
Constraint-based concept mining and its
application to microarray data analysis

Jérémy Besson1,2, Céline Robardet3,
Jean-François Boulicaut1, and Sophie Rome2

1: INSA Lyon, LIRIS CNRS FRE 2672

F-69621 Villeurbanne cedex, France

2: UMR INRA/INSERM 1235

F-69372 Lyon cedex 08, France

3: INSA Lyon, PRISMA

F-69621 Villeurbanne cedex, France

Contact email: Jeremy.Besson@liris.cnrs.fr

Abstract

We are designing new data mining techniques on boolean contexts to iden-
tify a priori interesting bi-sets, i.e., sets of objects (or transactions) and asso-
ciated sets of attributes (or items). It improves the state of the art in many
application domains where transactional/boolean data are to be mined (e.g.,
basket analysis, WWW usage mining, gene expression data analysis). The
so-called (formal) concepts are important special cases of a priori interesting
bi-sets that associate closed sets on both dimensions thanks to the Galois op-
erators. Concept mining in boolean data is tractable provided that at least
one of the dimensions (number of objects or attributes) is small enough and
the data is not too dense. The task is extremely hard otherwise. Further-
more, it is important to enable user-defined constraints on the desired bi-sets
and use them during the extraction to increase both the efficiency and the
a priori interestingness of the extracted patterns. It leads us to the design
of a new algorithm, called D-Miner, for mining concepts under constraints.
We provide an experimental validation on benchmark data sets. Moreover,
we introduce an original data mining technique for microarray data analy-
sis. Not only boolean expression properties of genes are recorded but also
we add biological information about transcription factors. In such a context,
D-Miner can be used for concept mining under constraints and outperforms
the other studied algorithms. We show also that data enrichment is useful for
evaluating the biological relevancy of the extracted concepts.
Keywords. Pattern discovery, constraint-based data mining, closed sets,
formal concepts, microarray data analysis.

1

jfboulicaut
Zone de texte 
Intelligent Data Analysis 9(1):59-82, 2005. IOS Press.



1 Introduction

One of the most popular data mining techniques concerns transactional data anal-
ysis by means of set patterns. Indeed, following the seminal paper [1], hundreds
of research papers have considered the efficient computation of a priori interest-
ing association rules from the so-called frequent itemsets. Transactional data can
be represented as boolean matrices (see Figure 1). Lines denote transactions and
columns are boolean attributes that enable to record item occurrences. For instance,
in Figure 1, transaction t4 contains the items g5, g6, g7, g8, g9, and g10.

Items
g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

t1 1 1 1 1 0 1 1 0 0 0
t2 1 1 1 1 0 0 0 0 1 1
t3 1 1 1 1 0 0 0 0 1 1
t4 0 0 0 0 1 1 1 1 1 1
t5 1 0 1 0 1 1 1 1 0 0

Figure 1: Example of a boolean context r1

The frequent set mining problem concerns the computation of sets of attributes
that are true together in enough transactions, i.e., given a frequency threshold.
For instance, the set {g1, g2, g3} is considered frequent with a relative threshold of
30% since its frequency is 60%. It makes sense to associate to such a set, the set
of transactions {t1, t2, t3}, i.e., the set of transactions in which all the items from
{g1, g2, g3} occur. It provides a so-called bi-set.

The typical case of basket analysis (huge - eventually millions - number of trans-
actions, hundreds of attributes, but sparse and lowly-correlated data) can be handled
by many algorithms, including Apriori [2] and the various Apriori-like algorithms
that have been designed during the last decade. When the data are dense and highly-
correlated, these algorithms fail but the so-called condensed representations of the
frequent itemsets can be computed [7]. For instance, efficient algorithms can com-
pute the frequent closed sets from which every frequent set and its frequency can be
derived without accessing the data [18, 8, 19, 3, 26].

Interestingly, other important applications concern data sets with only a few
transactions. This is the case for typical gene expression data analysis where items
denote gene expression properties in biological situations. Here, the frequent sets
denote sets of genes that are frequently co-regulated and thus can be suspected to
participate to a common function within the cells. In common microarray data, the
number of lines is a few tens and the number of columns is a few thousands. It is
however possible to use the properties of Galois connection to compute the closed
sets on the smaller dimension and derive the closed sets on the other dimension
[20, 21]. Notice that once every closed set is known, all the frequent sets and their

2



frequencies are known as well.
In this paper, we consider bi-set mining in difficult cases, i.e., when the data is

dense and when none of the dimensions is quite small. Bi-sets are composed of a set
of lines T and a set of columns G. T and G can be associated by various relationships,
e.g., the fact that all the items of G are in relation with each transaction of T . Such
a bi-set is called a 1-rectangle. It is interesting to constrain further 1-rectangle set
components to be closed sets: it leads to maximal 1-rectangles that are also called
formal concepts or concepts [25]. Minimal and maximal frequency but also syntactic
constraints (see, e.g., [16]) on set components can be used as well.

The contribution of this paper is twofold.
First, we propose an original algorithm called D-Miner that computes concepts

under constraints1. It works differently from other concept discovery algorithms (see,
e.g., [13, 5, 17]) and frequent closed set computation algorithms [18, 8, 19, 3, 26].
Starting from the bi-set with all items and all transactions, D-Miner performs
a depth-first search of concepts by recursively splitting into bi-sets that do not
contain “0” values. D-Miner can be used in dense boolean data sets when the
previous algorithms generally fail. Furthermore, thanks to an active use of user-
defined monotonic constraints, it enlarges the applicability of concept discovery for
matrices whose none of the dimensions is small.

A second major contribution concerns microarray data analysis. We introduce
a new gene expression data mining technique based on constraint-based concept
mining. Indeed, we consider a rather generic scenario where gene expression is
available for two sets of biological situations, e.g., one data set about individuals
that have a given pathology and another data set about individuals without this
pathology. Boolean data is derived from raw microarray data and enriched with
information about transcription factors. It leads to a richer boolean context from
which a priori interesting concepts can be extracted. Working on an original data
set, we point out one biologically relevant extracted concept that demonstrates the
added-value of data enrichment with transcription factors.

Section 2 contains the needed definitions when considering constraint-based ex-
traction of bi-sets from transactional/boolean data. Section 3 introduces the D-
Miner algorithm. Proofs of D-Miner properties are given in technical Annex A.
We also provide an experimental validation on artificial and benchmark data sets.
For that purpose, D-Miner is compared with several efficient algorithms that com-
pute frequent closed sets. Section 4 presents our current work on gene expression
data analysis. It contains a formalization of a new interesting data mining technique
for microarray data and several experimentations on real data. Finally, Section 5
concludes.

1A preliminary version of this paper has introduced D-Miner in [6].

3



2 Problem setting

Let O denotes a set of objects or transactions and P denotes a set of items or prop-
erties. In Figure 1, O = {t1, . . . , t5} and P = {g1, g2, . . . , g10}. The transactional
data is represented by the matrix r of relation R ⊆ O × P. We write (ti, gj) ∈ r
to denote that item j belongs to transaction i or that property j holds for objects
i. Such a data set can be represented by means of a boolean matrix (e.g., r1 in
Figure 1).

For a typical basket analysis problem, O is the set of transactions and P cor-
responds to the products. The matrix then records which are the products that
belong to the transactions, i.e., the products that have been purchased together.
For instance, in Figure 1, we see that products identified by g9 and g10 are bought
together in transactions t2, t3, and t4.

For a typical boolean gene expression data set (see, e.g., [4]), O is the set of
biological situations and P corresponds to the genes. The relation then records
which are the genes that are, e.g., over-expressed in the biological situations. Other
expression properties can be considered (e.g., strong variation, under-expression).
For instance, given Figure 1, we might say that genes g5 and g6 are over-expressed
in situations t4 and t5.

The language of bi-sets is the collection of couples from L = LO × LP where
LO = 2O (sets of objects) and LP = 2P (sets of items).

Let us now consider evaluation functions for such patterns. This is not an ex-
haustive list of useful primitives. We mainly consider Galois operators (denoted as
φ and ψ) that have been proved extremely useful.

