
Optimization of Association Rule Mining
Queries

Baptiste Jeudy Jean-François Boulicaut

Institut National des Sciences Appliquées de Lyon
Laboratoire d'Ingénierie des Systèmes d'Information

Bâtiment Blaise Pascal
F-69621 Villeurbanne cedex, France

{Baptiste.Jeudy,Jean-Francois.Boulicaut}@lisi.insa-lyon.fr

Abstract
Levelwise algorithms (e.g., the Apriori algorithm) have been proved

e�ective for association rule mining from sparse data. However, in many
practical applications, the computation turns to be intractable for the user-
given frequency threshold and the lack of focus leads to huge collections
of frequent itemsets. To tackle these problems, two promising issues have
been investigated during the last four years: the e�cient use of user de�ned
constraints and the computation of condensed representations for frequent
itemsets, e.g., the frequent closed sets. We show that the bene�ts of these
two approaches can be combined into a levelwise algorithm. It can be used
for the discovery of association rules in di�cult cases (dense and highly-
correlated data). For instance, we report an experimental validation related
to the discovery of association rules with negations.

keywords: association rules, constraints, condensed representations, induc-
tive queries.

jfboulicaut
Zone de texte 
Intelligent Data Analysis 6(4):341-357. IOS.



1 Introduction
Among the possible views on data mining processes, we consider a database
perspective. From the user point of view, one can see a continuous spec-
trum of information needs, starting from very simple database queries (say,
SQL queries like �What is the average amount of transactions�), moving to
more complex aggregate information (say, OLAP queries like �What are the
sales by product groups and regions�) and data mining queries like �Give me
interesting trends on sales� or �Which products are likely to be bought by
someone who already bought a DVD player�.

This suggests that it is useful to consider knowledge discovery processes
as querying processes. It has motivated the Inductive Database Framework:
an inductive database is a database that conceptually contains, in addition
to normal data, all the patterns from a speci�ed class of patterns that are
true in the data. Inductive queries can be used to query the normal data or
the patterns [13, 8].

Inductive databases are also suitable for supporting the iterative and in-
teractive nature of discovery processes. For example, the result of a data
mining query makes explicit some information that in turn motivates a new
preprocessing step on the data, a modi�cation of the mining algorithm pa-
rameters, or changing the algorithm itself. Several languages like MINE RULE
[19], DMQL [12], or M-SQL [14] can be used to express more or less speci�c
inductive queries.

However, there is still much work to do on the optimization of the evalua-
tion of inductive queries. The bottleneck is the data mining algorithm itself.
Indeed, its evaluation can last for several hours.

In this work, we focus on association rule mining. In a transactional
database for the popular basket analysis task, an association rule X ⇒ Y ,
where X and Y are sets of products, describes the fact that customers are
likely to buy products in Y when they buy products in X. The quality of
a rule is given by di�erent measures such as the frequency, i.e., X and Y
occur together in many transactions, or the con�dence, i.e., there is a high
probability to �nd products from Y when we have the products from X in
a transaction. The standard association rule mining process concerns the
discovery of every association rule whose frequency and con�dence are above
user-de�ned thresholds [1, 2].

The computationally expensive step is clearly the computation of the so-
called frequent itemsets from which the potentially interesting association

2



rules are derived. Levelwise algorithms, e.g., the well-know Apriori algo-
rithm [2], have been proved to be e�ective for frequent itemset mining when
the data are sparse and lowly correlated. However, in many applications,
the data are dense and/or highly correlated and frequent itemset computa-
tion turns to be intractable. Furthermore, even if it is tractable, the lack
of focus leads to huge collections of frequent itemsets from which too many
uninteresting patterns or rules will be derived.

During the last four years, two promising issues have been investigated
to tackle these problems.

One can assume that only a subset of the collection of frequent itemsets
is interesting: it leads to constraint-based extraction of the frequent itemsets
[26, 20, 16]. These studies have considered various kinds of constraints, in-
cluding �syntactic� constraints (e.g., an item must not appear in the itemsets)
and constraints related to the so-called objective measures of itemset inter-
estingness (e.g., the itemsets must be frequent). Using constraints enables
to decrease the size of the output while improving the user guidance. The
problem is to �push� e�ciently the constraint checking step during itemset
extraction, i.e., not to apply a simple �generate and test� strategy. Nice re-
sults have been discovered concerning the so-called anti-monotone, succinct
and monotone constraints, i.e., a wide range of constraints [20].

Another promising approach concerns the condensed representation of
frequent itemsets [17]. Instead of mining all the frequent patterns, only a
particular subset of the frequent patterns collection is extracted. Ideally,
this subset is much smaller than the original collection and can be extracted
more e�ciently, while allowing a fast regeneration of the whole collection of
frequent patterns. For instance, several researchers have investigated the use
of closed frequent sets [22, 4, 6, 24, 27]. In our group, we have recently de-
signed a condensed representation based on the so-called δ-free sets [6]. Such
a representation can be extracted from dense data (for which the previous
approaches fail) and enables a fairly good approximation of the frequency of
each frequent itemset.

To the best of our knowledge, combining these two frameworks has not
been studied yet1.

In this paper, we show that the bene�t of these two approaches can
be combined into levelwise algorithms. Doing so, new mining tasks can

1This paper is a signi�cant extension of [7] and a complete study is to appear in the
forthcoming P.D. thesis [15]

3



be considered like frequent itemset mining for low frequency thresholds or
the discovery of frequent generalized itemsets (sets that combine positive
and negative items). An experimental validation related to the discovery of
association rules with negations is reported.

This paper is organized as follows. Section 2 introduces the notations
and the problem settings. In Section 3 and 4 we survey two known strategies
to compute the result of an association rule mining query. In Section 3, we
focus on the e�cient use of constraints. We also provide a new framework
for constrained itemset mining. In Section 4, we consider the use of free
sets and δ-free sets. In Section 5, we use our framework to introduce a
new query evaluation strategy: the computation of constrained condensed
representations. Finally, this new strategy is experimentally evaluated in
Section 6 and Section 7 is a short conclusion.

2 Problem Settings and Notations
2.1 Notations
Assume that Items is a �nite set of symbols denoted by capital letters, e.g.,
Items= {A, B, C, . . .}. A transaction t is a subset of Items. A transactional
database T is a �nite and non empty multiset T = {t1, t2, . . . , tn} of trans-
actions. An itemset is a subset of Items and a k-itemset is an itemset of
size k; the set of k-itemset is denoted Itemsk. A transaction t supports an
itemset S i� S ⊆ t. The support (denoted support(S)) of an itemset S is the
multiset of all transactions of T that support S (e.g., support(∅) = T ). The
frequency of an itemset S is de�ned by F(S) = |support(S)|/|support(∅)|
where |.| denote the cardinality of the multiset (each transaction is counted
with its multiplicity). An itemset S is γ-frequent in T if F(S) ≥ γ. Figure 1
provides an example of a transactional database and the supports and the
frequencies of some itemsets. Notice that we use a string notation for sets,
e.g., AB for {A, B}.

