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Abstract. Graph mining methods have become quite popular and a timely challenge is to discover dynamic properties in
evolving graphs or networks. We consider the so-called relational dynamic oriented graphs that can be encoded as n-ary
relations with n � 3 and thus represented by Boolean tensors. Two dimensions are used to encode the graph adjacency
matrices and at least one other denotes time. We design the pattern domain of multi-dimensional association rules, i.e., non
trivial extensions of the popular association rules that may involve subsets of any dimensions in their antecedents and their
consequents. First, we design new objective interestingness measures for such rules and it leads to different approaches for
measuring the rule confidence. Second, we must compute collections of a priori interesting rules. It is considered here as a
post-processing of the closed patterns that can be extracted efficiently from Boolean tensors. We propose optimizations to
support both rule extraction scalability and non redundancy. We illustrate the added-value of this new data mining task to
discover patterns from a real-life relational dynamic graph.
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1. Introduction

Graph mining is a popular topic (see, e.g. [2]). Many researchers have considered knowledge discovery
from large collections of graphs while others focus the analysis of one large graph or network. In the
latter case, we observe complementary directions of research. On one hand, global properties of graphs
are studied like power-law distribution of node degrees or diameters [5,15,24,32,35]. On another hand, it
is possible to use data mining algorithms to identify local patterns in the graphs (e.g., frequent subgraphs,
clique patterns) [9,10,19,25,30]. Such techniques can indeed benefit from the huge research effort on 0/1
data analysis and the analogy between Boolean matrices with either the definition of bi-partite graphs or
graph encoding by means of adjacency matrices.

We investigate pattern discovery from dynamic directed relational graphs, i.e., from a collection of
static directed graphs that all share the same set of uniquely identified vertices. In our setting, given a set
of vertices, directed edges can change (i.e., appear or disappear) through time and such a dynamic graph
can be modeled by a sequence of static graphs. For instance, Fig. 1 depicts a dynamic directed graph
involving four nodes through five timestamps. It can be represented as the sequence of its adjacency
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a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4
d1 1 1 1 1 1 1 1 1 1 1 1 1 1
d2 1 1 1 1 1 1 1 1 1 1
d3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
d4 1 1 1 1 1 1 1 1 1 1 1 1 1

t1 t2 t3 t4 t5

Fig. 1. RE ⊆ {d1, d2, d3, d4} × {a1, a2, a3, a4} × {t1, t2, t3, t4, t5}.

matrices underneath. It describes the relationship between the departure vertices inD1 = {d1, d2, d3, d4}
and the arrival vertices in D2 = {a1, a2, a3, a4} at the timestamps in D3 = {t1, t2, t3, t4, t5}. Every ‘1’,
in the adjacency matrices is at the intersection of three elements (di, aj , tk) ∈ D1 × D2 × D3, which
indicates a directed edge from di to aj at time tk. Therefore, at least three dimensions are necessary to
encode a dynamic relational graph as a Boolean tensor or a ternary relation (the one depicted in Fig. 1 is
called RE). However, more dimensions may be used to encode additional information on edges and/or
time aspects.

Studying descriptive rule mining from dynamic graphs is a rather new research topic and most of
previous works impose severe restrictions on the form of the rules. The key contribution of this paper
is the proposal of a new form of rules which generalizes the inter-dimensional rules from [28]. Our
rules may now involve any subset of dimensions in both the left-hand side and the right-hand side.1

In particular, the temporal dimensions can either explicitly appear in the rules or be used to measure
their relevancy (i.e., these dimensions “support” the rules). It provides patterns that describe the graph
evolution at a local level. Two examples of inter-dimensional rules are given in Figs 2a and 3a. Figure 2a
depicts a rule that is preserved at several timestamps. It intuitively means that if, at a time, the edges from
the vertices 1 and 2 go to the same vertices then these vertices are 1 and 3. The rule in Fig. 3a indicates
that when we observe that the edges departing from the vertices 1, 3 and 4 have the same arrivals then
that usually happens at the times t4 and t5. By removing the constraint that a given dimension cannot
appear at both sides of the rule, more rules become valid. For example, the rule in Fig. 2b describes
the dependency between sub-networks. More precisely, it tells that the sub-network at its body can be
confidently enlarged to a clique. This clique turns to be the maximal one involving the sub-network. The
rule in Fig. 3b indicates that, at Time t3, most of the edges from Vertex 3 reach vertices that also are the
arrivals of edges leaving this Vertex 3 at the times t4 and t5. So, a new type of pattern which is more
general is defined: the multidimensional association rule.

To assess the relevancy of such rules, we design a straightforward extension of the classical frequency
measure and two original and non trivial generalizations of the confidence measure: (a) the exclusive
confidence, which quantifies the “exclusiveness” of the rules, turns out to be easily interpretable but a
threshold on this measure does not allow to prune the rule search space; (b) the natural confidence, which
relies on a “natural” proportion of elements in the support domain, turns out to be harder to interpret
(additional data matching the body but not the head not always decrease the natural confidence) but

1In inter-dimensional rules, body and head dimension domains have to be disjoint.
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(b) {d1} × {a4} → {d3, d4} × {a1, a3}.

Fig. 2. Example of rules on {D1, D2} inRE .

1
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4

t4, t5

(a) {d1, d3, d4} → {t4, t5}.

3
t3

t4, t5

(b) {t3} × {d3} → {t4, t5}.

Fig. 3. Example of rules on {D1, D3} inRE .

enforcing a threshold on it provides faster extractions, hence the possibility to mine much larger graphs.
Beyond the design of a new semantics for rules in dynamic graphs, we indeed propose an algorithm
called PINARD++ that efficiently computes them. It proceeds in three successive steps: (1) it prepares
the Boolean tensor to mine; (2) it computes the frequent closed sets in that tensor thanks to a clever use
of the state-of-the-art algorithm DATA-PEELER [13]; (3) it derives from these patterns the non-redundant
rules whose exclusive and natural confidences exceed the user-defined thresholds. This algorithm is an
extension of both GEAR [28] and PINARD [29]. Among others, we revisit non-redundancy in this new
multidimensional setting. To illustrate the added-value of this new pattern type and the tractability of
our extraction method, an experimental study, on a large real-world dynamic network, is reported.

2. A descriptive rule pattern domain

2.1. Preliminary definitions

The proposed semantics for multidimensional association rules (as well as the algorithm listing them
all in a given dataset) actually applies to any n-ary relation and thus Boolean tensor. All along the
article, the domains (a domain is the set of elements of each dimension) are denoted D1,D2, . . . ,Dn

and the relation, denoted R, is a subset of D1 × · · · ×Dn. Without loss of generality, the domains are
supposed disjoint. The set of all domains ({D1,D2, . . . ,Dn}) is denoted D. To emphasize the relevancy
of the proposed patterns in dynamic (directed) graphs, the definitions are illustrated on the toy example
represented in Fig. 1. It depicts a graph with four vertices and evolving along five timestamps. This graph
can be seen as a ternary relation RE , which relates the departure vertices in D1 to the arrival vertices in
D2 at the timestamps in D3.

The patterns of interest only involve dimensions of some of the domains D′ ⊆ D. E.g., in RE , the
analyst may want to focus on subgraph patterns. In this case, D′ involves the two domains D1 and
D2, i.e., D′ = {D1,D2}. Without loss of generality, the dimensions are assumed ordered such that
D′ = {D1, . . . ,D|D′|}.
Definition 1 (Association). ∀D′ = {D1, . . . ,D|D′|} ⊆ D, ×i=1..|D′|Xi is an association on D′ iff
∀i = 1..|D′|, Xi �= ∅ ∧Xi ⊆ Di. By convention, the only association on D′ = ∅ is denoted ∅.