Definition 1 (Galois connection [25]) If T ⊆ O and G ⊆ P, assume φ(T, r) =
{g ∈ P | ∀t ∈ T, (t, g) ∈ r} and ψ(G, r) = {t ∈ O | ∀g ∈ G, (t, g) ∈ r}. φ provides
the set of items that are common to a set of objects and ψ provides the set of objects
that share a set of items. (φ, ψ) is the so-called Galois connection between O and
P. We use the classical notations h = φ ◦ ψ and h′ = ψ ◦ φ to denote the Galois
closure operators.

Definition 2 (Frequency) The frequency of a set of items G ⊆ P in r is |ψ(G, r)|.
The frequency of a set of objects T ⊆ O in r is |φ(T, r)|.
Example 1 Given Figure 1, let us consider the bi-set (T,G) where G = {g1, g2} and
T = {t1, t2, t3}. The frequency of G is |ψ(G, r1)| = |{t1, t2, t3}| = 3, the frequency of
T is |φ(T, r1)| = |{g1, g2, g3, g4}| = 4. Notice that, for this bi-set, T = ψ(G, r1) but
G �= φ(T, r1).

Definition 3 (Constraints on frequencies) Given a set of items G ⊆ P and a fre-
quency threshold γ, the minimal frequency constraint is denoted Cminfreq(r, γ, G) ≡
|ψ(G, r)| ≥ γ. The maximal frequency w.r.t. a threshold γ′ is Cmaxfreq(r, γ

′, G) ≡
|ψ(G, r)| ≤ γ′. These constraints can be defined easily on sets of objects as well:
Cminfreq(r, γ, T ) ≡ |φ(T, r)| ≥ γ and Cmaxfreq(r, γ

′, T ) ≡ |φ(T, r)| ≤ γ′.

4



Definition 4 (Closed set and CClose constraint) A set of items G ⊆ P is closed
when it satisfies constraint CClose in r and CClose(G, r) ≡ h(G, r) = G. Dually, for
sets of objects T ⊆ O, we have CClose(T, r) ≡ h′(T, r) = T .

Example 2 Let us consider again the bi-set ({t1, t2, t3}, {g1, g2}) and the data from
Figure 1. {g1, g2} satisfies Cminfreq(r1, 3, G). The set {g1, g2} is not closed: h({g1, g2}, r1) =
φ(ψ({g1, g2}, r1), r1) = {g1, g2, g3, g4}. An example of a closed set on items is
{g1, g2, g3, g4}: h({g1, g2, g3, g4}, r1) = {g1, g2, g3, g4}. Also, the set of objects {t1, t2, t3}
is closed: h′({t1, t2, t3}, r1) = {t1, t2, t3}.

The closure of a set of items G, h(G, r), is the maximal (w.r.t. set inclusion)
superset of G which has the same frequency than G in r. A closed set of items is thus
a maximal set of items which belong to a given set of transactions. For instance,
the closed set {g1, g3} in r1 (see Figure 1) is the largest set of items that are shared
by transactions t1, t2, t3 and t5.

Definition 5 (1-rectangles and 0-rectangles) A bi-set (T,G) is a 1-rectangle iff ∀g ∈
G and ∀t ∈ T , (t, g) ∈ r. A bi-set (T,G) is a 0-rectangle in r iff ∀t ∈ T and ∀g ∈ G
then (t, g) �∈ r.

Definition 6 (Concept) (T,G) is called a formal concept or concept in r when
T = ψ(G, r) and G = φ(T, r) [25]. A concept is thus a maximal 1-rectangle.

Given the Galois connection, concepts are built on closed sets and each closed set
of items (resp. objects) is linked to a closed set of objects using ψ (resp. items using
φ) [25]. In other terms, for a concept (T,G) in r, constraint CClose(T, r)∧CClose(G, r)
is satisfied. Notice also that the collection of concepts is obviously included in the
collection of 1-rectangles.

Example 3 Given Figure 1, ({t1, t2, t3}, {g1, g2}) is a 1-rectangle but it is not a
concept. Twelve bi-sets are concepts in r1. ({t2, t3}, {g1, g2, g3, g4, g9, g10}) and
({t1, t2, t3, t5}, {g1, g3}) are examples of concepts in r1.

Other interesting primitive constraints can be defined, e.g., syntactic constraints
on each set component of a bi-set. A typical example is to enforce that a given item
belongs or does not belong to the item set component.

Many data mining processes on transactional data can be formalized as the
computation of bi-sets whose set components satisfy combinations of primitive con-
straints.

Mining the frequent sets of items is specified as the computation of {G ∈ LP |
Cminfreq(r, γ, G) satisfied}. We can then provide the bi-sets of the form {(T,G) ∈
LO×LP | Cminfreq(r, γ, G)∧T = ψ(G, r)}. These bi-sets are frequent sets of attributes
associated to the objects in which they occur. Another typical post-processing of

5



frequent sets is to compute frequent association rules from the frequent sets and
keep the ones with enough confidence [2].

An important data mining task concerns frequent closed set mining, i.e., the
computation of Θ1 = {G ∈ LP | Cminfreq(r, γ, G) ∧ CClose(G, r) satisfied}. This task
has been studied a lot as the computation of a condensed representation for the
frequent sets [18, 7]. We illustrate in Section 3.3 the computation of such collections
using Charm, Ac-Miner, and Closet. Frequent (closed) sets of objects can be
desired as well.

The collection Θ2 = {(T,G) ∈ LO × LP | CClose(G, r) ∧ T = ψ(G, r)} is the
collection of concepts. We have also Θ2 = {(T,G) ∈ LO × LP | CClose(T, r) ∧ G =
φ(T, r)}. Let us point out that this provides a strategy for computing concepts by
first choosing to compute the closed sets on the smaller dimension.

When we use our algorithm D-Miner in Section 3.3, we compute Θ3 = {(T,G) ∈
LO × LP | Cminfreq(r, γ, G) ∧ CClose(G, r) ∧ T = ψ(G, r)}, i.e., the sets from Θ1 to
which we associate sets of transactions that support them (using ψ).

Definition 7 (Transposition) If r ⊆ O × P, its transposition is tr ⊆ P ×O where
(g, t) ∈ tr ≡ (t, g) ∈ r.

Property 1 If G ⊆ P is a set of items and T ⊆ O is a set of objects, we have
ψ(T, tr) = φ(T, r) and φ(G, tr) = ψ(G, r). As a result, we have also h(T, tr) =
h′(T, r) and h′(G, tr) = h(G, r). The proof of these properties is straightforward.

These observations explain why it is possible to compute the whole collection of
concepts as Θ = {(T,G) ∈ LO × LP | h(G, r) = G ∧ T = ψ(G, r)} when |P| < |O|
or as Θ = {(T,G) ∈ LO × LP | h′(T, r) = T ∧ G = φ(T, r)} otherwise. In this
second case, the same algorithm can be used after a simple transposition since
h′(T, r) = h(T, tr) and φ(T, r) = ψ(T, tr).

We are currently applying concept discovery techniques on typical microarray
data sets (see Section 5).

In such applications, we can get dense boolean contexts that are hard to process if
further user-defined constraints are not only specified but also pushed deeply into the
extraction algorithms. Using user-defined constraints enables to produce putative
interesting concepts before any post-processing phase. Indeed, concept discovery
techniques can provide huge collection of patterns (e.g., we report in Section 5 an
output of more than 5 millions of concepts) and supporting post-processing on such
collections is hard or even impossible. It motivates the a priori use of constraints
on both LO and LP . Typical examples concern constraints on the size of T and
G. It leads to the extraction of frequent concepts. Furthermore, the key issue for
pushing user-defined constraints deeply into the mining algorithms is a clever use of
specialization relations on the pattern language. For instance, it is well-known that
pushing monotonic or anti-monotonic (w.r.t. a specialization relation) constraints
can drastically reduce the amount of needed resources during an extraction (see,
e.g., [16, 14]). Let us now introduce our specialization relation on bi-sets.