An association rule is denoted X ⇒ Y where Y 6= ∅, X ∩ Y = ∅, X ⊆
Items is the body of the rule and Y ⊆ Items is the head of the rule. The
support and frequency of a rule are de�ned as the support and the frequency
of the itemset X ∪ Y . A transaction t supports a rule X ⇒ Y if it supports
X ∪ Y . A transaction t is an exception for a rule X ⇒ Y if it supports X
and it does not support Y . The con�dence of the rule is conf(X ⇒ Y ) =

4



F(X ⇒ Y )/F(X) = F(X ∪ Y )/F(X). The con�dence of the rule gives the
conditional probability that a transaction supports X ∪ Y when it supports
X. A rule with a con�dence of one has no exception and is called a logical
rule.

We now de�ne constraints on itemsets and rules.
De�nition 1 (constraint) If T denotes the set of all transactional databases
and 2Items the set of all itemsets, an itemset constraint C is a predicate over
2Items×T . Similarly, a rule constraint is a predicate over R×T where R is
the set of association rules. An itemset S ∈ 2Items (resp. a rule R) satis�es a
constraint C in the database T ∈ T i� C(S, T ) = true (resp. C(R, T ) = true).
When it is clear from the context, we write C(S) (resp. C(R)). Given a sub-
set I of Items, we de�ne SATC(I) = {S ∈ I, S satis�es C} for an itemset
constraint (resp. if J is a subset of R, SATC(J) = {R ∈ J, R satis�es C}
for a rule constraint). SATC denotes SATC(2Items) or SATC(R).

We can now de�ne important constraints: the frequency constraint for
itemsets and the frequency and con�dence constraints for association rules.

Cγ−freq(S) ≡ F(S) ≥ γ,

Cγ−freq(X ⇒ Y ) ≡ F(X ⇒ Y ) ≥ γ,

Cθ−conf(X ⇒ Y ) ≡ conf(S) ≥ θ

where γ is the frequency threshold and θ the con�dence threshold. A rule
that satis�es Cγ−freq is said γ-frequent. A rule that satis�es Cθ−conf is said
θ-valid.
Example 1 Consider the dataset of Figure 1 where Items= {A, B, C, D}. The
0.6-frequent itemsets are:

SATC0.6−freq
= {A, B, C, AC, BC}.

Assume that Csize(S) ≡ |S| ≤ 2 and Cmiss(S) ≡ B 6∈ S, then
SATCsize∧Cmiss

= {A, C, D, AC, AD, CD} while SATCγ−freq∧Csize∧Cmiss = {A, C, AC}.
The 0.6-frequent and 0.7-valid rules are

SATC0.6−freq∧C0.7−conf
= {∅ ⇒ C; A⇒ C; B⇒ C}.

Consider now the rule constraint Cr(X ⇒ Y ) ≡ B ∈ X, then
SATC0.6−freq∧C0.7−conf∧Cr = {B⇒ C}.

5



T =

t1 ABCD

t2 BC

t3 AC

t4 CD

t5 ABCD

t6 ABC

Itemset Support Frequency
A {t1, t3, t5, t6} 0.67
B {t1, t2, t5, t6} 0.67
AB {t1, t5, t6} 0.5
AC {t1, t3, t5, t6} 0.67
CD {t1, t4, t5} 0.5
ACD {t1, t5} 0.33

Figure 1: Supports and frequencies of some itemsets in a transactional
database.

2.2 Problem Settings
De�nition 2 (constrained association rules mining task) Given a trans-
actional database T and a constraint C, the constrained association rule min-
ing task is the computation of the collection of the association rules that
satisfy C (i.e., SATC) together with their frequencies and con�dences. It pro-
vides {(R,F(R), conf(R)), R ∈ SATC}.

The standard association rule mining problem introduced in [1] is to �nd
all γ-frequent and θ-valid association rules. It is generally done in two steps:
�rst the computation of all the frequent itemsets and then the computation of
all the valid association rules that can be made from disjoint subsets of each
frequent itemset. This second step is far less expensive than the �rst one be-
cause no access to the database is needed: only the collection of the frequent
itemsets and their frequencies are needed. This is an important point, and
we consider in the rest of this paper that the generation of association rules
does not need to access the transactional database (it is still the case when
using other objective measures such as the conviction [9] or the J-measure
[25]). However, we allow any other constraint on the association rules and we
do not require the occurrence of the frequency and/or con�dence constraints.

Given an association rule constraint C, let us study di�erent strategies to
support constrained association rules mining task.

2.3 Generate and Test Strategy
Assume one wants to perform the association rule mining task with a con-
straint C that is the conjunction of Cγ−freq, Cθ−conf and other constraints (i.e.,
C = Cγ−freq ∧ Cθ−conf ∧ . . .).

6



This generate and test strategy consists of three steps.

• Step 1: compute γ-frequent itemsets;

• Step 2: generate all θ-valid association rules from frequent itemsets;

• Step 3: remove rules that do not satisfy the constraint C and output
the remaining ones.

This strategy provides a correct set of association rules but it is ine�cient.
Even if the user is only interested in a small subset of the association rules,
all frequent and valid association rules must be generated in Step 2. It is
desirable that the needed resources (e.g., time, memory) are commensurate
with the size of the output of the algorithm. To overcome this problem, it
is necessary to �push� the constraints before Step 3. Since the more expen-
sive step of this process is the generation of frequent itemsets (Step 1), the
constraints should be pushed during Step 1.

3 Pushing Constraints
Strategies for pushing constraints have been studied for association rule min-
ing (e.g., [26, 20, 16]), correlation discovery [11], sequential pattern mining
(e.g., [28]), etc. However, not all constraints can be pushed. Assume that
one wants to perform the association rule mining task with a constraint
C = C1∧C2 where C1 can be pushed during the itemset extraction and C2 can
not. A strategy that e�ciently uses constraints is:

• Step 1: compute itemsets that satisfy C1;

• Step 2: generate all association rules;

• Step 3: remove rules that do not satisfy the constraint C2 and output
the remaining ones.

This section provides a high level generic algorithm that mines itemsets
under constraints (Step 1). It generalizes previously published algorithms.

7



Apriori algorithm
1. C1 := Items1; L0 = {∅}
2. k := 1
3. while Ck 6= ∅ do
4. Phase 1 - candidate safe pruning

Ck := safe-pruning-on(Ck,Lk−1)
5. Phase 2 - frequency constraint checking (data scan)

Lk := SATCγ−freq
(Ck)

6. Phase 3 - candidate generation for level k+1
Ck+1 := generateapriori(Lk)

7. k := k + 1
od

8. output ⋃k−1
i=0 Li

3.1 From Rule Constraints to Itemset Constraints
The transformation of rule constraints into itemset constraints is a di�cult
step. Few theoretical work has been done on this subject. Generally, this is
done in an ad-hoc manner. Notice that not all rule constraints can be pushed,
e.g., it is well known that the con�dence constraint cannot be pushed.

Example 2 Let us de�ne a constraint Ca(X ⇒ Y ) ≡ Y ⊆ {A, B}. Ca is
equivalent to Ca∧C ′a where C ′a(X ⇒ Y ) ≡ |(X∪Y )∩{A, B}| ≥ 1 is an itemset
constraint. The constraint C ′a can be pushed during itemset extraction.

3.2 Anti-Monotone Constraints and Apriori Algorithm
We consider an abstract de�nition of the Apriori algorithm [2] to support
our discussion on the e�ective use of constraints. This algorithm performs
the constrained itemset mining task when C = Cγ−freq.

