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Abstract

Background: The association-rules discovery (ARD) technique has yet to be applied to gene-
expression data analysis. Even in the absence of previous biological knowledge, it should identify
sets of genes whose expression is correlated. The first association-rule miners appeared six years
ago and proved efficient at dealing with sparse and weakly correlated data. A huge international
research effort has led to new algorithms for tackling difficult contexts and these are particularly
suited to analysis of large gene-expression matrices. To validate the ARD technique we have
applied it to freely available human serial analysis of gene expression (SAGE) data.

Results: The approach described here enables us to designate sets of strong association rules.
We normalized the SAGE data before applying our association rule miner. Depending on the
discretization algorithm used, different properties of the data were highlighted. Both common
and specific interpretations could be made from the extracted rules. In each and every case the
extracted collections of rules indicated that a very strong co-regulation of mRNA encoding
ribosomal proteins occurs in the dataset. Several rules associating proteins involved in signal
transduction were obtained and analyzed, some pointing to yet-unexplored directions.
Furthermore, by examining a subset of these rules, we were able both to reassign a wrongly
labeled tag, and to propose a function for an expressed sequence tag encoding a protein of
unknown function. 

Conclusions: We show that ARD is a promising technique that turns out to be complementary
to existing gene-expression clustering techniques.
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Background 
We are now entering the post-genome era and it seems

obvious that, in a near future, the critical need will not be to

generate data, but to derive knowledge from huge datasets

generated at very high throughput. This has been a challenge

for quite some time in genomic research, and is now a chal-

lenge for transcriptome research, that is, the analysis of

gene-expression data. 
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The kind of raw data in which we are interested can be con-

sidered as a matrix, denoted as G, of real numbers (Table 1).

The rows denote different samples or conditions, such as the

same cell type in different biological situations, and are indi-

cated in this hypothetical example by Greek letters. The

columns, indicated by letters, denote genes. In practice, we

can have hundreds of lines and thousands of columns.

G[�,c] denotes the quantitative expression of gene c in the

situation �. Table 1 shows a model matrix that we will use in

our explanations later. 

Most of the available gene-expression data-analysis methods

are based on clustering algorithms that try to establish syn-

expression groups [1], that is, groups of genes whose expres-

sion is correlated in different biological situations. The basis

for all clustering algorithms is their ability to generate

groups of genes that fulfill two related constraints: intra-

group similarities should be maximized and intergroup simi-

larities should be minimized.

Although such algorithms have been quite successful, most

notably in the molecular profiling of human cancers [2],

their biological validity can be questioned when the identifi-

cation of molecular networks is the goal. In this context, they

have three main drawbacks. First, a gene which functions in

numerous physiological pathways, such as that for the p53

protein [3], will have to be clustered in one and only one

group. Second, no relationship can be inferred between the

different members of a group. That is, a gene and its target

genes will be co-clustered, but the type of relationship

cannot be rendered explicit by the algorithm. Third, most

clustering algorithms will make comparisons between the

gene-expression patterns in all the conditions examined.

They will therefore miss a gene grouping that only arises in a

subset of cells or conditions.

To overcome these problems, we investigated the potential

impact of the association-rule discovery (ARD) technique.

This is an unsupervised data-mining technique that seeks

descriptive rules in potentially very large datasets [4]. This

method should resolve the above drawbacks of existing clus-

tering approaches for the following reasons. First, any gene

can be assigned to any number of rules as long as its expres-

sion fulfills the assignation criteria. This means that a gene

involved in many synexpression groups will appear in each

and every one of those groups, without limitation. Second,

rules are orientated (If … then …) and thus to a certain

extent describe the direction of a relationship. For example,

a gene encoding a transcription factor should appear in the

left portion of the rule and its target genes in the right

portion. Third, by exploring low values of frequency, one can

identify rules that are true in only a limited number of cells

or situations. This means that if, in the overall dataset, a spe-

cific subset of cells exhibit highly characteristic patterns of

gene expression, the algorithm should be able to detect it.