52 K.-N.T. Nguyen et al. / Discovering descriptive rules in relational dynamic graphs

For example, in RE , {d1, d2}× {a1} and {d1, d2}× {a1, a3} are associations on {D1,D2}, {d1, d2}
is an association on {D1} and {a1, a2} is an association on {D2}.

Given an arbitrary association on D′, ×Di∈D\D′Di is its support domain. Like with binary relations or
binary matrices, the support domain is a set of elements that are counted to provide a frequency interest-
ingness measure. For instance, in the popular Transactions× Products setting, the support domain of an
association rule involving products is the set of transactions [4]. In our running example, we see that D3

is the support domain of associations on {D1,D2}. The support of an association is a subset of the sup-
port domain. Its definition uses concatenation denoted as ‘·’. For instance, (d1, a3) · (t1) = (d1, a3, t1).

Definition 2 (Support). ∀D′ ⊆ D, let X be an association on D′. Its support is s(X) = {u ∈
×Di∈D\D′Di | ∀x ∈ X, x · u ∈ R}.

Let us mention some special cases. An association involving the n domains (D′ = D) is either
false (at least one n-tuple it contains is absent from R) or true (every n-tuple it contains is in R).
By using the convention ×Di∈∅Di = {ε} (where ε is the empty word), Definition 2 reflects that
every possible association on D either has zero or one element, ε, in its support. The opposite ex-
treme case is the support of the empty association, s(∅), which is R. The support of an association
generalizes that of an itemset in a binary relation (i.e., when n = 2 and D′ = {D1}). For exam-
ple, in RE : s({d1, d2} × {a1}) = {t1, t2, t5}, s({d1, d2} × {a1, a3}) = {t1, t2} and s({d1, d2}) =
{(a1, t1), (a3, t1), (a1, t2), (a2, t2), (a3, t2), (a2, t4), (a1, t5)}.

Let us now introduce some operators to manipulate associations. Their definitions are illustrated on
Xe = {a1, a2} and Ye = {d1, d2} × {a1, a3}.
Definition 3 (Projection π). ∀D′ = {D1, . . . ,D|D′|} ⊆ D, let X = X1 × · · · ×X |D′| be an association
on D′. ∀Di ∈ D, πDi(X) = Xi if Di ∈ D′, ∅ otherwise.

For example, πD1(Xe) = ∅, πD2(Xe) = {a1, a2}, πD3(Xe) = ∅, πD1(Ye) = {d1, d2}, πD2(Ye) =
{a1, a3}, and πD3(Ye) = ∅.
Definition 4 (Union �). ∀DX ⊆ D and ∀DY ⊆ D, let X (resp. Y ) be an association on DX (resp. on
DY ). X � Y is an association on DX ∪ DY for which ∀Di ∈ D, πDi(X � Y ) = πDi(X) ∪ πDi(Y ).

For example, Xe � Ye is an association on {D2} ∪ {D1,D2} = {D1,D2}, Xe � Ye = (πD1(Xe) ∪
πD1(Ye))× (πD2(Xe) ∪ πD2(Ye)) = (∅ ∪ {d1, d2})× ({a1, a2} ∪ {a1, a3}) = {d1, d2} × {a1, a2, a3}.
Definition 5 (Complement \). ∀DX ⊆ D and ∀DY ⊆ D, let X (resp. Y ) be an association on DX

(resp. on DY ). Y \ X is an association on {Di ∈ DY | πDi(Y ) �⊆ πDi(X)} for which ∀Di ∈ D,
πDi(Y \X) = πDi(Y ) \ πDi(X).

For example, Ye \Xe is an association on {D1,D2}, Ye \Xe = (πD1(Ye) \ πD1(Xe))× (πD2(Ye) \
πD2(Xe)) = ({d1, d2} \ ∅) × ({a1, a3} \ {a1, a2}) = {d1, d2} × {a3}. In contrast, Xe \ Ye is an
association on {D2} only and Xe \ Ye = πD2(Xe) \ πD2(Ye) = {a1, a2} \ {a1, a3} = {a2}.
Definition 6 (Inclusion 
). ∀DX ⊆ D and ∀DY ⊆ D, let X (resp. Y ) be an association on DX (resp.
on DY ). X is included in Y , denoted X 
 Y , iff ∀Di ∈ D, πDi(X) ⊆ πDi(Y ).

For example, there are inclusions between three of the four associations illustrating Definition 1:
{d1, d2} 
 {d1, d2} × {a1} 
 {d1, d2} × {a1, a3}.

With this generalized inclusion, the anti-monotonicity of the support cardinality, that is well known in
itemset mining, still holds. The proof is given in the Technical Annex at the end of the paper.
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Theorem 1 (Support anti-monotonicity). ∀DX ⊆ D and ∀DY ⊆ D, let X (resp. Y ) be an association
on DX (resp. on DY ), X 
 Y ⇒ |s(X)| � |s(Y )|.

For example, considering the double inclusion illustrating Definition 6, one can verify that
|s({d1, d2})| � |s({d1, d2} × {a1})| � |s({d1, d2} × {a1, a3})|, i.e., Theorem 1 holds.

2.2. Non redundant multidimensional association rules

2.2.1. Multidimensional association rules
Given the n-ary relation R and the user-defined domains of interest D′ ⊆ D, a multidimensional

association rule on D′ is a couple of associations whose union is an association on D′. It is simply
called a rule when it is clear from the context.

Definition 7 (Multidimensional association rule). ∀D′ ⊆ D, X → Y is a multidimensional association
rule on D′ iff X � Y is an association on D′.

In RE , {d1, d2} → {a1, a3} and {d3} × {a2} → {a1, a3, a4} are two rules on {D1,D2}. {d1} →
{d2} is not a rule on {D1,D2} because no element in D2 appears in its body (the association on the left
hand side of ‘→’) nor in its head (the association on the right hand side of ‘→’). It is a rule on {D1}.

In the binary case (i.e., n = 2), the classical semantics of association rules is based on two measures: a
frequency and a confidence. A priori interesting rules are defined as those whose both measures exceed
user-specified thresholds [4]. A rule is frequent if it is supported by enough objects. A rule can be trusted,
i.e., the analysts can be confident in it, if there is a high enough conditional probability to observe the
head when the body holds. In the context of n-ary relations, it turns out that a natural definition of rule
frequency exists. On the contrary, it is fairly hard to define a confidence measure for general rules.

2.2.2. Rule frequency
The (relative) frequency of a rule is, in the support domain, the proportion of elements supporting the

union of its body and its head.

Definition 8 (Rule frequency). ∀D′ ⊆ D, let X → Y a rule on D′. Its frequency is:

f(X → Y ) =
|s(X � Y )|

| ×Di∈D\D′ Di| .

Let us give two examples of rules whose frequencies are 2
5 in RE : re denotes {d1, d2} → {a1, a3}

and rs denotes {d3} × {a2} → {a1, a3, a4}.
– f(re) =

|s({d1,d2}�{a1,a3})|
|D3| = |s({d1,d2}×{a1,a3})|

|D3| = |{t1,t2}|
|{t1,t2,t3,t4,t5}| ;

– f(rs) =
|s({d3}×{a2}�{a1,a3,a4})|

|D3| = |s({d3}×{a1,a2,a3,a4})|
|D3| = |{t4,t5}|

|{t1,t2,t3,t4,t5}| .