6



Definition 8 (Specialization relation and monotonicity) Our specialization relation
on bi-sets from L = LO×LP is defined by (T1, G1) ≤ (T2, G2) iff T1 ⊆ T2 and G1 ⊆
G2. A constraint C is said anti-monotonic w.r.t. ≤ iff ∀α, β ∈ L such that
α ≤ β, C(β) ⇒ C(α). C is said monotonic w.r.t. ≤ iff ∀α, β ∈ L such that
α ≤ β, C(α) ⇒ C(β).

Definition 9 (Frequent concept) A concept (T,G) is called frequent when constraint
Ct(r, σ1, T ) (resp. Cg(r, σ2, G)) if |T | ≥ σ1 (resp. |G| ≥ σ2). These constraints are
both monotonic w.r.t. ≤ on LO × LP .

Notice that the constraint Ct(r, σ, T ) ≡ |T | ≥ σ ≡ Cminfreq(r, σ, φ(T, r)). When
considering frequent concept mining, we use monotonic constraints on the size of
sets but any other monotonic constraint could be used as well.

We choose to enforce the symmetry of our extractor on LO and LP to be able to
transpose the matrix without loosing the possibility of using the constraints. Indeed,
as explain earlier, where there are few objects and many items, we first perform a
simple transposition to reduce the extraction complexity.

3 D-Miner

D-Miner is a new algorithm for extracting concepts (T,G) under constraints. It
builds simultaneously the sets T and G and it uses monotonic constraints w.r.t. our
specialization relation, simultaneously on LO and LP , to reduce the search space.
Its originality is to construct simultaneously closed set on LO and LP such that it
enables to push monotonic constraints on the two set components.

3.1 Principle

A concept (T,G) is such that all its items and objects are in relation by R. Thus,
the absence of relation between an item g and an object t generates two concepts,
one with g and without t, and another one with t and without g. D-Miner is based
on this observation.

Let us denote by H a set of 0-rectangles (Definition 5) such that it is a cover
of the false values (0) of the boolean matrix r, i.e., ∀g ∈ P and ∀t ∈ O such that
(t, g) �∈ r, it exists at least one element (X,Y ) of H such that t ∈ X and g ∈ Y .
The elements of H are called cutters. The principle of D-Miner consists in starting
with the couple (O,P) and then splitting it recursively using the elements of H until
H is empty and thus each couple is a 1-rectangle. An element (a, b) of H is used to
cut a couple (X,Y ) if a ∩ X �= ∅ and b ∩ Y �= ∅.

By convention, one defines the left son of (X,Y ) by (X \ a, Y ) and the right son
by (X,Y \ b).

This principle enables to obtain all the concepts, i.e., the maximal 1-rectangles
(see Example 4) but also some non maximal ones (see Example 5). Therefore, we
will explain how to prune them to obtain all the concepts and only the concepts.

7



The construction of H is a key phase since its elements are used to recursively
split couples of sets: H must be as small as possible to reduce the depth of recursion
and thus execution time. On another hand, one should not waste too much time to
compute H. H contains as many elements as lines in the matrix. Each element is
composed of the attributes valued by ’0’ in this line.

Time complexity for computing H is in O(|O| × |P|). It is thus easy to compute
it and computing time is negligible w.r.t. the one of the cutting procedure. Fur-
thermore, using this definition makes easier the pruning of 1-rectangles that are not
concepts.

We now provide examples of D-Miner executions considering only the con-
straints that enforce a bi-set to be a concept. The use of monotonic constraints on
LO and LP is presented later.

Example 4 Assume O = {t1, t2, t3} and P = {g1, g2, g3}. Relation r2 is defined in
Table 1 (left). Here, H is {(t1, g1), (t3, g2)}. D-Miner algorithm starts with (O,P).
Figure 2 illustrates this process. We get four 1-rectangles that are the four concepts
for this boolean context. Notice that for the sake of simplicity, we do not use here
the standard notation for set components within bi-sets: a bi-set like (t1t2t3, g1g2g3)
denotes ({t1, t2, t3}, {g1, g2, g3}).

g1 g2 g3

t1 0 1 1
t2 1 1 1
t3 1 0 1

g1 g2 g3

t1 0 0 1
t2 1 0 1
t3 0 0 1

Table 1: Contexts r2 for Example 4 (left) and r3 for Examples 5 and 6 (right)

(t1t2t3, g1g2g3)

(t1, g1)

(t2t3, g1g2g3)

(t3, g2)

(t2, g1g2g3) (t2t3, g1g3)

(t1t2t3, g2g3)

(t3, g2)

(t1t2, g2g3) (t1t2t3, g3)

Figure 2: Concept construction on r2 (Example 4)

8



Example 5 Assume now the relation r3 as given in Table 1 (right). Computing
H provides {(t1, g1g2), (t2, g2), (t3, g1g2)}. Figure 3 illustrates D-Miner execution.
Some bi-sets are underlined and this will be explained in Example 6.

(t1t2t3, g1g2g3)

(t1, g1g2)

(t2t3, g1g2g3)

(t2, g2)

(t3, g1g2g3)

(t3, g1g2)

(∅,g1g2g3) (t3, g3)

(t2t3, g1g3)

(t3, g1g2)

(t2,g1g3) (t2t3, g3)

(t1t2t3, g3)

(t2, g2)

(t1t2t3, g3)

(t3, g1g2)

(t1t2t3, g3)

Figure 3: Concept construction on r3 (Example 5)

From Figure 3, we can see that (t2, g2) and (t3, g1g2) from H are not used to cut
(t1t2t3, g3) because {g2}∩ {g3} = ∅ and {g1g2}∩ {g3} = ∅. The computed collection
of bi-sets is:

{(t1t2t3, g3), (t2, g1g3), (∅, g1g2g3), (t3, g3), (t2t3, g3)}

We see that (t3, g3) ≤ (t1t2t3, g3) and (t2t3, g3) ≤ (t1t2t3, g3) and thus these 1-
rectangles are not concepts.

To explain why the method computes the concepts and some subsets of them,
we introduce a new notation. Let r[T,G] denote the reduction of r on objects from
T and on items from G. When a bi-set (X,Y ) is split by a cutter (a, b) ∈ H, then
(X \ a, Y ) (the left son) and (X,Y \ b) (the right son) are generated. If a concept
(CX , CY ) exists in r[X \ a, Y ] such that CY ∩ b = ∅ then (CX ∪ a, CY ) is a concept
in r[X,Y ]. Indeed, given our technique for computing H, (a, Y \ b) is a 1-rectangle
(see Figure 4).

Property 2 Let (X,Y ) be a leaf of the tree and HL(X,Y ) be the set of cutters
associated of the left branches of the path from the root to (X,Y ). Then (X,Y ) is a
concept iff Y contains at least one item of each itemset of HL(X,T ).

9



0

b

X \ a

a

Y \ b

(Cx , Cy)

1

Figure 4: Building a non maximal 1-rectangle

Proofs of correctness and completeness of D-Miner are given in Annex A.
It means that when trying to build a right son (X,Y ) (i.e., to remove some

elements from Y ), we must check that ∀(a, b) ∈ HL(X,Y ), b∩Y �= ∅. This constraint
is called the left cutting constraint.

Example 6 We take the context used for Example 5 (see Table 1 on the right).
1-rectangles (t3, g3) and (t2t3, g3) are pruned using Property 2. (t3, g3) comes from
the left cutting of (t1t2t3,g1g2g3) and then the left cutting of (t2t3, g1g2g3). The items
of (t3, g3) must contain at least one item of {g1, g2} and one item of {g2}, i.e., the
precedent left cutter set of items. It is not the case and thus (t3, g3) is pruned.
(t2t3, g3) comes from just one left cutter: (t1,g1g2). It contains neither g1 nor g2.
Consequently, nodes that are underlined in Figure 3 are pruned.

3.2 Algorithm

Before cutting a bi-set (X,Y ) by a cutter (a, b) in two bi-sets (X\a, Y ) and (X,Y \b),
two types of constraints must be checked, first the monotonic constraints and then
the left cutting constraint. Closeness property (or maximality) is implied by the
cutting procedure.