Last but not least, by focusing on strong rules, the biologist

does not have to browse and study a huge number of redun-

dant rules.

Contribution
In this paper we evaluate the ARD for generating synexpres-

sion groups from large gene-expression matrices. The kind

of rule we wish to discover is, for example, ‘When gene a and

gene b are overexpressed within a situation, then often gene

c is overexpressed too’. Such a rule will be designated valid.

If it is also discovered that genes a, b and c are often overex-

pressed in various situations, then the rule would be desig-

nated frequent. The user simply defines thresholds for

‘frequent enough’ and ‘valid enough’, but no other informa-

tion is needed. An association-rule miner then identifies

every rule that is frequent and valid according to these user-

defined thresholds. This is clearly unsupervised data mining.

This process is quite complex, especially when the number

of columns is very large, which is typical of gene-expres-

sion data. Indeed, the number of potential rules increases

exponentially with respect to the number of columns, and

it rapidly becomes impossible to enumerate these rules and

check if they are frequent and valid. As well as this aspect

of complexity, it is also necessary to consider that not all

the frequent and valid rules may be interesting to the biol-

ogist. A second processing phase will be required to iden-

tify the most promising rules first. Here again, however, we

assume that this concept of ‘promising’ cannot be deter-

mined in advance.

We assessed the potential of the ARD technique by using the

Min-Ex approach (see below), which provides an elegant solu-

tion for eliminating redundant association rules. This has

been recognized as a major improvement in the standard

association-rule mining technique [5]. As this improvement

should greatly facilitate the extraction of interesting rules from

very large, densely correlated and highly dimensional data, we

used ARD with Min-Ex for analyzing publicly available data

Table 1

Example matrix for gene-expression data

a b c d

� 22 73 57 17

� 57 32 64 21

� 41 83 21 23

� 65 81 59 70

� 18 79 56 64

� 52 39 59 16

� 30 76 61 65

The rows denote different samples or conditions, such as the same cell
type in different biological situations while the columns denote genes.
G[�,c] denotes the quantitative expression of gene c in the situation �.
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obtained by serial analysis of gene expression (SAGE) in

human cells [6,7].

Results
SAGE is an experimental technique designed to quantify gene

expression [8]. This technique produces 10-base sequences,

or ‘tags’, that identify one (or more) mRNAs. The frequency

of each tag in the overall produced sequence reflects the cel-

lular abundance of the corresponding transcript(s).

SAGE data have been poorly exploited by data-mining tech-

niques so far; we are aware of only one study on the com-

plete set of data [9]. One obvious reason for such poor

exploitation lies in the structure of the data, including a high

error rate for low-frequency tags (and especially tags appear-

ing only once in a library), and a very high dimensionality.

The use of different approaches for generating the boolean

values (see below) that indicate whether a gene is overex-

pressed or not solves the problem of low-frequency tags.

Furthermore, the Min-Ex algorithm that is implemented in

the ac-miner software we used has been designed for han-

dling huge and highly dimensional datasets.

We explored the validity of the association-rule technique

after generating different types of boolean matrices and

comparing the rules extracted in each case. We also com-

pared the data we obtained with those obtained through ‘tra-

ditional’ clustering, and conclude that clustering and

association rules can be seen as complementary.

Introducing the raw data
The SAGE data were downloaded through ftp [10] as of June

2001. We downloaded: the tags_freq files (list of unique tags

with frequency seen [11]), the description files [12] and a

Stats.txt spreadsheet file [13] containing various information

regarding the libraries, and establishing a link between the

tags_freq files and the description files.

The minimal transcriptome set was generously provided as

an Excel file by V. E. Velculescu (Johns Hopkins Oncology

Center, Baltimore). This consisted of 1,183 tags, their expres-

sion values in different tissues and their identification.