2.2.3. Rule confidence
The problem: Is it possible and useful to directly generalize the confidencemeasure of association rules

in binary relations to n-ary relations? Doing so, the confidence of a rule X → Y would be |s(X�Y )|
|s(X)| . If X

and X �Y are associations on the same domains (so they have the same support domain), this definition
is intuitive: the confidence is a proportion of elements in a same support domain. For instance, in RE , the
confidence of {d3} × {a2} → {a1, a3, a4} would be: |s({d3}×{a2}�{a1,a3,a4})|

|s({d3}×{a2})| = |s({d3}×{a1,a2,a3,a4})|
|s({d3}×{a2})| =
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|{t4,t5}|
|{t1,t4,t5}| =

2
3 . It is a proportion of timestamps and it means that every time the graph involves an edge

from d3 to a2 then it also tends to involve the edges from d3 to a1, a3 and a4.
Nevertheless, this semantics is not satisfactory for any rule whose head involves some dimension

that is not in its body. Indeed, in this case, s(X � Y ) and s(X) are disjoint sets and the ratio of their
cardinalities does not make any sense. For instance, in RE , consider the rule {d1, d2} → {a1, a3}.
s({d1, d2}×{a1, a3}) = {t1, t2}, is a set of timestamps, whereas s({d1, d2}) is not. It contains couples
such as (a1, t1) or (a3, t2). As a result, there is a need for a new confidence measure that would make
sense for any multidimensional association rule X → Y . We expect however that this measure will be
equal to |s(X�Y )|

|s(X)| when X and X � Y are defined on the same domain(s).
Exclusive confidence:Computing the confidence of a ruleX → Y onD′ is problematic if X is defined

on a set DX strictly included in D′. However, it is possible to introduce a factor such that |s(X)| and
|s(X �Y )| become comparable. The idea is to multiply |s(X �Y )| by the cardinalities of its projections
in the domains that are absent from DX .

Definition 9 (Exclusive confidence). ∀D′ ⊆ D, let X → Y be a rule on D′ and DX the domains on
which X is defined. The exclusive confidence of this rule is:

cexclusive(X → Y ) =
|s(X � Y )| × | ×Di∈D′\DX

πDi(Y )|
|s(X)| .

Roughly speaking, the remedial factor | ×Di∈D′\DX
πDi(Y )|, applied to |s(X � Y )|, allows to count

the elements at the numerator of the fraction “in the same way” as those at the denominator. As desired
above, if X is an association on D′, the exclusive confidence ofX → Y is |s(X�Y )|

|s(X)| under the convention
×Di∈∅πDi(Y ) = {ε}.

Consider the rule {d1, d2} → {a1, a3} in RE . To visualize the computation of its exclusive confi-
dence, Fig. 4 depicts the dynamic graph in Fig. 1 though it only keeps a selection of its pairs of edges
(“pairs” because two vertices are at the body of the rule) (a) having 1 and 2 as departure vertices and (b)
going to a same vertex at the same time. There are seven, |s({d1, d2})| = 7, such pairs (half the number
of edges in Fig. 1). It is the denominator of the exclusive confidence. Among these pairs of edges, four
go to a1 and a3 (the head of the rule) at the same time (they are thick in Fig. 4) and this is our numerator:

cexclusive({d1, d2} → {a1, a3}) = |s({d1, d2} � {a1, a3})| × |{a1, a3}|
|s({d1, d2})| =

4

7
.

At t5, the pair of edges, with 1 and 2 as departure vertices, goes to 1 only (no analog pair goes to
3). That is why it is only counted at the denominator of the exclusive confidence measure. This pair
somehow lowers the confidence in the fact that the edges departing from the vertices 1 and 2 converge
to both the vertices 1 and 3. More interestingly, at t2, despite the presence of the two pairs satisfying
the rule, the fact that there is an additional one going to 2 also lowers the confidence in the fact that the
edges departing from the vertices 1 and 2 exclusively converge to the vertices 1 and 3. This exclusivity
explains the chosen name. In fact, for cexclusive({d1, d2} → {a1, a3}) to be 1, i.e., the maximal possible
value, every time the edges departing from the vertices 1 and 2 concur, they must do so towards both the
vertices 1 and 3 and only them.

Unfortunately, this exclusivity also makes the function X 
→ cexclusive(X → Y \ X) (with X 
 Y )
not increase w.r.t. 
. For example, consider the rules {d4} → {d3} × {a1, a3, a4} and {d4} × {a3} →
{d3} × {a1, a4} in RE , cexclusive({d4} → {d3} × {a1, a3, a4}) = 9

13 and cexclusive({d4} × {a3} →
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Fig. 4. Computing the exclusive confidence of {d1, d2} → {a1, a3}.

{d3} × {a1, a4}) = 3
5 . We observe that {d4} 
 {d4} × {a3} 
 {d3, d4} × {a1, a3, a4}, however

cexclusive({d4} → {d3} × {a1, a3, a4}) is greater than cexclusive({d4} × {a3} → {d3} × {a1, a4}). This
prevents to efficiently list every rule having an exclusive confidence greater than a user-defined threshold.

The exclusive confidence measure actually penalizes a rule whose elements in its support domain
individually allow to conclude on other elements than those at its head. In this way, a minimal exclusive
confidence threshold favors the discovery of multidimensional association rules with “maximal” heads.
Let us now consider an alternative definition for the confidence measure.

Natural confidence: To define the confidence of X → Y , a straightforward generalization of the
binary case is problematic when the support domain of X is different from that of X � Y . “Enforcing”
the support ofX to be a subset of the support domain×Di∈D\D′Di ofX�Y allows to define a confidence
measure that is a natural proportion, i.e., a proportion of elements in a same support domain. The cost
of such a natural confidence is the need for a new definition of the support when applied to rule bodies.

Definition 10 (Natural support of bodies). ∀D′ ⊆ D, let X → Y be a rule on D′. The natural support
of X is:

sD\D′(X) = {u ∈ ×Di∈D\D′Di | ∃w ∈ ×Di∈D′\DX
Di

such that ∀x ∈ X, x · w · u ∈ R} ,

where DX is the set of domains on which X is defined. For x · w · u to possibly be in R, the domains in
DX must appear first, i.e., the domain index may have to be changed.

Definition 11 (Natural confidence). ∀D′ ⊆ D, let X → Y be a rule on D′. Its natural confidence is:

cnatural(X → Y ) =
|s(X � Y )|
|sD\D′(X)| .

Notice that if X is an association on D′, the natural confidence of X → Y is |s(X�Y )|
|s(X)| under the

convention ×Di∈∅Di = {ε}. Once again, consider the rule {d1, d2} → {a1, a3} in RE . To compute its
natural confidence, the initial selection of the relevant pairs of edges is similar to the one presented for
the computation of the exclusive confidence (and illustrated by Fig. 4). However, this number of pairs
is not the denominator of the natural confidence. Instead, the denominator is the number of timestamps
(the support domain of {d1, d2} � {a1, a3}) where at least one pair of edges was selected, i.e., four (the
only snapshot of the graph where no pair was selected is at time t3). Among these four timestamps,
two support the rule, i.e., have pairs of edges going to both vertices 1 and 3. This number |s({d1, d2} �
{a1, a3})| is the numerator of the natural confidence measure:

cnatural({d1, d2} → {a1, a3}) = |s({d1, d2} � {a1, a3})|
|s{D3}({d1, d2})|

=
|{t1, t2}|

|{t1, t2, t4, t5}| =
2

4
.
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At Time t4 (or t5), which does not support the rule, selecting a pair of edges decreases the natural con-
fidence. Notice however that selecting more pairs in one such snapshot does not decrease the measure,
i.e., the natural confidence only captures an information about the presence of at least one selected pair.
At Time t1 (or t2), which does support the rule, selecting more pairs of edges (than those necessary to
the satisfaction of the rule) does not decrease the natural confidence either. In particular, at Time t2, the
pair of edges going from the vertices 1 and 2 to the Vertex 2 has no influence on the natural confidence.
This unintuitive behavior makes the natural confidence difficult to interpret: the body of the rule must
be understood “in the light” of the additional dimensions at the head of the rule. On the positive side,
and contrary to the exclusive confidence, the natural confidence simply is a proportion of elements in the
support domain (in this case, the temporal dimension). Furthermore, this measure has a monotonicity
property, which the exclusive confidence misses. It enables the efficient discovery of multidimensional
association rules in large datasets.