D-Miner is a depth-first method which generates bi-sets ordered by relation ≤.
Monotonic constraints w.r.t. either O or P are used to prune the search space: if
(X,Y ) does not satisfy a monotonic constraint C then none of its sons satisfies C
and it is unnecessary to cut (X,Y ). Constraint C is a conjunction of a monotonic
constraint Ct on O and a monotonic constraint Cg on P. Algorithms 1 and 2 contain
the pseudo-code of D-Miner. First, the set H of cutters is computed. Then the
recursive function cutting() is called.

Function cutting cuts out a bi-set (X,Y ) with the first cutter H[i] that satisfies
the following constraints. First, (X,Y ) must have an non empty intersection with
H[i]. If it is not the case, cutting is called with the next cutter. Before cutting (X,Y )
into (X\a, Y ), we have to check the monotonic constraint on X\a (i.e., Ct(X\a)) to
try to prune the search space. (a, b) is inserted into HL, the set of cutters in the left
cutting. Then cutting is called on (X\a, Y ) and (a, b) is removed from HL. For the

10



Algorithm 1: D-Miner

Input : Relation r with n objects and m items, O the set of objects, P
the set of items, Ct and Cg are monotonic constraints on O and P.
Output : Q the set of concepts that satisfy Ct and Cg

HL ← empty()
H is computed from r
Q ← cutting((O, P), H, 0, HL)

Algorithm 2: cutting

Input: (X,Y ) a couple of 2O × 2P , H the list of cutters, i the depth
of the iteration, HL a set of precedent cutters in left cuttings,
Ct a monotonic constraint on O, Cg a monotonic constraint on P.
Output: Q the set of concepts that satisfy Ct and Cg

(a, b) ← H[i]
If (i ≤ |H| − 1) // i-th cutter is selected

If ((a ∩ X = ∅) or (b ∩ Y = ∅))
Q ← Q∪ cutting((X,Y ), H, i + 1, HL)

Else
If Ct(r, σ1, X \ a) is satisfied

HL ← HL ∪ (a, b)
Q ← Q∪ cutting((X\a, Y ), H, i + 1, HL)
HL ← HL \ (a, b)

If Cg(r, σ2, Y \b) is satisfied ∧ ∀(a′, b′) ∈ HL, b′ ∩ Y \b �= ∅
Q ← Q∪ cutting((X,Y \b), H, i + 1, HL)

Else
Q ← (X,Y )

Return Q

second cutting of (X,Y ), two constraint checking are needed. First the monotonic
constraints on Y \b (i.e., Cg(Y \b)) is checked and then we prune redundant concepts
using left cutters.

It is possible to optimize this algorithm. First, the order of the elements of H
is important. The aim is to cut as soon as possible the branches which generate
non-maximal 1-rectangles. Then, H is sorted by decreasing order of size of the
itemset component. Moreover, to reduce the size of H, the cutters which have
the same set of items are gathered: ∀(a1, b1), (a2, b2) ∈ H, if b1 = b2 then H =
H \ {(a1, b1), (a2, b2)} ∪ (a1 ∪ a2, b1). Finally, if |P| > |O|, we transpose the matrix

11



to obtain a set H of minimum size.

3.3 Experimental validation

We compare the execution time of D-Miner with those of Closet [19], Ac-Miner
[8, 9] and Charm [26]. Closet, Ac-Miner and Charm are efficient algorithms
that compute frequent closed sets. These algorithms are based on different tech-
niques. For instance, Closet and Charm perform a depth-first search for frequent
closed sets. Ac-Miner computes level-wise the frequent free sets and then output
their closures, i.e., the frequent closed sets. An algorithm like Pascal [3] does the
same even though the free sets are here called key patterns. On another hand,
D-Miner can be used to compute frequent concepts and thus frequent closed sets.
It motivates this experimental validation where we extract frequent closed sets for
various frequency thresholds on artificial data sets and two benchmark data sets
from the UCI repository. As we explained earlier, it is easy to provide concepts
from closed sets on O or P and, in these experiments, we just compare the execu-
tion time of closed set mining algorithms like Closet or Charm without the small
extra-time for concept generation.

We use Zaki’s implementation of Charm [26] and Bykowski’s implementations
of Ac-Miner [8, 9] and Closet [19]. For a fair comparison, in every experiment,
we transpose the matrices to have the smaller number of columns for Closet,
Ac-Miner and Charm and to have the smaller number of lines for D-Miner.
Indeed, the computation complexity depend on the number of columns for Closet,
Ac-Miner and Charm and on the number of lines for D-Miner. The minimal
frequency threshold is given as a relative frequency w.r.t. the total number of
objects/items. All extractions have been performed on a Pentium III (450 MHz,
128 Mb).

In Annex B, we present the execution time of the four algorithms on several
artificial data sets generated with the IBM2 generator. We generated 60 dense data
sets by varying the number of columns (300, 700 and 900 columns), the number
of lines (100 and 300 lines) and the density of “1” values (15 % and 35 %). For
each combination of parameters, we generated 5 data sets. Table 2 of Annex B
provides the mean and the standard deviation of execution time (in seconds) used
by each algorithm on data sets with 15% density. We observe that d-miner succeeds
to extract closed sets in contexts where other algorithms do not succeed. Table 3
of Annex B provides the mean and the standard deviation of execution time (in
seconds) used by each algorithms on data sets with 35% density. For this type of
data, the superiority of d-miner is even more obvious.

In Figure 5, we show the needed execution time for frequent closed pattern
extraction on the benchmark “Mushroom”. Its derived boolean context contains
8 124 lines and 120 columns.

2http://miles.cnuce.cnr.it/ palmeri/datam/DCI/datasets.php

12



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0.00010.0010.010.10.2

T
i
m
e
 
(
s
e
c
.
)

Minimal frequency

closet
ac-miner
d-miner
charm

Figure 5: Mushroom

On “Mushroom”, the four algorithms succeed in finding all the concepts (minimal
frequency 0.0001) within a few minutes. The lowest frequency threshold corresponds
to at least 1 object. The execution time of Closet increases very fast compared to
the three others.

Next, we considered the benchmark “Connect4”. The derived boolean context
contains 67 557 lines and 149 columns. The execution time is shown on Figure 6.
Only Charm and D-Miner can extract closed sets with minimal frequency equal
to 0.1 and the associated frequent concepts. D-Miner is almost twice faster than
Charm on this data set. Notice, however, that the extraction of every concept,
including the infrequent ones, remains intractable on “Connect4”.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0.10.20.30.40.50.60.70.80.9

T
i
m
e
 
(
s
e
c
.
)

Minimal frequency

closet
ac-miner
d-miner
charm

Figure 6: Connect4

13



4 An application to microarray data analysis

4.1 An original data set and mining task

One of the well accepted biological hypothesis is to consider that most of the spe-
cific properties of a cell result from the interaction between its genes and its cellular
environment. At a molecular level, functional adaptation involves quantitative and
qualitative changes in gene expressions. Analysis of all the RNA transcripts present
in a cell or in a tissue (named the transcriptome) offers unprecedented opportuni-
ties to map the transitions between an healthy state and a pathological one. It has
motivated a huge effort for technologies that could monitor simultaneously the ex-
pression level of a large number of genes [10, 24]. The cDNA microarray technology
[10] is such a powerful tool for the global analysis of gene expression and thus for
identifying genes related to disease states and targets for clinical intervention. The
data generated by these experiments can be seen as expression matrices in which
the expression level (real value) of genes are recorded in various situations. Life
scientists are facing an unprecedent data-analysis challenge since the large data sets
generated from microarray analysis (involving thousands of genes) are not easily an-
alyzed by classical one-by-one genetics. They need new techniques that can support
the discovery of biological knowledge from these data sets.
Indeed, the logical step which follows the identification of groups of co-regulated
genes is the discovery of the common mechanism which coordinated the regulation
of these genes.

Typical techniques support the search for genes and situations with similar ex-
pression profiles. This can be achieved with hierarchical clustering (e.g., [12]), bi-
clustering (e.g., [22, 15]), CPA and statistical analysis (e.g., [11]). Frequent set min-
ing has been studied as a complementary approach for the identification of a priori
interesting set of genes and situations (see, e.g., [4]). In that case, boolean matrices
are built that record expression properties of the genes (e.g., over-expression, strong
variation).