Preprocessing raw data and preparing the boolean
context 
We used only the human SAGE libraries that were found in

the Stat.txt file. This left us with 93 libraries. So that we

would not have to analyze the situation created by missing

data we limited ourselves to the genes belonging to the

minimal transcriptome set [14]. We understood this set as

being genes that should be found in each and every human

library analyzed. This was not the case, and the vast majority

of those tags were not found in one or other library. As this

might be due to the very small size of some libraries

(Figure 1), we tested the percentage of missing tags as a

function of library size. The smaller libraries (less than

20,000 tags) indeed harbored a very high percentage of

missing tags. Using a cutoff value of 20,000 sequenced tags,

we obtained a frequency of missing tags of 8%. This value

was not considerably modified when a much higher cutoff

value (50,000 tags, 5% missing tags) was applied; this value,

however, resulted in a great loss of information. We there-

fore decided to use the 74 libraries that displayed more than

20,000 tags, and we decided to give a value of zero when a

given tag was missing in a given library. As our approach is

based on the use of a cutoff value (see below) we feel quite

confident that this should have only a marginal effect, if any,

on the output. Furthermore, the resulting expression profiles

did not display any aberrant form due to the use of the null

value (see below).

Figure 1
Size distribution among the 93 SAGE human libraries, in overall number of sequenced tags.

Library 

N
um

be
r 

of
 ta

gs

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000



Finally, we re-established a strictly minimal transcriptome

set containing tags found in each and every library with

more than 20,000 tags (Figure 2). This set contained 156

tags, among which we found 56 representing genes encoding

ribosomal proteins, and 15 representing genes involved in

translation processes. Of the original 1,183 tags belonging to

the minimal transcriptome, 361 were found to represent

ambiguous tags (a single tag sequence matching more than

one gene description) in the original Velculescu Excel file.

Those 361 ambiguous tags were discarded. We therefore

continued with a list of 822 non-ambiguous tags.

The original tags_freq files contained the following informa-

tion: a list of tag sequences, and the number of times each

sequence was found in the library. Because the actual library

size is highly variable (Figure 1), such sequences could not be

compared without normalization. We used the same normal-

ization approach as previously described [9]: the tags_freq

value was divided by the total number of tags in the library

and multiplied by 300,000, the estimated number of RNAs

per cell [14]. The final dataset therefore contained the nor-

malized expression value, expressed as transcripts per cell,

for 822 genes in 74 human cell types. Such a matrix is very

useful in order to explore the expression profiles of various

genes in different cell types. We therefore established these

profiles for a number of genes (Figure 3). Two tendencies are

immediately apparent from those patterns.

One is that the addition of null values (the absence of tags

from some libraries) did not result in the generation of an

aberrant point (Figure 3a-c). The pattern generated was very

similar to the one generated for the tags belonging to the

strictly minimal transcriptome set, that is, those for which no

missing data were found (Figure 3d-e). All the patterns dis-

played a markedly skewed distribution toward the smallest

values, which may directly result either from sequencing

errors or from insufficient sequencing effort. This bias should

be minimized when creating the boolean matrix (see below).

All the genes, whether belonging to the strictly minimal

transcriptome set or not, display highly variable expression

levels (ranging for example from 3 to 433 copies per cell for

the GAPDH gene; Figure 3e). Such a high level of variation

creates very interesting conditions for creating the boolean

matrix. We verified that this very high dynamic range of

GAPDH expression was not an artifactual result produced by

large differences in library sizes by plotting the number of

observed GAPDH tags as a function of library size

(Figure 3g). Clearly, no correlation could be detected

between these two parameters. Indeed, the very high varia-

tion in levels of GAPDH has recently been documented using

both SAGE and quantitative RT-PCR [15].

The values contained in the 822 x 74 expression matrix had

to be transformed into boolean values by a so-called dis-

cretization phase. In our context, each quantitative value has

given rise to one boolean value, that is, true (1) or false (0).