Theorem 2 (Pruning criterion). Let X → Y \ X and X ′ → Y \ X ′ be two rules on D′. We have:
X 
 X ′ 
 Y ⇒ cnatural(X → Y \X) � cnatural(X

′ → Y \X ′).

The proof is given in the Technical Annex. In RE , {d1, d2} → {a1, a3} and {d1, d2} × {a1} → {a3}
are two rules on {D1,D2}. The natural confidence of the first rule is 2

4 (see above). The natural con-
fidence of the second one is |s({d1,d2}×{a1}�{a3})|

|sD3({d1,d2}×{a1})| = |s({d1,d2}×{a1,a3})|
|sD3({d1,d2}×{a1})| = |{t1,t2}|

|{t1,t2,t5}| = 2
3 . It illus-

trates Theorem 2. Indeed, {d1, d2} 
 {d1, d2} × {a1} 
 {d1, d2} × {a1, a3} and cnatural({d1, d2} →
{a1, a3}) � cnatural({d1, d2} × {a1} → {a3}). In Section 3, this theorem is used to prune the search
space where no rule can satisfy a minimal natural confidence constraint.

2.2.4. Canonical and non-redundant rules

Definition 12 (Syntactic equivalence of rules). ∀D′ ⊆ D, the rules X → Y and X → Z on D′ are
syntactically equivalent iff X � Y = X � Z .

Proving the following lemma is straightforward.

Lemma 1. Syntactically equivalent rules have the same frequency, the same exclusive confidence and
the same natural confidence.

Definition 13 (Canonical rule). ∀D′ ⊆ D, a rule X → Y on D′ is canonical iff ∀Di ∈ D, πDi(X) ∩
πDi(Y ) = ∅.

Any complete collection of rules satisfying constraints on frequency and/or confidences can be con-
densed, without any loss of information, into its canonical rules only. Indeed, given a canonical rule
X → Y in the collection, Lemma 1 entails that all syntactically equivalent rules necessary are in the
collection as well. Moreover constructing them is easy: they are the rules X → Y �Z with Z 
 X. For
example, in RE , let us consider the following rules:

– r1: {d3} × {a2} → {a1, a3, a4} (f : 0.4, cnatural : 0.67, cexclusive : 0.67),
– r2: {d3} × {a2, a3} → {a1} (f : 0.4, cnatural : 0.67, cexclusive : 0.67),
– r3: {d4} → {d3} × {a1, a3, a4} (f : 0.6, cnatural : 0.6, cexclusive : 0.69),
– r4: {d4} × {a3} → {d3} × {a1, a4} (f : 0.6, cnatural : 0.6, cexclusive : 0.6),

They all are canonical and have their frequencies, their exclusive confidences and their natural confi-
dences respectively exceeding 0.4, 0.6, and 0.6. In this regard, they individually satisfy this aspect of
interestingness. Nevertheless, altogether, they provide redundant information. For instance, r2 is more
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specific than r1 because it requires more conditions to apply (to match the body of the rule, a graph
must additionally have the edge from the Vertex 3 to itself) and its conclusion is less informative (it does
not tell anything about a4). However this specialization does not grant r2 a greater frequency or greater
confidences than r1. Therefore, r2 is said redundant. Similarly the interestingness measures of r3 make
the more specific rule r4 redundant. Since the analyst would not find any added-value in the rules r2 and
r4, they should not be returned. In other terms, the concept of non-redundant rule [38] is to be revisited
in our extended setting.

Definition 14 (Non-redundant rule). ∀D′ ⊆ D, a rule X → Y on D′ is non-redundant iff it is canonical
and no other canonical rule X ′ → Y ′ is such that:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(X ′ � Y ′ = X � Y ∧X ′ � X) ∨ (X ′ � Y ′ � X � Y ∧X ′ 
 X)

f(X ′ → Y ′) � f(X → Y )

cnatural(X
′ → Y ′) � cnatural(X → Y )

cexclusive(X
′ → Y ′) � cexclusive(X → Y )

.

The first condition defines the form of the rules that may make the considered one redundant. Obvi-
ously, there exists other more general rules (with less elements) that are not matched. Nevertheless, this
definition allows the removal of many redundant rules that are worse that the selected ones in term of
frequency (second condition), natural confidence (third condition) and exclusive confidence (fourth con-
dition). For instance, thanks to it, the rules r2 and r4 are not presented to the analyst. The choice of the
first condition was partly based on procedural considerations: the non-redundant rules, as defined above,
can be efficiently derived from closed sets. Before defining the closed sets, let us introduce the relation
in which these patterns are extracted. It is obtained from R by “flattening” the dimensions absent from
D′ into a unique support dimension Dsupp = ×Di∈D\D′Di. Denoted RA until the end of this article, this
relation is defined on the domains DA = D′ ∪ {Dsupp}. Assuming that for all i = 1..n, ei is an element
of the ith domain, i.e., ei ∈ Di, we have to build:

RA = {(e1, e2, . . . , e|D′|, (e|D′|+1, . . . , en))|(e1, e2, . . . , e|D′|, e|D′|+1, . . . , en) ∈ R}.
In this relation, a closed set is an association on DA that (a) only covers |DA|-tuples present in RA

and (b) cannot be enlarged without violating (a).

Definition 15 (Closed set). Given a relation RA on DA, X is a closed set in

RA iff

{
X ⊆ RA

∀Di ∈ DA,∀e ∈ Di \ πDi(X),X � {e} �⊆ R .

Considering RE , if D′ contains two domains, then RA = RE and {d1, d2} × {a1, a3} × {t1, t2} is
a closed set. {d1, d2} × {a1, a3} × {t1, t2, t5} is not a closed set because it covers (d2, a3, t5) /∈ RA.
{d1, d2} × {a3} × {t1, t2} is not a closed set either because it can be extended with a1.

Finally, the following theorem, proved in the Technical Annex, states that the non-redundant rules
on D′ are exactly those derivable from the closed sets in RA (their elements in ∪Di∈D′Di being split
between bodies and heads) and satisfying a second condition pertaining to the confidences of the more
general rules sharing the same elements.