Our concrete application concerns the analysis of DNA microarray data. Each
DNA microarray contains the RNA expression level of about 20 000 genes before
and after a perfusion of insulin in their skeletal muscle [23]. For each gene and
each subject we take the logarithm of the ratio between the two measures. In our
experimentation 10 DNA microarrays have been made, 5 for healthy persons and 5
for type 2 diabetic patients.

Statistical preprocessing has lead to the selection of 8 171 genes. Among these
genes, many of them (more than 10%) are differently expressed between the healthy
and the diabetic persons. A subset of such data is given in Figure 7 to illustrate
the discretization procedure and the enrichment of the data. Assume that here, we
have 5 genes (g1, g2, g3, g4, g5) and two sets of biological situations (H composed of
the two healthy subjects and D composed of three diabetic patients). The first two
situations correspond to gene expression level for healthy people, H ={h1, h2}, and

14



the three following ones correspond to gene expression level for diabetic patients,
D ={d1, d2, d3}. A positive value (resp. negative value) means that the gene is
up-regulated (resp. down-regulated) in the situation.

Genes
g1 g2 g3 g4 g5

H h1 0.36 0.42 0.56 0.124 0.35
h2 -0.24 0.01 0.28 0.02 -0.32

D
d1 0.25 0.35 0.55 0.012 -0.21
d2 0.27 0.89 -1.02 0.71 0.52
d3 0.53 0.24 0.64 -0.6 -0.01

Figure 7: Microarray raw data

We are interested in genes with strong variation under the insulin clamp. Figure 8
provides a boolean context for the expression data from Figure 7. A value “1” for
a biological situation and a gene means that the gene is up (greater than |t|) or
down (lower than −|t|) regulated in this situation. On this toy example, we choose
a threshold t = 0.3. The discretization of the gene expression data into boolean
expression properties is however a complex task (see, [4] for a discussion). It is out
of the scope of this paper to discuss further this issue.

Genes
g1 g2 g3 g4 g5

H h1 1 1 1 0 1
h2 0 0 0 0 1

D d1 0 1 1 0 0
d2 0 1 1 1 1
d3 1 0 1 1 0

Figure 8: Example of boolean microarray data r4

Let us now propose an original enrichment for this kind of boolean context.
Additional information on, e.g., molecular functions, biological processes and the
presence of transcription factors, are useful to interpret the extracted bi-sets or
concepts. Transcription factors (TF) are proteins which specifically recognize and
bind DNA regions of the genes. Following the binding, the expression of the gene
is increased or decreased. A gene is usually regulated by many TF, and a TF can
regulate different genes at the same time. In our current application, the challenge
for the biologist is the identification of a combination of TF associated to a group of
genes which are regulated in the group of healthy subjects but not in the diabetic
group. To the best of our knowledge, no data mining technique supports such an
analysis. We have been looking for the transcription factors that can bind to the

15



regulatory region of each gene of the microarray data. For that purpose, we have
used EZ-Retrieve, a free software for batch retrieval of coordinated-specified human
DNA sequences [27]. In Figure 9, we continue with our toy example by considering
two transcription factors tf1 and tf2. A value “1” for a gene and a transcription
factor means that this transcription factor regulates the gene. We have a value “0”
otherwise.

Genes
g1 g2 g3 g4 g5

F tf1 1 1 0 1 0
tf2 1 0 0 1 1

Figure 9: Transcription factors for r4

It is now possible to merge the boolean data about biological situations and
transcription factors into a unique boolean context (see Figure 10). Such a context
encodes information about different gene properties that are biologically relevant:
its expression level for healthy people, its expression level for diabetic patient and
the regulation by transcription factors. The set O is thus partitioned into the set
H, the set D and a set of transcription factors F .

Genes
g1 g2 g3 g4 g5

H h1 1 1 1 0 1
h2 0 0 0 0 1

D d1 0 1 1 0 0
d2 0 1 1 1 1
d3 1 0 1 1 0

F tf1 1 1 0 1 0
tf2 1 0 0 1 1

Figure 10: An enriched microarray boolean context

For technical reasons, 600 genes among the 8 171 ones for which expression
value is available have been processed. Among these 600 genes, 496 genes have
unknown functions and thus the list of the transcription factors that might regulate
them is not available. We finally got a list of 94 transcription factors that can
regulate 304 genes. In other terms, the boolean context we have has 104 objects (94
transcription factors and 10 biological situations, 5 for healthy individuals and 5 for
diabetic patients) and 304 genes. Concept discovery from such a boolean context is
already hard. Furthermore, after discretization, we got a dense boolean context with
17% of the cells containing the true value (i.e., “1”). In such a situation, available
algorithms for mining closed sets can turn to be intractable. Furthermore, in a short

16



term perspective, we will get much more transcription factors and much more genes
(up to several hundreds or thousands).

The challenge that has been proposed by the biologists is as follows. The poten-
tially interesting bi-sets are concepts that involve a minimum number of genes (more
than γ) to ensure that the extracted concepts are not due to noise. They must also
be made of enough biological situations from D and few biological situations of H
or vice versa. In other terms, the potentially interesting bi-sets (T,G) are concepts
that verify the following constraints as well:

(|TH | ≥ 4 ∧ |TD| ≤ 2 ∧ |G| ≥ γ) (1)

∨ (|TD| ≥ 4 ∧ |TH | ≤ 2 ∧ |G| ≥ γ) (2)

where TH and TD are the subsets of T that concern respectively the biological
situations from H (healthy individuals) and the ones from D (for diabetic patients).

Notice that this constraint which is the disjunction of Equation (1) and Equation
(2) is a disjunction of a conjunction of monotonic and anti-monotonic constraints
on LO and LP . Using D-Miner, we push the monotonic ones.

4.2 Comparison with other algorithms

The execution time for computing frequent closed sets on this biological data with
Closet, Ac-Miner, Charm and D-Miner is shown on Figure 11.

 0

 200

 400

 600

 800

 1000

0.010.020.030.040.050.060.070.080.090.1

T
i
m
e
 
(
s
e
c
.
)

Minimal frequency

closet
ac-miner
d-miner
charm

Figure 11: Extended microarray data analysis

D-Miner is the only algorithm which succeeds to extract all the concepts. No-
tice that the data are particular: there are very few frequent concepts before the
relative frequency threshold 0.1 on genes (5 534 concepts) and then the number
of concepts increases very fast (at the lowest frequency threshold, there are more

17



than 5 millions of concepts). In this context, extracting putative interesting con-
cepts needs for a very low frequency threshold, otherwise almost no concepts are
provided. Consequently D-Miner is much better than the other algorithms for this
application because it succeeds to extract concepts when the frequency threshold is
lower than 0.06 whereas it is impossible with the others.

End users, e.g., biologists, are generally interested in a rather small subset of
the extracted collections. These subsets can be specified by means of user-defined
constraints that can be checked afterwards (post-processing) on the whole collection
of concepts. It is clear however that this approach leads to tedious or even impossible
post-processing phases when, e.g., more than 5 millions of concepts are computed
(almost 500M bytes of patterns). It clearly motivates the need for constraint-based
mining of concepts.

4.3 Extraction of concepts under constraints

Let us first extract the concepts which contain at least 4 among the 5 situations
associated to the diabetic patients and at least γ genes. The first constraint is
monotonic on LO whereas the second one is monotonic on LP . Figure 12 presents
the number of concepts verifying the constraints when γ vary.

 0

 50

 100

 150

 200

 250

 300

 350

 0  2  4  6  8  10  12  14

n
u
m
b
e
r
 
o
f
 
c
o
n
c
e
p
t
s

gamma

Figure 12: Number of concepts w.r.t. the minimum number of genes γ for |TD| ≥ 4

Using these constraints, we can reduce drastically the number of extracted con-
cepts while selecting relevant ones according to end users. However, the small num-
ber of biological situations associated to the diabetic patients in our data set strongly
constrain the size of the extracted collection: only 323 concepts satisfy Ct(r, 4, TD).
Thus, in this data set, this single constraint appears to be quite selective and the
extraction can be performed with any frequent closed set extraction algorithm using
the constraint Ct(r, 4, TD). 234 concepts are obtained and can be post-processed in
order to check constraint Cg(r, γ, G) afterwards.