In this algorithm, and in the following ones, the frequencies of itemsets
are not explicit for the sake of clarity (e.g., Line 5 of the algorithm should be
Lk := {(S,F(S)), S ∈ SATCγ−freq

(Ck)} since Apriori outputs the frequency
of each frequent itemset).

Apriori is a levelwise exploration of the lattice of itemsets (w.r.t. set in-
clusion). Ck denotes the k-itemsets that can be frequent (candidate itemsets).

8



During Phase 1, some of these k-itemsets are pruned. safe-pruning-on
eliminates the candidates for which a subset of length k is not frequent: if
S is not frequent, a superset of S cannot be frequent. During Phase 2, a
database scan is performed to compute the frequency of the candidate item-
sets. The infrequent ones are discarded. In Phase 3, frequent k-itemsets are
used to compute candidate k + 1-itemsets. generateapriori(Lk) provides the
candidates by fusion of two elements from Lk that share the same k− 1 �rst
items: generateapriori(Lk)={A ∪ B, where A,B ∈ Lk, A and B share the
k − 1 �rst items (in lexicographic order)}.

It can be proved by induction on k that Apriori is correct and com-
plete, i.e., ∪k−1

i=0Li = SATCγ−freq
. Indeed, its completeness relies on the anti-

monotonicity of Cγ−freq.

De�nition 3 (Anti-monotonicity) An anti-monotone constraint is a con-
straint C such that for all itemsets S, S ′: (S ′ ⊆ S ∧ S satis�es C) ⇒ S ′

satis�es C.

Example 3 Some examples of anti-monotone constraints are: Cγ−freq, C(S) ≡
A 6∈ S and C(S) ≡ ∑

I∈S I.price < 500. This last constraint means that the
sum of the prices of the items must be lower than �ve hundred. Other anti-
monotone constraints are presented in [20]. Notice that a disjunction or a
conjunction of anti-monotone constraints is an anti-monotone constraint.

It is therefore rather straightforward to replace Step 5 of the Apriori
algorithm with Lk := SATCam(Ck) where Cam is any anti-monotone constraint
without loosing completeness or correctness. This means that it is possible
to push anti-monotone constraints using Apriori, and it can be shown that
doing this saves computations (see Appendix).

3.3 Pushing Monotone Constraints
If the e�ective use of anti-monotone constraints is easy to understand, it
is far more complex in the general case. In other terms, given an arbitrary
constraint C, it is not possible to use it in Apriori by simply replacing Step 5
with Lk := SATC(Ck). Doing this leads to the loss of the completeness of
Apriori as shown in the next example. Indeed, there are two problems: the
generation step and the pruning step. The generation step must be complete,
i.e., it must not miss any itemset satisfying C, and also the pruning step

9



(Phase 1) must be correct, i.e., it must not prune an itemset that satisfy the
constraint.
Example 4 Assume the constraint is C(S) ≡ C ∈ S and that we replace
Step 5 of the Apriori algorithm with Lk := SATC(Ck). The itemset ABC
should be generated by generateapriori from AB and AC but since C(AB) = false,
ABC is not generated whereas C(ABC) = true.

If the constraint is C(S) ≡ A ∈ S. The itemset ABC is then correctly
generated by generateapriori from AB and AC but since C(BC) = false, ABC is
incorrectly pruned whereas C(ABC) = true.

To overcome these problems, we present an extension of Apriori to push
conjunctions of anti-monotone and monotone constraints, i.e., when C can
be written as Cam ∧ Cm.
De�nition 4 (Monotonicity) A monotone constraint is a constraint C such
that for all itemsets S, S ′: (S ⊆ S ′ ∧ S satis�es C) ⇒ S ′ satis�es C.
Example 5 C ′a (see Example 2), {A, B} ⊂ S,

∑
I∈S I.price > 100 and S ∩

{A, B, C} 6= ∅ are monotone constraints. Conjunctions or disjunctions of
monotone constraints and negation of anti-monotone constraints are also
monotone constraints.

This generic algorithm uses procedures prunem and generatem for the
pruning step and the generation step respectively. The generation procedure
assumes that the monotone constraint Cm is not trivial (i.e., Cm(∅) 6= true).
Generic algorithm
1. C1 :=generatem(∅, 0) ; L0 = ∅
2. k := 1
3. while Ck 6= ∅ do
4. Phase 1 - candidate safe pruning

Ck := prunem(Ck,Lk−1)
5. Phase 2 anti-monotone constraint checking

Lk := SATCam(Ck)
6. Phase 3 - candidate generation for level k+1

Ck+1 := generatem(Lk, k)
7. k := k + 1

od
8. output ⋃k−1

i=1 Li

10



It is not necessary to check Cm during Phase 2 to ensure the correctness
of this algorithm since generatem ensures that all candidate itemsets satisfy
Cm.

This algorithm is correct and complete, i.e., it outputs exactly itemsets
in SATCam∧Cm together with their frequencies (proof in Appendix).

Generation Procedure. generatem deals e�ciently with monotone con-
straints. It generates only candidate itemsets that satisfy the monotone
constraint Cm. It also ensures the completeness of the generic algorithm.

Let generate1(Lk) = {A ∪ B, where A ∈ Lk and B is a 1-itemset} and
let ms = Max S∈Bd−C′am

|S|. Bd−C′am
is the negative border [18], i.e., the set of

minimal itemsets (w.r.t. set inclusion) that do not satisfy C ′am
2.

procedure generatem(L, k)
if k = 0 then return Bd−C′am

∩ Items1

elsif k < ms then return generate1(L) ∪ (Bd−C′am
∩ Itemsk+1)

elsif k = ms then return generate1(L)
elsif k > ms then return generateapriori(L)
�

Safe Pruning Procedure. The pruning procedure must also be rewritten
to deal with monotone constraints. The aim of this procedure is to save
constraint checking during Phase 2. Therefore, in order to be e�ective, this
procedure must be less expensive than this constraint checking (this is the
case when there is a data scan during Phase 2). It is also desirable that as
most itemsets as possible are pruned by this procedure.

Indeed, an itemset S can be safely pruned only if one of its subset already
considered by the algorithm does not satisfy Cam. This is equivalent to the
fact that one immediate subset of S (i.e., whose size is |S| − 1) satisfy Cm

and not Cam. This is used in the following procedure.

procedure prunem(C,L)
C ′:= C
for all S ∈ C do for all S ′ ⊂ S such that |S ′| = |S| − 1

do if S ′ 6∈ Lk and Cm(S ′) = true
then delete S from C ′ od

2In other terms, all the subsets of the itemsets from Bd−C′am
satisfy C′am.

11



od
return C ′

Our generic algorithm can be considered as a generalization of several
algorithms like [26, 10, 20]. Conjunctions of monotone and anti-monotone
constraints encompass every kind of constraints that have been �pushed�
inside a levelwise algorithm (another kind of interesting constraint, the con-
vertible constraints [23], can be pushed in depth-�rst exploration algorithms).
The framework of succinct constraints introduced in [20] allows to �nd an
e�ective generation procedure (i.e., an e�ective computation of the negative
border Bd−C′am

in procedure generatem(L, k)).

3.4 E�ciency Issues
Pushing anti-monotone constraints leads to less constraint checking. However
this is not true in the case of monotone constraints.