Theorem 3 (Closed sets and non-redundant rules). ∀D′ ⊆ D, let X → Y be a canonical rule on
D′. X → Y is a non-redundant rule iff (X � Y � s(X � Y )) is a closed set in RA and ∀X ′ � X,
cnatural(X

′ → (Y �X) \X ′) < cnatural(X → Y ) ∨ cexclusive(X
′ → (Y �X) \X ′) < cexclusive(X → Y ).
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3. Discovering non-redundant rules

Given an n-ary relation R ⊆ ×Di∈DDi, every a priori interesting and non-redundant rule is to be
listed. These rules are defined on a selected subsetD′ � D, have their frequency beyond μ ∈ [0; 1], their
exclusive confidence beyond βexclusive ∈ [0; 1], and their natural confidence beyond βnatural ∈ [0; 1]. In
other terms, our algorithm PINARD++ computes:

⎧⎪⎪⎨
⎪⎪⎩X → Y on D′ |

⎧⎪⎪⎨
⎪⎪⎩
X → Y is non-redundant
f(X → Y ) � μ

cexclusive(X → Y ) � βexclusive

cnatural(X → Y ) � βnatural

⎫⎪⎪⎬
⎪⎪⎭ .

PINARD++ proceeds in three successive steps: (1) it constructs the relation RA defined at the end of
the previous section; (2) it extracts the frequent closed sets in RA; (3) it derives from these patterns the
non-redundant rules whose exclusive and natural confidences exceed the user-defined thresholds. The
first step is trivial. The second step relies on the state-of-the art algorithm DATA-PEELER for closed
set mining under constraints in Boolean tensors. In Section 3.1, we present the constraint to integrate
to focus on the frequent patterns (i.e., to only discover the closed sets from which frequent enough
rules are obtained) as well as other constraints targeted to dynamic graph mining. The derivation of the
non-redundant rules from the closed sets is presented in Section 3.2.

3.1. Extracting closed sets under constraints in tensors

Two approaches have been proposed to exhaustively list the closed sets in ternary relations, namely
CUBEMINER [22] and TRIAS [21]. A third algorithm, DATA-PEELER [13] can compute every closed
set in relations of arbitrary arity. Despite its broader scope, it is orders of magnitude faster than both
TRIAS and CUBEMINER on ternary relations. Furthermore, DATA-PEELER can efficiently handle an
expressive class of constraints. This is particularly appealing in our context. Indeed, Theorem 3 states
the link between the non-redundant rules and the closed sets in RA but, to be a priori interesting, the
rules must satisfy constraints. DATA-PEELER can handle some of them directly on the closed sets. This
is, in particular, the case of the frequency constraint: the closed sets in RA, that lead to frequent rules,
gather at least a proportion μ of the elements in Dsupp.

Definition 16 (Frequent closed set). Given a frequency threshold μ, a closed set C is a frequent closed
set if |πDsupp(C)|

|Dsupp| � μ.

It may also be interesting to specify minimal numbers of elements in the dimensions that the rules
involve (i.e., the dimensions in D′).

Definition 17 ((αi)i=1..|D′|-large closed set). ∀(αi)i=1..|D′| ∈ N|D′|, a closed set C is said (αi)i=1..|D′|-
large if ∀Di ∈ D′, |πDi(C)| � αi.

Other constraints specifically make sense when R not only is a generic n-ary relation but a collection
of graphs or even a dynamic graph (i.e., a timestamped collection of graphs). For instance, a symmetry
constraint between the set of departure vertices and that of arrival vertices enables the discovery of
association rules concluding on cross-graph closed cliques.

Definition 18 (Cross-graph closed clique). A closed set C is a cross-graph closed clique if πDdep(C) =
πDarr(C), where Ddep (resp. Darr) is the set of departure (resp. arrival) vertices.
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Fig. 5. Maximal clique {1, 3, 4} preserved along two timestamps.

Algorithm 1: RULES.
Data: (B,H), i.e., a body and a head
forall the e � max≺(H) do

if cnatural(B \ {e} → H � {e}) � βnatural then
ce ← cexclusive(B \ {e} → H � {e});
if ce � βexclusive ∧ ¬REDUNDANT(B \ {e},H � {e}, ε, ce) then

/* ε is smaller (w.r.t. ≺) than any element */
output B \ {e} → H � {e};

RULES(B \ {e},H � {e});

In Fig. 5, {d1, d3, d4} × {a1, a3, a4} × {t4, t5} is such a pattern, i.e., it is not only a closed 3-set but
also a cross-graph closed clique (between the vertices 1, 3 and 4; at the times t4 and t5). Notice that the
closedness ensures the maximality of the clique, i.e., it cannot be enlarged into another one that would
still hold at both t4 and t5. It also insures its “maximality on time”, i.e., the clique does not appear in
any other snapshot of the graph.

From a closed set C , PINARD++ derives multidimensional association rules on D′ that involve all the
elements in ∪Di∈D′πDi(C). In this way, if D′ contains the dimensions of departure and arrival vertices,
specifying a symmetry constraint allows to focus on rules concluding on cliques. In other terms, speci-
fying this constraint allows to look for sets of departure and/or arrival vertices (the bodies of the rules)
that usually imply larger cliques around them. The thresholds μ, βexclusive and βnatural are used to specify
this in terms of user-defined constraints. When mining dynamic graphs, other useful constraints deal
with the time dimension. E.g., the cross graph closed cliques involving almost-contiguous timestamps
look interesting [14]. DATA-PEELER’s internals and the class of constraints it can efficiently enforce are
detailed in [13].

3.2. Deriving non-redundant rules from closed sets

RULES (Algorithm 1) derives a priori interesting and non-redundant rules, of the form B → H , from
every frequent closed association A (= C \ πDsupp(C)). It splits all elements in ∪Di∈D′πDi(A) between
the body B and the head H , i.e., B � H = A. The candidate rules are structured in a tree. By only
looking at the heads, H , of the rules (A and H being given, the body B is A \ H), this tree actually
is that of APRIORI [4]. Nevertheless, RULES traverses it depth-first. The root of the tree is A → ∅. At
every level, H grows by one element which is removed from B. An arbitrary total order ≺ is chosen
for the elements in ∪Di∈D′πDi(A). At every node, the singletons that are allowed to augment (via �)
the head are those greater than any element in the current head (i.e., greater than max≺(H) and under
the convention that max≺(∅) is smaller than any other element). Contrary to APRIORI, the pruning
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Algorithm 2: REDUNDANT.
Data: (B′,H ′, e′, ce), i.e., a body, a head, the last enumerated element and the exclusive confidence of the tested rule
forall the f ′ ∈ {f ′ ∈ ∪Di∈D′πDi(B′) | f ′ � e′} do

if cnatural(B
′ \ {f ′} → H ′ � {f ′}) = cnatural(B

′ → H ′) ∧
(
cexclusive(B

′ \ {f ′} → H ′ � {f ′}) �
ce ∨ REDUNDANT(B′ \ {f ′}, H ′ � {f ′}, f ′, ce)

)
then

return true;

return false;

Algorithm 3: PINARD++.
Input: A relationR on D, D′ � D, and (μ, βnatural, βexclusive) ∈ [0, 1]3

Output: Every non-redundant and a priori interesting rule on D′

Dsupp ← ×Di∈D\D′Di;
(DA,RA)← (D′ ∪Dsupp, ∅);
forall the (e1, e2, . . . , e|D′|, e|D′|+1, . . . , en) ∈ R do
RA ←RA ∪ (e1, e2, . . . , e|D′|, (e|D′|+1, . . . , en));

C ← DATA-PEELER(∅,×Di∈DA
Di);

forall the C ∈ C do
RULES(C \ πDsupp(C), ∅);

criterion is the minimal natural confidence constraint. According to Theorem 2, this pruning is safe, i.e.,
no rule, with a natural confidence higher than βnatural, is missed. On the opposite, the minimal exclusive
confidence and the non-redundancy constraints cannot give rise to search space pruning. That is why
they are checked after the constraint on the minimal natural confidence. If both are satisfied then the rule
is output. Checking whether the exclusive confidence exceeds βexclusive is straightforward. To enforce
the non-redundancy, Theorem 3 indicates that, beside the necessity to process a closed set, RULES must
check the confidences of the more general rules sharing the same elements. If such a rule has the same
natural confidence and a greater or equal exclusive confidence, then the current rule is redundant. That
is why the REDUNDANT function (Algorithm 2) browses these more general rules and compare their
confidences with that of the current rule. Like RULES, REDUNDANT exploits Theorem 2 to not traverse
rules with strictly smaller natural confidence. Finally, PINARD++ (see Algorithm 3) successively (1)
constructs RA, (2) extracts the frequent closed sets in it and (3) derives, from each of these patterns, the
non redundant and a priori interesting rules.