18



Notice however that, in other data sets, using simultaneously these two con-
straints can make the extraction possible whereas the extraction using only one of
the two constraints and a post-processing strategy can be intractable. To illustrate
this point, let us consider two constraints Ct(r, γ1, T ) and Cg(r, γ2, G) on LO and LP .
In Figure 13, we plot the number of concepts obtained when γ1 and γ2 vary.

 0
 0.01

 0.02
 0.03

 0.04
 0.05

 0.06
 0.07

gamma_2 on G

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

gamma_1 on T

 1
 10

 100
 1000

 10000
 100000
 1e+06

nb. concepts

Figure 13: Extended microarray data analysis (2)

It appears that using only one of the two constraints does not reduce significantly
the number of extracted concepts (see values when γ1 = 0 or γ2 = 0). However, when
we use simultaneously the two constraints, the size of the concept collection decreases
strongly (the surface of the values forms a basin). For example, the number of con-
cepts verifying the constraints Cg(r, 10, G) and Ct(r, 21, T ) is 142 279. The number
of concepts verifying the constraints Cg(r, 10, G) and Ct(r, 0, T ) is 5 422 514. The
number of concepts verifying the constraints Cg(r, 0, G) and Ct(r, 21, T ) is 208 746.
The gain when using simultaneously both constraints is very significant.

The aim of our work with biologists is to extract concepts in larger microarray
data sets. In this context the use of conjunction of constraints on genes, biological
situations and transcription factors appears to be crucial.

4.4 Biological interpretation of an extracted concept

To validate the biological relevancy of the bi-sets that can be extracted on our
biological data, let us consider one of the concepts D-Miner has computed. It con-
tains 17 genes Hs.2022, Hs.184, Hs.1435, Hs.21189, Hs.25001, Hs.181195, Hs.295112,
Hs.283740, Hs.12492, Hs.2110, Hs.139648, Hs.119, Hs.20993, Hs.89868, Hs.73957,

19



Hs.57836 and Hs.302649 which are all potentially regulated by the same 8 tran-
scription factors (c-Ets-, MZF1, Ik-2, CdxA, HSF2, USF, v-Myb, AML-1a). This
association holds for 4 healthy subjects. This concept is very interesting as it con-
tains genes which are either up-regulated or down-regulated after insulin stimulation,
based on the homology of their promotor DNA sequences. In other terms, common
transcription factors can regulate these genes either positively or negatively. More-
over this association does not occur in the muscle of the type 2 diabetic patients.
Using traditional tools (e.g., the well known Eisen clustering tool [12]), the biologist
would separate these genes into two groups: one containing the over-expressed gene,
and the other the down-regulated ones. However, it is well-accepted that follow-
ing an external cell stimulus, transcription factors regulate positively a set of genes
and at the same time, down-regulated other sets of genes. To build the regulatory
networks biologists need tools like D-Miner to extract concepts containing genes
regulated by the same set of transcription factors. Among the 12 genes, one has
already been suspected to be linked with insulin resistance, a pathological state as-
sociated with diabetes (Hs.73957, the RAS-associated protein RAB5A [23]). Finally,
some genes among the 12 have unknown functions because the human genome is
not fully annoted. Based on the results we obtained from D-Miner we can now
group these genes with other genes having common regulatory behaviors during the
type 2 diabetes.

5 Conclusion

Computing formal concepts has been proved useful in many application domains
but remains extremely hard from dense boolean data sets like the one we have to
process nowadays for gene expression data analysis. We have described an original
algorithm that computes concepts under monotonic constraints. First, it can be used
for closed set computation and thus concept discovery. Next, for difficult contexts,
i.e., dense boolean matrices where none of the dimension is small, the analyst can
provide monotonic constraints on both set components of desired concepts and the
D-Miner algorithm can push them into the extraction process. We are now working
on the biological validation of the extracted concepts. We have also to compare D-
Miner with new concept lattice construction algorithms like [5].

Acknowledgment The authors thank Mohammed Zaki who has kindly provided
his CHARM implementation. Jérémy Besson is funded by INRA. This work has
been partially funded by the EU contract cInQ IST-2000-26469 (FET arm of the
IST programme).

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases. In Proceedings ACM SIGMOD’93, pages 207–216,

20



Washington, D.C., USA, May 1993. ACM Press.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast
discovery of association rules. In Advances in Knowledge Discovery and Data
Mining, pages 307–328. AAAI Press, 1996.

[3] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent
patterns with counting inference. SIGKDD Explorations, 2(2):66 – 75, Dec.
2000.

[4] C. Becquet, S. Blachon, B. Jeudy, J.-F. Boulicaut, and O. Gandrillon.
Strong association rule mining for large gene expression data analysis: a
case study on human SAGE data. Genome Biology, 12, 2002. See
http://genomebiology.com/2002/3/12/research/0067.

[5] A. Berry, J.-P. Bordat, and A. Sigayret. Concepts can not affor to stammer. In
Proceedings JIM’03, pages 25–35, Metz, France, September 2003.

[6] J. Besson, C. Robardet, and J.-F. Boulicaut. Constraint-based mining of formal
concepts in transactional data. In Proceedings PaKDD’04, Sydney, Australia,
May 2004. Springer-Verlag. To appear as a LNAI volume.

[7] J.-F. Boulicaut and A. Bykowski. Frequent closures as a concise representation
for binary data mining. In Proceedings PaKDD’00, volume 1805 of LNAI, pages
62–73, Kyoto, JP, Apr. 2000. Springer-Verlag.

[8] J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency
queries by mean of free-sets. In Proceedings PKDD’00, volume 1910 of LNAI,
pages 75–85, Lyon, F, Sept. 2000. Springer-Verlag.

[9] J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed represen-
tation of boolean data for the approximation of frequency queries. Data Mining
and Knowledge Discovery journal, 7(1):5–22, 2003.

[10] J. L. DeRisi, V. R. Iyer, and P. O. Brown. Exploring the metabolic and genetic
control of gene expression on a genomic scale. Science, 278, 1997.

[11] S. Dudoit and Y. H. Yang. Bioconductor R packages for exploratory anal-
ysis and normalization of cDNA microarray data. In The Analysis of Gene
Expression Data: Methods and Software, pages 25–35, Springer, New York,
2003.

[12] M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and display
of genome-wide expression patterns. Proceedings National Academy of Science
USA, 95:14863–14868, 1998.

21



[13] B. Ganter. Two basic algorithms in concept analysis. Technical report, Tech-
nisch Hochschule Darmstadt, Preprint 831, 1984.

[14] B. Jeudy and J.-F. Boulicaut. Optimization of association rule mining queries.
Intelligent Data Analysis journal, 6:341–357, 2002.

[15] D. Jiang and A. Zhang. Cluster analysis for gene expression data: A survey.
Available at citeseer.nj.nec.com/575820.html.

[16] R. Ng, L. Lakshmanan, J. Han, and A. Pang. Exploratory mining and
pruning optimizations of constrained associations rules. In Proceedings ACM
SIGMOD’98, pages 13–24, Seattle, USA, May 1998. ACM Press.

[17] L. Nourine and O. Raynaud. A fast algortihm for building lattices. Information
Processing Letters, 71:190–204, 1999.

[18] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of associa-
tion rules using closed itemset lattices. Information Systems, 24(1):25–46, Jan.
1999.

[19] J. Pei, J. Han, and R. Mao. CLOSET an efficient algorithm for mining frequent
closed itemsets. In Proceedings ACM SIGMOD Workshop DMKD’00, Dallas,
USA, May 2000.

[20] F. Rioult, J.-F. Boulicaut, B. Crémilleux, and J. Besson. Using transposition
for pattern discovery from microarray data. In Proceedings ACM SIGMOD
Workshop DMKD’03, pages 73–79, San Diego, USA, June 2003.