The motivation for pushing monotone constraint is that testing some anti-
monotone constraints is very expensive, e.g., those like Cγ−freq that need to
scan the data. One solution is to remove as soon as possible some candidates
by pushing monotone constraints during the search space exploration.

However, pushing monotone constraints leads to less e�ective pruning.
Pruning, in the case of anti-monotone constraints, is based on the fact that,
if an itemset S does not satisfy the anti-monotone constraint Cam, then every
superset of S do not satisfy it either. However, if S was not generated because
it does not satisfy some monotone constraint, Cam(S) is unknown. Then, it
is not possible to prune the supersets of S in the case where Cam(S) is false.

The tradeo� is as follows: when a monotone constraint is pushed, it might
save tests on more costly constraints. However, the results of these tests could
have lead to more e�ective pruning. The following example shows that the
�generate and test� strategy is sometimes more e�cient.

Example 6 Assume the constraint C(S) ≡ |S| ≥ 10 ∧ Cγ−freq(S), i.e., S
contains more than ten items and S is frequent. If the constraint |S| ≥ 10
(a monotone constraint) is pushed into the candidate generation step, no
candidate of size lower than ten is generated. Every candidate of size ten is
generated and its frequency is tested in one database pass. This leads to at
least

(
n
10

)
candidates and, as soon as n is large, this turns to be intractable

for any frequency threshold.

12



A �generate and test� strategy computes every frequent itemset and needs
several passes over the database. Then all itemsets whose size is lower than
ten are removed. This strategy remains tractable for a reasonable frequency
threshold even for a large n.

Previous works have shown that pushing monotone constraint can be
e�cient. However, Example 6 shows that it is not always the case. There
is no theoretical result about this issue and it is still an open problem to
decide whether it is pro�table to push a particular monotone constraint or
not. Indeed, this generally depends on the dataset.

4 Using Condensed Representations
The Apriori algorithm explores the itemset lattice to �nd all the frequent
itemsets. However, the number of frequent itemsets can be exponential in
the size of Items. If the size of Items is n, the size of the itemset lattice is 2n

and many of these itemsets can be frequent for the given frequency threshold.
This is the case in dense/highly-correlated data like for instance census data.
In this section, we study strategies based on the extraction of condensed
representations to e�ciently mine association rules in such dense/highly-
correlated data.

In these strategies, a new step is inserted before the generation of the
frequent itemsets. The whole strategy is then:

• Step 1: compute condensed representation from transactional data (us-
ing the frequency constraint);

• Step 1': compute frequent itemsets from the condensed representation;

• Step 2: generate all association rules with a su�cient con�dence from
frequent itemsets (using the con�dence constraint);

• Step 3: �nally remove rules that do not satisfy the whole constraint C
and output the remaining rules.

Condensed representation is a general concept (see, e.g., [17]). The ratio-
nale behind condensed representations for frequent itemsets is to try to count
the frequency of less itemsets and then to be able to deduce the frequency
of the remaining itemsets e�ciently. Thus, we are looking for condensed

13



representation that are subsets of the collection of frequent itemsets. The
desirable properties of such a condensed representation are:

• It can be computed e�ciently and it should be smaller than the whole
collection of frequent itemsets,

• The whole collection of frequent itemsets can be e�ciently regenerated
from the condensed representation.

These properties means it is desirable that Step 1 and Step 1' of this strategy
are done more e�ciently than the direct generation of frequent itemsets with
Apriori.

Several algorithms exist that uses various condensed representations of
frequent itemsets: Close [22], Closet[24], Charm [27], Min-Ex [4, 6], or
Pascal [3]. These algorithms provide di�erent condensed representations3:
frequent closed itemsets (Close, Closet, Charm), frequent free itemsets
(or key patterns) (Min-Ex, Pascal), or frequent δ-free itemsets (Min-Ex).

These algorithms enable tractable frequent itemsets extractions from dense
and highly-correlated data, i.e., tractable extractions for frequency thresholds
on which Apriori-like algorithms are clearly intractable.

4.1 Mining Free Itemsets
Closed and free itemsets are closely related. Indeed, all the algorithms that
compute closed or free itemsets compute in fact both. For our discussion
we will follow the point of view of [6] and for the sake of clarity focus only
on free itemsets. Readers interested in the relation between free and closed
itemsets should refer to the cited works.

These algorithms use logical rules (association rules with a con�dence of
one) to infer some frequencies. Given an itemset S = X ∪ Y and a logical
rule X ⇒ Z then the frequency of X ∪ Y ∪Z does not need to be computed
since it has the same frequency as S. When comparing to Apriori, there
is the overhead of computing the logical rules, but these rules can save the
frequency computation of many itemsets.

The itemsets whose frequencies cannot be inferred by such logical rules
are called free itemsets.

3Notice that most of these works (with the exceptions of [4, 6]) do not formalize their
contributions within the framework of condensed representation w.r.t. frequency queries

14



De�nition 5 (free itemset) An itemset S is free if no logical rule holds
between its items, i.e., it does not exist two distinct subsets X, Y of S such
that X ⇒ Y is a logical rule.

An algorithm using free itemsets to mine frequent itemsets can then easily
be designed. We can replace Phase 2 of Apriori by:

for all S ∈ Ck do
if S is free then compute F(S) and logical rule whose body is S from
the database
else compute F(S) using already computed free itemsets and logical
rules

od

However, in real implementations there are two distinct steps. First, the
mining of all frequent free itemsets and then the regeneration of all frequent
itemsets.

Example 7 In the data of Figure 1, if the frequency threshold is 0.1, then all
subsets of ABCD are frequent. The frequent free itemsets are {∅, A, B, D, AB, AD, BD}.
The frequencies of all other itemsets can be deduced from the frequencies of
the free ones. E.g., the frequencies of BC and ABD can be computed from
the frequencies of B and BD: Since B ⇒ C and BD ⇒ A are logical rules,
F(BC) = F(B) and F(ABD) = F(BD).

4.2 δ-free Itemsets
In the Min-Ex algorithm introduced in [4, 6], the concept of free itemset is
extended, providing new possibilities for pruning. However, this e�ciency
improvement is done at the expense of precision: the frequencies of the fre-
quent itemsets are only known with a bounded error.

Algorithms using free itemsets use logical rules to prune some itemsets
because their frequency can be inferred from the frequency of free itemsets.
However, to be e�cient, these algorithms need that such logical rules hold
in the data. If it is not the case, then the frequent free sets are exactly the
frequent sets and there is no improvement over Apriori.

The Min-Ex algorithm uses rules with few exceptions to further prune
the itemset lattice. Given an itemset S = X ∪Y and a rule Y ⇒ Z with less
than δ exceptions, then the frequency of X ∪ Y ∪Z can be approximated by

15



the frequency of S. The Min-Ex algorithm uses this property to prune the
itemset S. More formally, Min-Ex computes only the δ-free itemsets.

De�nition 6 (δ-free itemsets) Let δ be an integer and S an itemset. S is
δ-free if it does not exist two distinct subsets X and Y of S such that X ⇒ Y
has less (≤) than δ exceptions.

Example 8 In the database of Figure 1, The 0.1-frequent 1-free itemsets are
{∅, A, B, D}. AB is not 1-free because the rule A⇒ B has only one exception.