4. Experimental study

Experiments have been performed on a GNU/Linux R© system equipped with an Intel R© CoreTM 2 Duo
CPU E7300 at 2.66 GHz and 3 GB of RAM. PINARD++ was implemented in C++ and compiled with
GCC 4.2.4.

Vélo’v2 is a bicycle rental service run by the urban community of Lyon, France. 327 Vélo’v stations
are spread over Lyon and its surrounding area. At any of these stations, the users can take a bicycle
and bring it to any other station. Whenever a bicycle is rented or returned, this event is logged. The

2http://www.velov.grandlyon.com/.
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{12am − 1pm} × {6002} → {Sun}
(f = 0.13, cnatural = 1, cexclusive = 0.73)

(a)

xxxx

3001

8am
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Fri
Mon, Tue

Wed, Thu

{Fri.} × {8am − 9am} × {3001}
→ {Mon, Tue,Wed, Thu}

(f = 0.13, βnatural = 0.88, βexclusive = 0.88)

(b)

Fig. 6. Example of rules on {Departure,Day,Hour}.

logs we were granted the access to represent more than 13.1 million rides along 30 months. Vélo’v data
can be represented as a dynamic directed graph evolving into two temporal dimensions: the 7 days of
the week and the 24 one-hour periods in a day. A significant amount of bicycles (using a local test
inspired by the computation of a p-value), that are rented at the (departure) station ds on day d (e.g.,
Monday) at hour h (e.g., from 1 pm to 2 pm) and returned at the (arrival) station as, translates to an
edge from ds to as in the graph timestamped with (d, h). In other terms, (ds, as, d, h) belongs to the
relation RVélov’v ⊆ Departure × Arrival × Day × Hour. RVélov’v contains 117, 411 4-tuples, hence
a 117,411

7×24×327×327 = 0.7% density.
The temporal dimension(s) of such a dynamic network can either appear in the rules (i.e., in D′) or

be used to compute the frequency and the confidences of the rules (i.e., in the support domain). In other
words, the definition ofD′ determines the dimensions that may appear in the rules, in the left-hand and/or
right-hand sides. Optional additional constraints (e.g., a symmetry constraint) lead to more focused rules
taking into account subjective interestingness issues. Let us now discuss a couple of examples.

To study the relationship between stations and their departure times, we discover rules on the dimen-
sions Departure, Day and Hour. As a consequence, the support domain is Arrival which contains 327
stations. With μ = 0.12, βnatural = 0.8 and βexclusive = 0.6, PINARD++ extracts 632 rules. They indi-
cate that preferred departure times are different from one station to another. Figures 6a and 6b report
two of them. The rule in Fig. 6a means that the departures from Station 6002 between 12 am and 1pm
almost exclusively occur on Sundays (cexclusive = 0.73). The natural confidence is 1, i.e., whatever the
arrival station, the frequent rides from Station 6002 between midday and 1pm all occur on Sundays. This
is consistent with our knowledge of the city because Station 6002 is at the main entrance of the most
popular park, where people like to walk on Sundays and come back home by bicycle, hence the high
frequency in terms of number of arrival stations. The rule in Fig. 6b indicates that the rides from Station
3001 between 8 am and 9 am usually occur during the working days. This is again consistent with our
knowledge that many people living outside Lyon come to work by train and Station 3001 is the closest
to the train station in the main working area of the city. It turns out that they then finish their daily trips
to work by bicycle.

Let us now consider patterns on graph evolution: we want to look at frequent usage sub-networks
(i.e., sub-networks that are often observed) that can confidently be enlarged into cliques? To study such
patterns, a rule has to involve Departure and Arrival stations, i.e., D′ = {Departure,Arrival}. As a
result, the support domain is the Cartesian product of the 7 days and the 24 hours. Additional contraints,
defined in Section 3.1, are enforced so that PINARD++ processes (3, 3)-large cross-graph closed cliques
into rules. Moreover we force the body of every rule to be a graph with at least one edge, i.e., it must
involve at least one departure station and one arrival station. The non-redundancy of the extracted rules
favors the discovery of minimal sub-networks (at the bodies of the rules) that can be confidently (i.e.,
with a high enough confidence) enlarged into maximal cliques (unions of the bodies and the heads). With
μ = 0.02 and βnatural = βexclusive = 0.7, 165 rules are discovered. Some of them are reported in Fig. 7.
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5004 7056

2001

5004

{7056} × {5004, 2001} → {5004, 2001} × {7056}
(f = 0.05, βnatural = 0.9, βexclusive = 0.9)

(a)

1002 6036 1002

6002

6036

{1002} × {6036} → {6036, 6002} × {1002, 6002}
(f = 0.04, cnatural = 1, cexclusive = 1)

(b)

Fig. 7. Example of rules of the form “sub-network”→ “maximal clique”.

xxxx

3043

3pm-4pm

3001

3043

3pm-8pm
{3 − 4pm} × {3043} → {4 − 8pm} × {3001} × {3043, 3001}

(f = 1, βnatural = 1, βexclusive = 0.74)

(a)

xxxx

3001

10048

5pm-6pm

3001

10048

{5pm − 6pm} × {3001, 10048}
→ {3001, 10048}

(f = 1, cnatural = 1, cexclusive = 1)

(b)

Fig. 8. Example of rules of the form Hours×Departures→ Arrivals.

The enlarged sub-networks can contain only more edges (see Fig. 7a) or more vertices (see Fig. 7b).
These rules explicit diverse mechanisms like auto-regulation and convergence. They can potentially be
used to anticipate the effect of a typical breakdown: a station that can only emit (resp. receive) bicycles.
If such a station is at the body of a rule, then the other stations in the rules may be overloaded (resp. suffer
a shortage). Notice, however, that the discovered rules are descriptive. Using them to make predictions
is an interesting perspective.

Here is another interesting question: do some stations exchange many bicycles at favored hours every
day? A rule answering it must obviously be defined on D′ = {Departure,Arrival,Hour}. To focus
on rules that hold every day, the minimal frequency threshold is set to 1. With βnatural = 1 and βexclusive =
0.6, PINARD++ returns 51 rules involving at least one time period, two departure stations and two arrival
stations. Figure 8 depicts two of them. Such rules are valuable for the data owner, who discovers what
arrival stations may be impacted by a shortage of bicycles at the stations in the body.

When mining rules that only satisfy the minimum frequency and minimum confidence constraints,
many redundant rules are returned although they do not provide new insights. Figure 9 illustrates the
proportion of rules that are avoided thanks to our non-redundancy approach (see Section 2.2.4). Obvi-
ously, with low minimal frequency constraints, this significantly limits pattern flooding.