[21] F. Rioult, C. Robardet, S. Blachon, B. Crémilleux, O. Gandrillon, and J.-
F. Boulicaut. Mining concepts from large SAGE gene expression matrices.
In Proceedings KDID’03 co-located with ECML-PKDD’03, pages 107–118,
Cavtat-Dubrovnik, Croatia, September 22 2003.

[22] C. Robardet and F. Feschet. Comparison of three objective functions for con-
ceptual clustering. In Proceedings PKDD 2001, number 2168 in LNAI, pages
399–410. Springer-Verlag, September 2001.

[23] S. Rome, K. Clément, R. Rabasa-Lhoret, E. Loizon, C. Poitou, G. S. Barsh,
J.-P. Riou, M. Laville, and H. Vidal. Microarray profiling of human skele-
tal muscle reveals that insulin regulates 800 genes during an hyperinsulinemic
clamp. Journal of Biological Chemistry, May 2003. 278(20):18063-8.

[24] V. Velculescu, L. Zhang, B. Vogelstein, and K. Kinzler. Serial analysis of gene
expression. Science, 270:484–487, 1995.

[25] R. Wille. Restructuring lattice theory: an approach based on hierarchies of
concepts. In I. Rival, editor, Ordered sets, pages 445–470. Reidel, 1982.

22



[26] M. J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for closed itemset
mining. In Proceedings SIAM DM’02, Arlington, USA, April 2002.

[27] H. Zhang, Y. Ramanathan, P. Soteropoulos, M. Recce, and P. Tolias. Ez-
retrieve: a web-server for batch retrieval of coordinate-specified human dna
sequences and underscoring putative transcription factor-binding sites. Nucleic
Acids Res., 30:–121, 2002.

A Proofs

We first prove that all tree leaves are different from each other in Section A.2. Thus
the leaves can be considered as a set denoted by L. In a second step we prove that
L is equal to the collection of concepts denoted by C:

• We prove in Section A.3 that C ⊆ L

• We prove in Section A.4 that L ⊆ C

Section A.1 is a preliminary step to facilitate these proofs.

A.1 All tree leaves are 1-rectangles

Let (LX , LY ) be a D-Miner tree leaf. Let us demonstrate that ∀i ∈ LX , ∀j ∈
LY , (i, j) ∈ r. We suppose first the contrary, that is, it exists i ∈ LX and j ∈ LY

such that (i, j) �∈ r. Thus, following definition of H, it exists (A,B) ∈ H such that
i ∈ A and j ∈ B. By definition of the algorithm, each element of H is used on
the path from the root to each tree leaf. Let (AX , AY ) be the ancestor of (LX , LY )
cut by (A,B). The order relation implies that LX ⊆ AX and LY ⊆ AY and thus
i ∈ AX and j ∈ AY . Consequently, it is cut by (A,B). The sons of (AX , AY ), if
they exist, are (AX \A,AY ) and (AX , AY \B). Thus LX ⊆ AX \A ⊆ AX \ {i} and
LY ⊆ AY \ B ⊆ AY \ {j}. Given that it contradicts the hypothesis,

∀i ∈ LX , ∀j ∈ LY , (i, j) ∈ r

A.2 All tree leaves are different

Let (LX1 , LY1) and (LX2 , LY2) be two D-Miner tree leaves. Let (AX , AY ) be the
smallest common ancestor of these two leaves and (A,B) be the H element used
to cut it. We suppose, without loss of generality, that (LX1 , LY1) is the left son of
(AX , AY ) and that (LX2 , LY2) is its right son. By definition of the algorithm, each
of the left successors of (AX , AY ) does not contain elements of A thus

LX1 = AX \ A

23



Each of the right successors of (AX , AY ) contains all elements of A and thus

A ⊂ LX2

Consequently, LX1 �= LX2 and (LX1 , LY1) �= (LX2 , LY2).

A.3 C ⊆ L

Let us demonstrate that for each concept (CX , CY ), there exists a path from the
root node (O,P) to this concept:

(O,P), (X1, Y1), · · · , (Xn−1, Yn−1), (CX , CY )

• In a first step we recursively demonstrate that the path is such that:

(X0, Y0), (X1, Y1), · · · , (Xn−1, Yn−1), (LX , LY )

with (LX , LY ) ⊇ (CX , CY ) and (O,P) = (X0, Y0)

We denote by HLk
(Xk, Yk) the set of elements of H which leads to a left

branch on the path from (X0, Y0) to (Xk, Yk). The recurrence hypotheses are
the following:

(1) (CX , CY ) ⊆ (Xk, Yk)

(2) ∀(A,B) ∈ HLk
, CY ∩ B �= ∅

Proof:

Base By definition of formal concepts, each concept (CX , CY ) is included in the
root node, i.e., CX ⊆ X0 and CY ⊆ Y0. Hypothesis (1) is thus verified
for rank 0. Furthermore, HL0 = ∅ and thus hypothesis (2) is verified for
rank 0 as well.

Induction Let us suppose that hypotheses (1) and (2) are verified for rank k−1 and
let us prove that they are still true at rank k when the node (Xk−1, Yk−1)
is cut using (A,B) ∈ H.

∗ If Xk−1 ∩ A = ∅ or Yk−1 ∩ B = ∅ then (Xk, Yk) = (Xk−1, Yk−1) and
HLk

= HLk−1
. It means that (Xk, Yk) verifies hypotheses (1) and (2).

∗ Otherwise, given the definition of formal concepts, only one of the
two following conditions is verified:

· If CX∩A �= ∅ and CY ∩B = ∅ then the right son (Xk−1, Yk−1\B),
a subset of (Xk−1, Yk−1), contains the concept (CX , CY ) because
CY ⊆ Yk−1 \ B. This son is generated by the algorithm be-
cause hypothesis (2) is verified for the rank k − 1. HLk

= HLk−1

((A,B) does not belong to HLk
because (Xk, Yk) is the right son

of (Xk−1, Yk−1)), and thus hypothesis (1) is verified.

24



· If CX ∩ A = ∅ and CY ∩ B �= ∅ then (Xk−1 \ A, Yk−1), the left
son, contains (CX , CY ). This left son is always generated by the
algorithm. Hypothesis (1) is thus verified for rank k. Further-
more, as CY ∩ B �= ∅ and HLk

= HLk−1
∪ (A,B), hypothesis (2)

is also verified.

• We have proved that (CX , CY ) ⊆ (LX , LY ). Let us now prove that (LX , LY ) =
(CX , CY ). In Section A.1, we have proved that each leaf is a 1-rectangle. Thus
a leaf is at the same time a superset of (CX , CY ) and a 1-rectangle and thus
(CX , CY ) = (LX , LY ).

A.4 L ⊆ C

We have proved in Section A.1 that each leaf is a 1-rectangle. Then we have proved
that each concept is associated to a leaf. We now prove that each leaf is a concept.

A leaf (LX , LY ) is a concept if and only if

⎧⎨
⎩

(LX , LY ) is a 1-rectangle
� ∃x ∈ O \ LX such that ∀y ∈ LY , (x, y) ∈ r (1)
� ∃y ∈ P \ LY such that ∀x ∈ LX , (x, y) ∈ r (2)

Let us now prove by contradiction Property (1) and then Property (2).

• Assume that it exists x ∈ O \LX such that ∀y ∈ LY , (x, y) ∈ r. Let (x,B) be
an element of H. This 0-rectangle exists because

– either x is in relation with all the elements of P and, in that case, it leads
to a contradiction because if x �∈ H then all the tree nodes contains x
while we assume x �∈ LX .

– or, it exists B ⊆ P such that ∀y ∈ B, (x, y) �∈ r. (x,B) is, in this case,
unique given the computation of H.