Notice that with δ = 0, 0-free itemsets are exactly free itemsets. If δ ≥ δ′,
then every δ-free itemset is also a δ′-free itemset. This means that larger
values of δ lead to more e�cient pruning (there are less δ-free itemsets) but
also larger errors on the frequencies of itemsets when they are regenerated
from the δ-free ones. The bounding error is given by the next proposition
from [6].

Proposition 1 Let S be a frequent itemset and n be the number of rows in
the database. Then there exists a frequent δ-free itemset F such that:

F(F ) ≥ F(S) ≥ F(F )− δ

n
(|S| − |F |).

This means that the error done on F(S) when using frequent δ-free item-
sets to estimate it is bounded by δ

n
(|S| − |F |).

Typical δ values range from zero to a few hundreds. With a database size
of several tens of thousands of rows, the typical error is below few percents.

4.3 Discussion
Frequent closed/free itemsets are interesting for several reasons:

• They are far less numerous than frequent itemsets in dense/correlated
data (and therefore faster to compute, easier to store and manipulate),

• In the degenerated cases where there is almost the same number of
frequent closed itemsets and frequent itemsets, then the overhead with
respect to Apriori is typically less than 5%,

• It is possible to generate e�ciently all the frequent itemsets (and their
frequencies) from the closed ones (Step 1'),

16



• It is possible to derive (non redundant) association rules directly from
closed frequent itemsets without generating all frequent non-closed ones
(see, e.g., [27, 21]).

If one wants better e�ciency and can trade some precision, δ-free itemsets
are even less numerous than closed/free ones. This can be very interesting
especially when there is few logical rules holding in the data, i.e., when
computing closed itemsets does not bring a signi�cant speedup.

Also, the δ-free itemset discovery task enables to mine at frequency
thresholds for which no other technique is available, i.e., for applications
where providing inaccurate results is better than no result at all.

5 Extraction of Condensed Representations un-
der Constraints

We have been discussing the interest of using condensed representations.
However, to the best of our knowledge, no algorithm exists that push user-
de�ned constraints when mining condensed representations of frequent item-
sets. In this section, we propose to use the generic framework we introduced
in Section 3 to propose a new strategy for constrained association rule mining:

• Step 1: compute condensed representation under constraints from the
transactional data;

• Step 1': compute constrained itemsets from the condensed representa-
tion;

• Step 2: generate constrained association rules with a su�cient con�-
dence from constrained itemsets (using the con�dence constraint);

• Step 3: �nally remove rules that do not satisfy the whole constraint C
and output the remaining rules.

This strategy combines the advantages of using condensed representation
and pushing constraints.

17



5.1 Constraint for Free Itemsets
In this section we presents an original point of view on condensed representa-
tions extraction algorithms: One can consider these algorithms as instantia-
tions of our generic algorithm (Section 3) for itemset mining under constraint
when introducing new constraints. This novel approach will enable a simple
de�nition of the extraction of constrained condensed representations in the
next section.

Assume a constraint for free itemsets denoted by Cfree. It is de�ned by:

Cfree(S) ≡ S is free.

This constraint is anti-monotone (see Appendix) and can therefore be used in
our generic algorithm of Section 3. The Close algorithm can be considered
as an instantiation of our generic algorithm with the constraint Cγ−freq∧Cfree.

The implementation issues related to Cfree constraint are discussed in the
Appendix.

5.2 Contextual Free Itemsets
Now, it seems straightforward to search for itemsets which satisfy a constraint
C = Cfree ∧ Cam ∧ Cm using the generic algorithm. However, two problems
arise.

• The Cfree constraint checking problem: Given an itemset S, some of
its immediate subsets might not satisfy Cm. To compute Cfree(S), the
closure of all its immediate subsets are needed. However, if a subset of
S does not satisfy Cm, its closure is unknown.

• The regeneration problem: After the computation of the free itemsets,
our aim is to regenerate itemsets that satisfy Cam ∧ Cm. However, the
knowledge of the free itemsets that satisfy Cam ∧ Cm is not enough for
this purpose.

To cope with these problems, we have to mine �contextual� free itemsets.

De�nition 7 (contextual free itemset) An itemset S is contextual free
with respect to a monotone constraint Cm if it does not exist two distinct
subsets X, Y of S such that X satisfy Cm and X ⇒ Y is a logical rule.

18



The associated constraint is Cfree∧Cm . Cfree∧Cm(S) is true if S is contextual
free with respect to Cm. This new constraint solves the two problems. It
is possible to compute SATCfree∧Cm∧Cam∧Cm with our generic algorithm and
the collection of the itemsets from SATCfree∧Cm∧Cam∧Cm with their frequencies
provides the needed information to generate the itemsets from SATCam∧Cm

and their frequencies.

5.3 Constraints for δ-free Itemsets
It is possible to extend the de�nitions of Cfree and Cfree∧Cm constraints to use
δ-freeness instead of freeness.

We can de�ne Cδ−Free, Cδ−Free∧Cm . The latter one can be used in the
generic algorithm to mine SATCδ−Free∧Cm∧Cam∧Cm . From these itemsets and
their frequencies, it is then possible to regenerate itemsets belonging to
SATCam∧Cm and their frequencies with a bounded error.

6 An Experimental Validation
We consider an experiment motivated by the search for association rules with
negations [5]. Only some results concerning the discovery of generalized sets
(from which association rules with negations are derived) are given here.

6.1 Generalized Sets
Let Items+ = {A, B, ...} be a �nite set of symbols called the positive items
and a set Items− of same cardinality as Items+ whose elements are denoted
A, B, . . . and called the negative items. Given a transactional database T over
Items+, let us de�ne a complemented transactional database over Items =
Items+ ∪ Items− as follows: for a given transaction t ∈ T , we add to t
negative items corresponding to positive items not present in t. Generalized
itemsets are subsets of Items and can contain positive and negative items.

6.2 Datasets
Our experiments were done on two datasets. The �rst one is a benchmark,
the so-called mushroom data. This dataset is a binary matrix of 8124 rows.
Each row contains 23 discrete attributes. Theses attributes are binarized

19



into exclusive attribute-value pairs. This leads to a binary matrix with 119
columns and 23 �1� per row. When encoding negative items, it leads to a
matrix with 238 columns whose each row contains 119 �1�.

The second dataset is from the French national institute of statistics (IN-
SEE). In this dataset, each row represents a French town and each column
represents a kind of service (e.g., bank, insurance company, etc), a �1� in
�bank� column means that there is at least one bank in the town. In this
dataset, there are about 37000 rows and 59 columns with an average number
of �1� per row of 4. When encoding negative items, it leads to a matrix with
118 columns whose each row contains 59 �1�.

The former dataset is quite small but it is known to be tough due to
the high correlation between the attributes and its density (for positive at-
tributes). The latter dataset is larger but it is sparse (4 �1� per row on average
for positive attributes) and less correlated. These two di�erent datasets let
us compare our approach on di�erent types of datasets.

6.3 Experiments
Extracting all generalized frequent itemsets is generally intractable and not
very interesting from the user point of view. Many frequent generalized
itemsets involve only negative items. Rather, we assume that the user wants
to extract frequent generalized itemsets that do not involve only negative
items. We introduce the constraint Calpp(S) which is true when S involves at
least p positive items. This is obviously a monotone constraint.

In our experiments we compare di�erent strategies to extract frequent
generalized itemsets with at least 3 positive items.