Let us finally provide a performance study when mining a priori interesting rules in RVélo’v with
D′ = {Departure,Day,Hour}. When the minimal frequency threshold increases, both the number
of frequent rules and the running time decrease. Figure 10a was obtained with βnatural = βexclusive = 0.
PINARD++ prunes large areas of the search space where no association is frequent. The time spent on
extracting the closed sets is given as well. It shows that each step contributes to the overall complexity.
Theorem 2 enables to deeply prune the search space too. Indeed, the RULES algorithm does not traverse
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Fig. 9. Impact of non-redudancy.
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Fig. 10. Effectiveness of PINARD++ .

the enumeration sub-trees empty of confident rules (w.r.t. βnatural). That is why both the number of rules
and the time it takes to extract them decrease when the minimum natural confidence threshold increases.
Experiments in Fig. 10b are performed with βexclusive = 0, μ = 0.12, and βnatural varying between 0 and
1.

PINARD++’s scalability is tested w.r.t. the size and the density of the data. Starting with the size, rules
on {Departure,Day,Hour} are mined with μ = 0.12 and βnatural = βexclusive = 0 in datasets obtained
from RVélov’v by replicating, up to ten times, the support dimension, i.e., the arrival stations. It turns out
that the algorithm scales linearly: a linear regression of s 
→ Ts

T1
(where s is the replication factor and Ts

the running time on the data with s replications) gives y = 1.1x+0.016 with 0.9997 as a determination
coefficient.

To test the PINARD++’s scalability w.r.t. the density of the dataset, synthetic 3-ary relations are gen-
erated. The sizes of the domains are constant: 10× 50× 100. Here, the only variable is the density, i.e.,
the ratio between the number of 3-tuples present in the relation and 10× 50× 100 = 50, 000. We made
it increase, 0.02 by 0.02, from 0.1 (for the first dataset) to 0.5 (for the last dataset). The PINARD++’s
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running times are in Fig. 11. As expected, when the density is important, the extraction is much harder.
However, let us note that 40% density is already extremely high to be met in practice.

5. Related work

Mining graphs has recently received a lot of attention in the data mining community. Many papers
study the evolution of graphs over time with a large variety of techniques. On one hand, several pa-
pers have focused on the evolution of macroscopic graph properties [5,15,24,32,35] where some have
concerned the dynamical properties of real graphs such as densification laws, shrinking diameters [26],
and the evolution of known communities over time [6,24]. On the other hand, some works have studied
graph evolution at a local level thanks to local patterns. This section focuses on such methods. Besides,
notice that our work differs from tensor factorization based patten mining approaches [1] which is gen-
erally targeted towards numerical data analysis and do not consider complete methods for local pattern
discovery.

In [10], Borgwardt et al. extract local patterns in labeled dynamic graphs. The approach aims at find-
ing subgraphs that are topologically frequent and show an identical dynamic behavior over time, i.e.,
insertions and deletions of edges occur in the same order. Because this task is computationally hard, the
algorithm is not complete. Indeed, computing the overlap-based support measure means solving a maxi-
mal independent set problem for which thay propose a greedy algorithm. Inokuchi and Washio introduce
a fast algorithm to mine frequent transformation subsequences from a set of dynamic labeled graphs (the
labels on vertices and edges can change over time). Assuming that the changes in a dynamic graph are
gradual, they propose to succinctly represent the dynamics with a graph grammar: each change between
two observed successive graph states is interpolated by axiomatic transformation rules. A significant
improvement is proposed in [20]. Motivated by the intractability of their approach on long sequences of
large graphs, the same authors define, in [19], induced subgraph subsequence. This novel class of sub-
graph subsequence enables to efficiently mine frequent patterns from graph sequences containing long
sequences and large graphs.

In [37], You et al. study how a graph is structurally transformed through time. They compute graph
rewriting rules that describe the evolution of two consecutive graphs. These rules are then abstracted
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into patterns representing the dynamics of a sequence of graphs. The main step concerns the compu-
tation of maximum common subgraphs between two consecutive graphs. Indeed, this problem is NP-
complete. In the case of relational graphs (graphs with unique vertex labels such as the ones tackled by
PINARD++), this becomes tractable [11,12]. Indeed, the complexity is then quadratic and graph rewrit-
ing rules are efficiently discovered. In [9], the authors focus on detecting clusters of temporal snapshots
of an evolving network. These clusters can be interpreted as evolution eras of the dynamic graph. This
approach enables to detect periods in which sudden change of behavior appears. Such high-level trends
are expressed by sudden increases or decreases of the similarity between the structures of the consec-
utive graphs. In [25], Lahiri et al. introduce the periodic subgraph mining problem, i.e., identifying
every frequent closed periodic subgraph. They empirically study the efficiency and the interest of their
proposal on several real-world dynamic social networks. By encoding dynamic graphs as ternary rela-
tions [14], describes a constraint-based mining approach to discover maximal cliques that are preserved
over almost-contiguous timestamps. The constraints are pushed into the closed pattern mining algorithm
DATA-PEELER. Notice that PINARD++ post-processes DATA-PEELER’s closed sets to generate a pri-
ori interesting and non-redundant rules. In [30], Robardet proposes a constraint-based approach too. It
studies the evolution of dense and isolated subgraphs defined by two user-parameterized constraints.
Associating a temporal event type with each pattern captures the temporal evolution of the identified
subgraph, i.e., the formation, dissolution, growth, diminution and stability of subgraphs between two
consecutive timestamps. The algorithm incrementally processes the time series of graphs. In [8], the
authors introduce the problem of extracting graph evolution rules satisfying minimal support and confi-
dence constraints. It finds isomorphic subgraphs that match the timestamps associated with each edge,
and, if present, the properties of the vertices and edges of the dynamic graph. Graph evolution rules
are then derived with two different confidence measures. This approach is the closest to ours: it aims at
describing a time-evolving graph with descriptive rules. Nevertheless, this work focuses on the dynamic
changes in the graph whereas we provide a generic framework to discover multidimensional rules in
which the time is either in the rule or in its support.

Considering binary relation mining, since the seminal papers [3,4], the discovery of association rules
that satisfy both a minimal support and a minimal confidence constraints has been extensively studied.
Many works deal with the generalization of this task towards n-ary relations. These proposals can be
classified into different types according to the number of involved dimensions within an association
rule [23]. Indeed, three types have been defined: intra-dimensional, inter-dimensional, and hybrid asso-
ciation rules. Concerning intra-dimensional rules, all the elements of a rule belong to a single dimension.
This case has been extremely well studied for binary relations. In [31], the authors propose to discover
intra-dimensional association rules in a n-ary relation where n � 2. For each dimension, association
rules between elements of the dimension domain are discovered. The tuples that belong to the cartesian
product of the other dimensions are considered as the transaction domain. Inter-dimensional association
rules were proposed to enable the discovery of associations or co-occurrences between elements from
different dimensions [7,23]. It should be noticed that dimensions must be distinct and two elements
from the same dimension cannot appear together in an inter-dimensional rule. The computation of inter-
dimensional association rules is then guided by a metarule. A metarule contains distinct predicates and
can be used to focus the data mining search towards rules satisfying the predicates. The absence of
repetitive predicates is a limitation on the expressiveness of rules. Other authors have proposed ad-hoc
algorithms to extract hybrid rules in which the repetition of few dimensions is enabled [16,18,33].