Let (AX , AY ) be the ancestor of (LX , LY ) before being cut by (x,B). (LX , LY )
has to be a descendant of (AX \x,AY ) which is the left son of (AX , AY ). This
is due to the fact that x �∈ LX (see Figure 14). By the construction of the tree,
the left son of (AX , AY ) contains B but, by hypothesis (∀y ∈ LY , (x, y) ∈ r),
LY does not contain B. To get that one of the descendants of (AX \ x,AY )
does not contain any element of B, it is needed that one of these descendants
is a right son of another one. Let us denote by (A′, B′) the 0-rectangle which
leads to a right son without elements from B. To enable this cutting, it is
needed that B ∩ B′ �= ∅. Consequently, each descendant contains at least an
element of B and it contradicts the fact that LY ∩ B = ∅.

• Let us assume that it exists y ∈ P \ LY such that ∀z ∈ LX , (z, y) ∈ r. Let
(AX1 , AY1) and (AX2 , AY2) be two ancestors of (LX , LY ) such that (AX1 , AY1)

25



(AX , AY )

(x, y ∈ B)

(AX \ x, AY ), B ⊆ AY

(· · · )

(· · · )

(A′, B′), B ∩ B′ �= ∅

(· · · )

(· · · )
(LX , LY ), LY ∩ B = ∅

Figure 14: First illustration: LY ⊆ AY ∧ B ⊆ AY ∧ B ∩ LY �= ∅ ⇒ ¬ (B ∩ LY = ∅)

is the father of (AX2 , AY2), y ∈ AY1 and y �∈ AY2 . We denote by (x,B)
the 0-rectangle which is used to cut (AX1 , AY1) (see Figure 15). Given the
algorithm principle, these two ancestors exist and (AX2 , AY2) is the right son
of (AX1 , AY1). Because y �∈ LY ,

(LX , LY ) is a descendant of (AX2 , AY2) = (AX1 , AY1 \ B)

By construction of H, x belongs only to one element of H. As (AX1 , AY1) has
been cut by (x,B), x ∈ AX1 . Furthermore (AX2 , YY2) and all its descendants
also contain x. Nevertheless, we have proved that (LX , LY ) is a descendant of
(AX2 , AY2). Consequently,

x ∈ LX

The hypothesis ∀z ∈ LX , (z, y) ∈ r is contradicted by the fact that (x, y) �∈ r
(x and y belong to the same 0-rectangle).

26



(AX1 , AY1), y ∈ AY1

(x,B), y ∈ B

(AX2 , AY2)

(· · · )

(· · · )
(LX , LY ), x ∈ LX

Figure 15: Second illustration: x ∈ LX ∧ (x, y) �∈ r ⇒ ¬ (∀x ∈ LX , (x, y) ∈ r)

B Experimentations on synthetic data sets

We have discussed in Section 3.3 our complementary experimental validation of D-
Miner on several artificial data sets. We generated 60 dense data sets by varying
the number of columns (300, 700 and 900 columns), the number of lines (100 and
300 lines) and the density of “1” values (15 % and 35 %). For each combination
of parameters, we generated 5 data sets. Table 2 (resp. Table 3 provides the
mean (column mean) and the standard deviation (column sd) of execution time (in
seconds) used by each algorithm on the 5 data sets with 15% density (resp. 35%
density). The parameter σ denotes the used frequency threshold. For each data set
and each value of σ, we also report the number of frequent concepts (line FrC).

27



σ
�

co
lu

m
n
s

30
0

70
0

90
0

�
li
n
es

10
0

30
0

10
0

30
0

10
0

30
0

m
e
a
n

sd
m
e
a
n

sd
m
e
a
n

sd
m
e
a
n

sd
m
e
a
n

sd
m
e
a
n

sd

0,
1

c
l
o
se

t
0,

02
0

0,
24

0,
1

0,
04

0,
01

0,
5

0,
03

0,
04

0,
01

0,
7

0,
02

a
c
-m

in
e
r

0,
02

0
0,

44
0,

03
0,

03
0,

01
0,

56
0,

03
0,

03
0

0,
6

0,
04

d
-m

in
e
r

0,
01

0,
01

0,
11

0,
01

0,
01

0,
01

0,
12

0,
01

0,
02

0,
01

0,
15

0,
01

c
h
a
r
m

0,
01

0,
01

0,
03

0,
01

0
0,

1
0,

06
0,

01
0,

01
0

0,
06

0,
01

F
r
C

20
5

21
26

31
22

9
19

9
18

23
20

78
19

7
17

22
54

53

0,
01

c
l
o
se

t
1,

36
0,

14
45

1,
2

64
,7

7
1,

18
0,

14
47

5,
76

32
,8

5
1,

16
0,

14
38

4,
75

25
,6

3
a
c
-m

in
e
r

1,
32

0,
12

−
−

1,
82

0,
19

−
−

1,
96

0,
18

−
−

d
-m

in
e
r

0,
89

0,
05

11
2,

6
11

,6
0,

73
0,

06
14

9,
7

9,
8

0,
86

0,
08

15
4,

5
9,

7
c
h
a
r
m

0,
6

0,
06

−
−

0,
35

0,
06

−
−

0,
31

0,
03

−
−

F
r
C

4,
3

10
4

3,
7

10
3

2,
8

10
6

2,
8

10
5

4
10

4
4,

6
10

3
4,

7
10

6
2,

5
10

5
3,

7
10

4
4,

4
10

3
3,

9
10

6
1,

9
10

5

0,
00

1

c
l
o
se

t
3,

69
0,

31
−

−
20

,7
1

2,
07

−
−

34
,5

1
3,

74
−

−
a
c
-m

in
e
r

4,
79

0,
43

−
−

19
,8

6
1,

98
−

−
30

,5
1

2,
94

−
−

d
-m

in
e
r

1,
35

0,
06

12
8,

31
12

,4
2

6,
19

0,
4

−
−

11
,8

9
0,

81
−

−
c
h
a
r
m

1,
84

0,
2

−
−

11
,7

5
1,

44
−

−
19

,9
2

2,
75

−
−

F
r
C

5,
3

10
4

3,
8

10
3

2,
9

10
6

2,
8

10
5

2,
4

10
5

1,
9

10
4

−
−

3,
6

10
5

3,
1

10
4

−
−

Table 2: Execution time on data sets with 15% of density (− iff time ≥ 10 min)

28



σ
�

co
lu

m
n
s

30
0

70
0

90
0

�
li
n
es

10
0

30
0

10
0

30
0

10
0

30
0

m
e
a
n

sd
m
e
a
n

sd
m
e
a
n

sd
m
e
a
n

sd
m
e
a
n

sd
m
e
a
n

sd

0,
1

c
l
o
se

t
14

,5
7

4.
74

−
−

14
,0

2
3,

45
−

−
14

,0
8

3,
06

−
−

a
c
-m

in
e
r

16
,6

9
4,

28
−

−
22

,0
1

4,
26

−
−

24
,3

4
4,

51
−

−
d
-m

in
e
r

2,
53

0,
57

−
−

2,
36

0,
41

−
−

2,
79

0,
45

−
−

c
h
a
r
m

5,
86

3,
65

−
−

3,
53

0,
74

−
−

3,
34

0,
78

−
−

F
r
C

2,
7

10
5

7,
3

10
4

−
−

2,
5

10
5

5
10

4
−

−
2,

4
10

5
4,

7
10

4
−

−

0,
01

c
l
o
se

t
−

−
−

−
−

−
−

−
−

−
−

−
a
c
-m

in
e
r

−
−

−
−

−
−

−
−

−
−

−
−

d
-m

in
e
r

54
4,

41
35

,2
9

−
−

−
−

−
−

−
−

−
−

c
h
a
r
m

−
−

−
−

−
−

−
−

−
−

−
−

F
r
C

3,
7

10
7

3
10

6
−

−
−

−
−

−
−

−
−

−

0,
00

1

c
l
o
se

t
−

−
−

−
−

−
−

−
−

−
−

−
a
c
-m

in
e
r

−
−

−
−

−
−

−
−

−
−

−
−

d
-m

in
e
r

55
0,

6
34

,9
8

−
−

−
−

−
−

−
−

−
−

c
h
a
r
m

−
−

−
−

−
−

−
−

−
−

−
−

F
r
C

3,
7

10
7

3
10

6
−

−
−

−
−

−
−

−
−

−

Table 3: Execution time on data sets with 35% of density (− iff time ≥ 20 min)

29