• Strategy I: this is the generate and test strategy. First extract all
frequent generalized itemsets (with Apriori) and then remove those
that have less than 3 positive attributes (Section 2.3).

• Strategy II: push the Cal3p constraint during extraction (Section 3).

• Strategy III: using condensed representation to extract frequent gener-
alized itemsets (Section 4). There are two sub-strategies depending on
the condensed representation used.

� Strategy IIIa uses free itemsets (Section 4.1);
� Strategy IIIb uses δ-free itemsets (Section 4.2).

20



• Strategy IV: this is our new strategy, pushing the Cal3p constraint during
the condensed representation extraction. There are two sub-strategies
depending on the condensed representation used.

� Strategy IVa uses free itemsets (Section 4.1);
� Strategy IVb uses δ-free itemsets (Section 4.2).

The experiments were conducted on a 500 MHz Pentium III with 768
MB of memory. In the next table we present, for each strategy and each
dataset, the lowest frequency threshold for which the extraction succeeded
within 1000 seconds.

Frequency threshold achieved for 1000s
mushroom Insee

Strat. I > 95% 94%
Strat. II > 95% 3.6%
Strat. IIIa > 95% 35%
Strat. IIIb 75% 34%
Strat. IVa 70% 3.9%
Strat. IVb 28% 3.2%

On the mushroom dataset, Strategies I, II and IIIa are intractable, mean-
ing that even with a high frequency threshold of 95%, the extraction does
not �nish within 1000s. Strategy IIIb is tractable but does not reach a
low threshold. On this dataset, only our Strategy IVb does achieve a good
threshold (28%). Further comparison between Strategies IIIb, IVa and IVb
is shown on Figure 2. We can see that for any frequency threshold Strategy
IVb is several order of magnitude faster than other strategies.

On the INSEE dataset, the use of constraint (Strategy II) is very prof-
itable whereas condensed representations are less interesting (Strategy III).
In this experiments, Strategy IVa is worse than Strategy II. This is because
there are few logical rules in this dataset, therefore the use of free sets is
not valuable. However combining constraints and δ-free sets (Strategy IVb)
is still the best strategy (although this is less impressive than in the mush-
room dataset). On Figure 3, we see that Strategy IVb is better than other
strategies only for lowest thresholds.

Finally, on dense and correlated datasets like the mushroom dataset, our
strategy is very e�cient and allow extraction at frequency thresholds never

21



reached before. On sparse dataset (where condensed representations are
known to not perform very well), our strategy is not surprisingly less e�cient.
However, there is still a gain for lowest frequency thresholds.

10

100

1000

10000

100000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (sec.) vs. Frequency threshold

Strat. IIIb
Strat. IVb

Strat. IVa

Figure 2: Mining generalized sets from mushroom dataset.

7 Conclusion
In this paper, we focus on the evaluation of association rule queries. We con-
sidered two important strategies: pushing constraints and computing con-
densed representations. We proposed a generic algorithm for itemset mining
under a conjunction of monotone and anti-monotone constraints and an orig-
inal point of view on the extraction of condensed representation. Then the
introduction of a new kind of condensed representation (contextual free item-
sets) allows us to combine the two previous strategies into a completely new
one: the extraction of condensed representations under constraints.

The experiments show the added value of this approach in dense and
correlated data: none of the two existing strategies were tractable at low
frequency thresholds whereas the extraction of constrained condensed repre-
sentations was possible.

We think that the study of condensed representations for frequent item-
sets is promising: using them generally dramatically increase performance
(w.r.t. time and space) and, when we get no improvement, the overhead

22



1

10

100

1000

10000

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075

Time (sec.) vs. Frequency threshold

Strat. IVb Strat. IVa Strat. II

Figure 3: Mining generalized sets from INSEE dataset.

is small. If the e�ciency is of a primary importance, it is even possible to
trade more e�ciency against precision using condensed representations like
the (δ-free sets).

It would be interesting now to revisit earlier works on the direct extraction
of association rules[27, 21] when considering condensed representations with-
out a regeneration of all the frequent itemsets. It might be possible to extract
constrained rules directly from constrained condensed representations.

Acknowledgements. The authors thank Arthur Bykowski for his imple-
mentation of the Min-Ex algorithm. This research is partly funded by the
European contract cInQ IST-2000-26469 (Future and Emerging Technologies
arm of the IST programme).

References
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules be-

tween sets of items in large databases. In Proceedings of ACM SIGMOD
Conference on Management of Data SIGMOD'93, pages 207�216, Wash-
ington, D.C., USA, May 1993. ACM.

23



[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo.
Fast discovery of association rules. In Advances in Knowledge Discovery
and Data Mining, pages 307�328. AAAI Press, Menlo Park, CA, 1996.

[3] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Min-
ing frequent patterns with counting inference. SIGKDD Explorations,
2(2):66�75, Dec. 2000.

[4] J.-F. Boulicaut and A. Bykowski. Frequent closures as a concise repre-
sentation for binary data mining. In Proceedings of the Fourth Paci�c-
Asia Conference on Knowledge Discovery and Data Mining PAKDD'00,
volume 1805 of Lecture Notes in Arti�cial Intelligence, pages 62�73, Ky-
oto, JP, Apr. 2000. Springer-Verlag.

[5] J.-F. Boulicaut, A. Bykowski, and B. Jeudy. Mining association rules
with negations. Technical Report 2000-19, INSA Lyon - LISI, Institut
National des Sciences Appliquées de Lyon, Bâtiment Blaise Pascal, F-
69621 Villeurbanne, France, 2000.

[6] J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of fre-
quency queries by mean of free-sets. In Proceedings of the Fourth Euro-
pean Conference on Principles and Practice of Knowledge Discovery in
Databases PKDD'00, volume 1910 of Lecture Notes in Arti�cial Intelli-
gence, pages 75�85, Lyon, F, Sept. 2000. Springer-Verlag.

[7] J.-F. Boulicaut and B. Jeudy. Mining free-sets under constraints. In
Proceedings of the International Database Engineering & Applications
Symposium IDEAS'01, pages 322�329, Grenoble, F, July 2001. IEEE
Computer Society.

[8] J.-F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling KDD pro-
cesses within the inductive database framework. In Proceedings of the
First International Conference on Data Warehousing and Knowledge
Discovery DaWaK'99, volume 1676 of Lecture Notes in Computer Sci-
ence, pages 293�302, Florence, I, Sept. 1999. Springer-Verlag.

[9] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Gen-
eralizing association rules to correlations. In J. M. Peckman, editor,
Proceedings of ACM SIGMOD Conference on Management of Data SIG-
MOD'97, pages 265�276, Tucson, AZ, May 1997. ACM.

24



[10] B. Goethals and J. van den Bussche. On implementing interactive asso-
ciation rule mining. In Proceedings of the ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery DMKD'99,
Philadelphia, USA, May 1999.

[11] G. Grahne, L. V. S. Lakshmanan, and X. Wang. E�cient mining of
constrained correlated sets. In Proceedings of the 16th International
Conference on Data Engineering ICDE 2000, pages 512�521, San Diego,
USA, 2000. IEEE Computer Society Press.

[12] J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: a data
mining query language for relational databases. In SIGMOD Work-
shop on Research Issues on Data Mining and Knowledge Discovery
DMKD'96, Montreal (Canada), June 1996.