[17,27,34,36] have studied “How current and past values are related to future values”. In [34], Oates
et al. look for dependencies in a set of time series (fixed length). They are expressed as rules of the
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following form: “If an instance of pattern x begins in the series at time t, then an instance of pattern y
will begin at time t+ δ with probability p”. Where, a pattern is a set of tokens, each token is described
by a token value, a time series which includes this token value and a temporal offset. In [17,27,36],
the authors studied the extraction of inter-transaction association rules in which associations are not on
the same transaction. The body and the head of a inter-transaction association rule are sets of extended
items. Each extended item is described by an attribute item and a point in the m-dimensional space
where this attribute item appears. Therefore, in these proposals, the body and the head of a rule have
the same dimensions. Furthermore, by construction, these proposed rules do not enable to discover the
relation of patterns/items which occur on the same transaction.

This paper is an extension of [28] in which we proposed a restricted form of rules: the inter-
dimensional rules where the dimensions at both sides of a rule must be disjoint. In [29], we study
multidimensional rules in the general framework of Boolean tensors. However, neither the redundancy
issue nor the specifics of dynamic graph mining are addressed in these previous works.

6. Conclusion

We have tackled the problem of describing dynamic graphs via rules that can involve subsets of some
arbitrary dimensions (including temporal dimensions) at its body or head. We have proposed a new
semantics for multidimensional association rules in dynamic graphs. It relies on relevant objective inter-
estingness measures called the exclusive confidence and the natural confidence. We also revisited non
redundancy aspects. We have introduced and implemented PINARD++, an effective solution for com-
puting such rules. Experiments on a real-world dynamic graph demonstrated the interest of our proposal.
A timely challenge is to further study primitive constraints that can support more sophisticated knowl-
edge discovery processes in dynamic graphs. Some of these constraints would deal with the temporal
dimension(s) (e.g., time contiguity [14]). Other constraints would deal with the “form” of the patterns to
discover (e.g., cliques, dense subgraphs, etc.). Using multidimensional association rules for supervised
classification is another appealing perspective.
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Technical annex

Theorem 1. According to the Definitions 6 and 2:

– X 
 Y ⇒
{
DX ⊆ DY

∀Di ∈ D, πDi(X) ⊆ πDi(Y )
;

– s(Y ) = {u ∈ ×Di∈D\DY
Di | ∀y ∈ Y , y · u ∈ R};

– s(X) = {w ∈ ×Di∈D\DX
Di | ∀x ∈ X, x · w ∈ R}

= {v · u | v ∈ ×Di∈DY \DX
Di, u ∈ ×Di∈D\DY

Di

and ∀x ∈ X, x · v · u ∈ R}.
Let πD\DY

s(X) = {u ∈ ×Di∈D\DY
Di | ∃v ∈ ×Di∈DY \DX

Di such that ∀x ∈ X, x · v · u ∈ R}.
Then,

{
s(Y ) ⊆ πD\DY

s(X)

|πD\DY
s(X)| � |s(X)| and |s(Y )| � |πD\DY

s(X)| � |s(X)|. �

Theorem 2. Using Definition 10, we have X 
 X ′ ⇒ sD\D′(X ′) ⊆ sD\D′(X).
Because X 
 X ′ 
 Y and according to Definition 11:{

cnatural(X → Y \X) = |s(Y )|
|sD\D′(X)|

cnatural(X
′ → Y \X ′) = |s(Y )|

|sD\D′(X′)|

⇒ cnatural(X → Y \X) � cnatural(X
′ → Y \X ′). �

Theorem 3. We first prove that if X → Y is a non-redundant rule then X � Y � s(X � Y ) is a closed
set and ∀X ′ � X, cnatural(X

′ → (Y �X) \X ′) < cnatural(X → Y ) ∨ cexclusive(X
′ → (Y �X) \X ′) <

cexclusive(X → Y ).

– By Definition 2, X � Y � s(X � Y ) ⊆ RA. As a consequence and by definition of the support of
X � Y � {e}, s(X � Y ) ⊆ s(X � Y � {e}). It follows, assuming, by contradiction, that X � Y �
s(X � Y ) is not a closed set (see Definition 15) means it can extended by an element e while still
only covering tuples in RA. By definition of the support of X � Y , this element e cannot be in the
support dimension. Therefore ∃e ∈ ∪Di∈D′(Di \ πDi(X � Y )) |X � Y � {e} � s(X � Y ) ⊆ RA.
As a consequence, and by definition of the support of X � Y � {e}, s(X � Y ) ⊆ s(X � Y � {e}).
It follows from the definitions of the interestingness measures that:⎧⎪⎨

⎪⎩
f(X → Y � {e}) � f(X → Y )

cnatural(X → Y � {e}) � cnatural(X → Y )

cexclusive(X → Y � {e}) � cexclusive(X → Y )

.

This contradicts the non-redundancy of X → Y (Definition 14). Therefore X � Y � s(X � Y ) is a
closed set.

– According to Definition 14, X → Y non-redundant implies that, for any X ′ � X, at least one of
these three assertions is true:
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1. f(X ′ → (Y �X) \X ′) < f(X → Y );
2. cnatural(X

′ → (Y �X) \X ′) < cnatural(X → Y );
3. cexclusive(X

′ → (Y �X) \X ′) < cexclusive(X → Y ).

However, by Definition 8, f(X ′ → (Y �X) \X ′) = f(X → Y ), i.e., the first assertion is always
false. Furthermore, Theorem 2 tells that cnatural(X

′ → (Y �X)\X ′) � cnatural(X → Y ). All in all, it
can be simply written thatX → Y non-redundant implies ∀X ′ � X, cnatural(X

′ → (Y �X)\X ′) <
cnatural(X → Y ) ∨ cexclusive(X

′ → (Y �X) \X ′) < cexclusive(X → Y ).

We now prove that if X �Y � s(X �Y ) is a closed set and ∀X ′ � X, cnatural(X
′ → (Y �X) \X ′) <

cnatural(X → Y ) ∨ cexclusive(X
′ → (Y �X) \X ′) < cexclusive(X → Y ) then X → Y is non-redundant.

By contradiction, assume that X → Y is redundant. By Definition 14, one of the two following cases
occurs.

Case 1 There exists a rule X ′ → Y ′ such that{
X ′ � Y ′ � X � Y

f(X ′ → Y ′) � f(X → Y )
.

According to Theorem 1, X ′�Y ′ � X�Y ⇒ s(X ′�Y ′) 
 s(X�Y ). However given the second
condition (and the mere definition of the frequency), we also have |s(X ′ � Y ′)| � |s(X � Y )|. As
a consequence s(X ′ � Y ′) = s(X � Y ) and X � Y � s(X � Y ) � X ′ � Y ′ � s(X ′ � Y ′) ⊆ RA.
This contradicts the closedness of X � Y � s(X � Y ).

Case 2 There exists a rule X ′ → Y ′ such that:⎧⎪⎨
⎪⎩
X ′ � Y ′ = X � Y ∧X ′ � X

cnatural(X
′ → Y ′) � cnatural(X → Y )

cexclusive(X
′ → Y ′) � cexclusive(X → Y )

.

According to Theorem 2, the first condition implies cnatural(X
′ → Y ′) � cnatural(X → Y ). As a

consequence, the second condition can be rewritten as cnatural(X
′ → Y ′) = cnatural(X → Y ). Since

Y ′ = (Y �X)\X ′, this contradicts the assumption that ∀X ′ � X, cnatural(X
′ → (Y �X)\X ′) <

cnatural(X → Y ) ∨ cexclusive(X
′ → (Y �X) \X ′) < cexclusive(X → Y ).

Therefore X → Y is non-redundant. �
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