow mining at low threshold (even with ����� i.e., ���

and ���, we only reach 60%).

Therefore, to mine at reasonable frequency thresholds, the
conjunction of both techniques (using constraints on item-
sets with the �����
���� family of constraints and look-
ing for Æ-free-sets with �������� or �Æ�������� ) appears
mandatory.
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Figure 3. Mining generalized sets from INSEE
dataset.

Figure 3 shows the results of the experiments on the IN-
SEE dataset. With the constraints ����
, ��, ��� and ��� it
is not possible to reach a frequency threshold less than 34%.
For this frequency threshold, there is only one frequent pos-
itive attribute. This means that all the itemsets mined at this
threshold are composed of the same positive attribute and
several negative ones.

On this dataset, we notice that the ��	 family of con-
straint is surprisingly less efficient than the less constrain-
ing �	 family. We analyzed the output of the algorithm and
found that almost no logical rule (association rule with a
confidence of 1) holds in this dataset. The optimization of
��	 over �	 is based on the presence of these rules.

Even if the use of Æ-free-sets (with ��� or ���) does not
allow to mine at significantly lower thresholds, however, it
speeds up the extraction by an order of magnitude with re-
spect to �� or �� at lower frequency thresholds. Finally,
with this dataset too the approach turns to be valuable.

6. Conclusion

We study itemset mining under constraints within level-
wise algorithms. Several interesting results have been al-
ready published the last three years, e.g., about the effective
use of anti-monotone constraints or the interest of mono-
tone constraints. The generic algorithm we give in this pa-
per is a simple generalization of several related algorithms



and enable to emphasize the potential of optimization when
considering conjunctions of anti-monotone and monotone
constraints. Furthermore, we provide new results concern-
ing the computation of free sets under constraints. We dis-
cussed under which conditions it was possible to extend an
algorithm like CLOSE for an effective use of constraints.
An experimental validation has confirmed the added-value
of this approach.

A recent work uses a different approach and proposes
to mine frequent itemsets without candidate generation
[17]. Integrating this new algorithm within our study seems
promising. Furthermore, frequent sets discovery, and more
generally data mining, is not limited to independent min-
ing tasks (or queries). Knowledge discovery in databases is
an iterative process and there are still lots of work to do to
optimize sequences of queries. There is a major trade-off
between fully optimizing each individual query and finding
a strategy that makes use of previous mined patterns [8, 3].
This strategy may be less effective for the first queries but
may win for long sequences of related queries, i.e., the way
people actually proceed.
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