[13] T. Imielinski and H. Mannila. A database perspective on knowledge
discovery. Communications of the ACM, 39(11):58�64, Nov. 1996.

[14] T. Imielinski and A. Virmani. MSQL: A query language for database
mining. Data Mining and Knowledge Discovery, 3(4):373�408, 1999.

[15] B. Jeudy. Extraction sous contraintes de représentations condensées
: application à l'optimisation de requêtes inductives sur des données
transactionnelles. PhD thesis, Institut National des Sciences Appliquées
de Lyon, Bâtiment Blaise Pascal, F-69621 Villeurbanne cedex, 2002. In
preparation.

[16] L. V. Lakshmanan, R. Ng, J. Han, and A. Pang. Optimization of con-
strained frequent set queries with 2-variable constraints. In Proceedings
of ACM SIGMOD Conference on Management of Data SIGMOD'99,
pages 157�168, Philadelphia, USA, 1999. ACM Press.

[17] H. Mannila and H. Toivonen. Multiple uses of frequent sets and con-
densed representations. In Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining KDD'96, pages 189�
194, Portland, USA, Aug. 1996. AAAI Press.

[18] H. Mannila and H. Toivonen. Levelwise search and borders of theories in
knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241�
258, 1997.

25



[19] R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining
association rules. In Proceedings of the 22nd International Conference
on Very Large Data Bases VLDB'96, pages 122�133, Mumbay, India,
Sept. 1996. Morgan Kaufmann.

[20] R. Ng, L. V. Lakshmanan, J. Han, and A. Pang. Exploratory mining and
pruning optimizations of constrained associations rules. In Proceedings
of ACM SIGMOD Conference on Management of Data SIGMOD'98,
pages 13�24, Seattle, Washington, USA, 1998. ACM Press.

[21] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Closed set based
discovery of small covers for association rules. In Proceedings og the
15th Journées Bases de Données Avancées BDA'99, pages 361�381, Bor-
deaux, F, Oct. 1999.

[22] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. E�cient mining
of association rules using closed itemset lattices. Information Systems,
24(1):25�46, Jan. 1999.

[23] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent itemsets
with convertible constraints. In Proceedings of the 17th International
Conference on Data Engineering ICDE'01, Heidelberg, Germany, Apr.
2001. IEEE Computer Society Press.

[24] J. Pei, J. Han, and R. Mao. CLOSET an e�cient algorithm for mining
frequent closed itemsets. In Proceedings of the ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery DMKD'00,
Dallas, USA, May 2000.

[25] P. Smyth and R. M. Goodman. An information theoretic approach to
rule induction from databases. IEEE Transactions on Knowledge and
Data Engineering, 4(4):301�316, Aug. 1992.

[26] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item
constraints. In Proceedings of the Third International Conference on
Knowledge Discovery and Data Mining KDD'97, pages 67�73, Newport
Beach, CA, USA, 1997. AAAI Press.

[27] M. J. Zaki. Generating non-redundant association rules. In Proceedings
of the 6th ACM SIGKDD International Conference on Knowledge Dis-

26



covery and Data Mining SIGKDD'00, pages 34�43, Boston, USA, Aug.
2000. AAAI Press.

[28] M. J. Zaki. Sequence mining in categorical domains: incorporating con-
straints. In Proceedings of the 9th International Conference on Informa-
tion and Knowledge Management CIKM'01, pages 422�429, Washington
DC, USA, Nov. 2001. ACM.

Appendix
Pushing Anti-Monotone Constraints into Apriori
We prove that pushing anti-monotone constraints decrease the number of
frequency counting.

Assume that C is the conjunction of two anti-monotone constraints Cam

and C ′am. The optimization problem is to know whether it is more e�cient
(strategy push) to use the Apriori algorithm with the constraint C = Cam

∧ C ′am (to evaluate C(S), Cam(S) is evaluated and then C ′am(S) if Cam(S) is
true), or (strategy g&t) to use a �generate and test� strategy, i.e., to �rst
generate SATCam with Apriori and then to test each S ∈ SATCam against
the constraint C ′am (the two algorithms are in Figure 4). Given an algorithm
A, we denote TestA(C) the set of the itemsets that are tested against the
constraint C by A. For instance, it is well known that, in the case of the
Apriori algorithm, Testapriori(Cγ−freq) = SATCγ−freq

∪ Bd−Cγ−freq
[18].

Under these hypotheses, we have the following theorem.

Theorem 1 If Testpush corresponds to strategy push and if Testg&t corre-
sponds to strategy g&t, Testpush(Cam) ⊆ Testg&t(Cam) and Testpush(C ′am) ⊆
Testg&t(C ′am).

Proof: Strategy g&t: it is the Apriori algorithm with Cam(S) there-
fore Testg&t(Cam) = SATCam ∪ Bd−Cam

and C ′am is tested on the result of
this algorithm, Testg&t(C ′am) = SATCam.
Strategy push: due to the order in which Cam and C ′am are tested, Testpush(Cam) =
SATCam∧C′am

∪Bd−Cam∧C′am
and Testpush(C ′am) = SATCam∧C′am

∪(Bd−Cam∧C′am
∩

SATCam). The second statement of the theorem follows. For the �rst
one, we must prove that SATCam∧C′am

∪Bd−Cam∧C′am
⊆ SATCam ∪Bd−Cam

: It

27



push strategy (push)
1. Cg

1 := Items1; L0 = {∅}
2. k := 1
3. while Ck 6= ∅ do
4. Ck := safe-pruning-on(Cg

k ,Lk−1)
5. C1

k := SATCam(Ck)
6. Lk := SATC′am

(C1
k)

7. Cg
k+1 := generateapriori(Lk)

8. k := k + 1
od

9. output ⋃k−1
i=0 Li

generate and test strategy (g&t)
1. Cg

1 := Items1; L0 = {∅}
2. k := 1
3. while Ck 6= ∅ do
4. Ck := safe-pruning-on(Cg

k ,Lk−1)
5. Lk := SATCam(C1

k)
6. Cg

k+1 := generateapriori(Lk)
7. k := k + 1

od
8. output SATC′am

(⋃k−1
i=0 Li

)

Figure 4: The two algorithms push and g&t

is clear that SATCam∧C′am
⊆ SATCam. Let T ∈ Bd−Cam∧C′am

. ∀S ⊂ T ,
Cam(S) ∧ C ′am(S) is true, so Cam(S) is true. Therefore if Cam(T ) is
false, T ∈ Bd−Cam

. If Cam(T ) is true, T ∈ SATCam. In either case,
T ∈ SATCam ∪ Bd−Cam

and the theorem is true.

Correctness and Completeness of the Generic Algorithm
Theorem 2 Assuming that Cam and Cm are respectively anti-monotone and
monotone constraints and that Cm is not a trivial constraint, i.e., that Cm is
not always true, the generic algorithm of Section 3.3 is correct and complete,
i.e., it outputs exactly SATCam∧Cm.

Proof: We prove by induction on k that Lk = SATC ∩ Itemsk.
k = 0: Since Cm is not a trivial constraint, ∅ 6∈ SATC. Step 1 ensures
that L0 = ∅.
k = 1: from Step 1 and the de�nition of generatem, we can see that
Cg

1 = Bd−C′am
∩ Items1. Since Cm(∅) is false, Bd−C′am

∩ Items1 = SATCm ∩
Items1. Therefore, Cg

1 is a superset of SATC ∩ Items1 and a subset of
SATCm . None of the items of Cg

1 is pruned during Step 4 (because Cm(∅)
is false) therefore SATC∩Items1 ⊆ C1 ⊆ SATCm. Steps 5 gives the other
inclusion.
k+1, completeness: let S ∈ SATC∩Itemsk+1. First, let us prove that S is
generated, i.e., S belongs to the set returned by the call generatem(Lk, k).
Since S ∈ SATC, C ′am(S) is false, then there are two cases (by de�nition
of Bd−C′am

):

28



• S ∈ Bd−C′am
and therefore S is generated;

• S 6∈ Bd−C′am
. Then ∃S ′ ⊂ S ∩ Itemsk such that C ′am(S ′) is false.

Since Cam(S) is true, Cam(S ′) is true. Then, by induction, S ′ ∈ Lk.
Therefore, S ∈ generate1(Lk). If k > ms, ∀S ′ such that S ′ ⊂ S
and |S ′| = k, C ′am(S ′) is false. Since Cam(S) is true, ∀S ′ such
that S ′ ⊂ S and |S ′| = k, C(S ′) is true. Then, by induction,
∀S ′ such that S ′ ⊂ S and |S ′| = k, S ′ ∈ Lk. Therefore, S ∈
generateapriori(Lk). In all cases, S is generated.

Then, we must prove that S is not pruned during Step 4. If S is pruned,
∃S ′ ⊂ S, |S ′| = |S|−1 such that C(S ′) is false (by induction) and Cm(S ′)
is true. ¬C(S ′)∧Cm(S ′) ⇒ ¬Cam(S ′) ⇒ ¬Cam(S) ⇒ ¬C(S). Since C(S)
is true, S is not pruned. S is not rejected in Step 5, therefore S ∈ Lk+1

and SATC ∩ Itemsk+1 ⊂ Lk+1.
Correctness: Let S ∈ Lk+1. S is generated as a superset of an itemset of
Lk = SATC ∩ Itemsk. Therefore Cm(S) is true and, since Cam(S) is true
(because of Step 5), C(S) is true. Therefore, Lk+1 ⊂ SATC ∩ Itemsk+1.

Condensed Representations under Constraints
In this section, we prove that the Cfree and Cfree∧Cm constraints are anti-
monotone.

De�nition 8 (closures and closed itemsets) The closure of an itemset
S (denoted by closure(S)) is the maximal (for set inclusion) superset of S
which has the same support as S. A closed itemset is an itemset that is equal
to its closure.

The closure operator has some interesting properties.

Proposition 2 The closure operator has the following properties:

• (i) S ⊆ closure(S);

• (ii) it is monotone increasing: S ⊆ S ′ ⇒ closure(S) ⊆ closure(S ′);

• (iii) it is idempotent: closure(S) = closure(closure(S)).

Let us give a more formal de�nition for the Cfree constraint and Cfree∧Cm

constraint.

29



Proposition 3 (Cfree and Cfree∧Cm constraint)

Cfree(S) ⇔ (S ′ ⊂ S ⇒ S 6⊆ closure(S ′)

⇔ (S ′ ⊂ S ∧ |S ′| = |S| − 1) ⇒ S 6⊆ closure(S ′)
and

Cfree∧Cm(S) ⇔ (S ′ ⊂ S ∧ Cm(S ′)) ⇒ S 6⊆ closure(S ′)
⇔ (S ′ ⊂ S ∧ |S ′| = |S| − 1 ∧ Cm(S ′)) ⇒ S 6⊆ closure(S ′).

Proposition 4 The constraints Cfree and Cfree∧Cm are anti-monotone.

Proof: Anti-monotonicity: Let S such that Cfree∧Cm(S) = true. Let
T ⊂ S and ∆ = S\T . Let T ′ ⊂ T . Since Cfree∧Cm(S) = true, S 6⊆
closure(T ′∪∆), then T ∪∆ 6⊆ closure(T ′∪∆). ∆ ⊆ closure(T ′∪∆)
(by prop.2.(i) and (ii)). Therefore T 6⊆ closure(T ′ ∪ ∆) and �nally
T 6⊆ closure(T ′) by prop.2.(ii). Therefore Cfree∧Cm(T ) = true. Re:
only the prop.2.(i) and (ii) of the closure operator are used in this proof.

The next theorem states that the set SATCam∧Cm can be e�ciently com-
puted using the same method as in Close using SATCfree∧Cm∧Cam∧Cm , i.e.,
the regeneration problem is solved.

Theorem 3 Let S ∈ SATCam∧Cm then ∃S ′ ∈ SATCfree∧Cm∧Cam∧Cm such that
S ′ ⊆ S ⊆ closure(S ′).

Proof: By induction on |S|. |S| = 0: Cfree∧Cm(∅) = true therefore
S ∈ SATCfree∧Cm∧Cam∧Cm.
|S| = k + 1: if Cfree∧Cm(S) = true, ok. Else, ∃S ′ ⊂ S such that S ⊆
closure(S ′) and Cm(S ′) is true. There are two cases:
• Cfree∧Cm(S ′) is true. In this case, S ′ ∈ SATCfree∧Cm∧Cam∧Cm and

S ′ ⊂ S ⊆ closure(S ′).
• Else, by induction, ∃S ′ ∈ SATCfree∧Cm∧Cam∧Cm such that S ′′ ⊆ S ′ ⊆
closure(S ′′). Therefore closure(S ′) = closure2(S ′′) and S ′′ ⊆
S ′ ⊆ S ⊆ closure(S ′) = closure2(S ′′). By prop. 2.(iii), closure2(S ′′) =
closure(S ′′). This �nish the proof.

By replacing the closure operator in the de�nition of Cfree and Cfree∧Cm by
closureδ we de�ne Cδ−Free, Cδ−Free∧Cm . These constraints are anti-monotone
and we get the following theorem.

30



Theorem 4 Let S ∈ SATCam∧Cm then ∃S ′ ∈ SATCδ−Free∧Cm∧Cam∧Cm and an
integer n such that S ′ ⊆ S ⊆ closuren

δ (S ′) and n ≤ |S| − |S ′|.

Proof: By induction on |S|. |S| = 0: Cδ−Free∧Cm(∅) = true therefore
S ∈ SATCfree∧Cm∧Cam∧Cm.
|S| = k + 1: if Cδ−Free∧Cm(S) = true, ok. Else, ∃S ′ ⊂ S such that
S ⊆ closureδ(S

′) and Cm(S ′) is true. There are two cases:
• Cδ−Free∧Cm(S ′) is true. In this case, S ′ ∈ SATCδ−Free∧Cm∧Cam∧Cm and

S ′ ⊂ S ⊆ closureδ(S
′).

• Else, by induction, ∃S ′′ ∈ SATCδ−Free∧Cm∧Cam∧Cm and n ≤ |S ′|− |S ′′|
such that S ′′ ⊂ S ′ ⊆ closuren

δ (S ′′). Therefore closureδ(S
′) =

closuren+1
δ (S ′′) and S ′′ ⊆ S ′ ⊆ S ⊆ closureδ(S

′) = closuren+1
δ (S ′′).

This �nish the proof.

31