We have explored the effect of three different discretization

procedures (Figure 4). First we used the ‘max minus x%’

procedure. This consists of identifying the highest expres-

sion value (HV) in any library for each tag, and defining a

value of 1 for the expression of that tag in a library when the

expression value was above (HV - x)/100. Otherwise, the

expression of the tag was assigned a value of 0 (Figure 4a). 

We also analyzed the effect of a mid-range-based cutoff

(Figure 4b). The highest and lowest expression values were

identified for each tag and the mid-range value was defined

as being equidistant from these two numbers (their arith-

metic mean). Then, all expression values below or equal to

the mid-range were set to 0, and all values strictly above the

mid-range were set to 1.

Finally, we used a ‘x% of highest value’ approach (Figure 4c).

For each tag, we identified libraries in which its level of

expression was in the 5% of highest values. These were

assigned the value 1, and the rest were set to 0.

These procedures will clearly generate different boolean

matrices. One of the main questions will then be: what is the

influence of those differences on the nature of the generated

rules? As seen below, some tendencies are conserved irre-

spective of the discretization procedure applied; others are

only apparent using one of the three approaches.

The use of such discretization approaches is nevertheless

both technically interesting and biologically sound. The

main technical interest lies in the elimination of all the very

low tag values, which may be the result of either sequencing

errors or insufficient sequencing effort. Biologically, the dis-

cretization approach can be seen as an overexpression

experiment, in which we identify genes that are overex-

pressed (right part of the rule) when a given set of genes are

overexpressed (left part of the rule). Nevertheless, differ-

ences that are generated as a result of different discretization

approaches highlight the problem of determining the best

mathematical definition of gene overexpression.

Mining the boolean context and post-processing the
rules
The binary matrices were transformed into a readable

format for the ac-miner software (see Materials and

methods). For the extraction phase, in every case we applied

a confidence value of 100%. This means that all the rules

generated are true in 100% of the cases. We first checked the

effect of varying the frequency threshold, from 10% to 2%,

on the number of rules extracted (Table 2). 

It is obvious from the large differences in the number at dif-

ferent frequency thresholds, that very different boolean

values were generated in the various boolean matrices. The

proper threshold giving a reasonable amount of rules has

4 Genome Biology Vol 3 No 12 Becquet et al.
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Figure 2 (see the next page for continuation of figure and the legend)

Tag_Sequence Description
AAAACATTCT Tag matches mitochondrial sequence
AAAAGAAACT POLYADENYLATE-BINDING PROTEIN
AACGCGGCCA Macrophage migration inhibitory factor
AACTAAAAAA Ubiquitin A-52 residue ribosomal protein fusion product 1
AACTAACAAA Ubiquitin A-52 residue ribosomal protein fusion product 1
AAGACAGTGG Ribosomal protein L37a
AAGGAGATGG Ribosomal protein L31
AAGGTGGAGG 60S RIBOSOMAL PROTEIN L18A
AATAGGTCCA Ribosomal protein S25
AATCCTGTGG Ribosomal protein L8
ACAGGGTGAC Homo sapiens mRNA for EDF-1 protein
ACAGTGGGGA Human (p23) mRNA, complete cds
ACATCATCGA Ribosomal protein L12
ACTTTTTCAA Tag matches mitochondrial sequence
AGAATCGCTT Homo sapiens coatomer protein (COPA) mRNA, complete cds
AGCACCTCCA Eukaryotic translation elongation factor 2
AGCCCTACAA Tag matches mitochondrial sequence
AGCCCTCCCT Homo sapiens autoantigen p542 mRNA, complete cds
AGCTCTCCCT 60S RIBOSOMAL PROTEIN L23
AGGAAAGCTG ESTs, Highly  similar to 60S RIBOSOMAL PROTEIN L36 [Rattus norvegicus]
AGGCTACGGA 60S RIBOSOMAL PROTEIN L13A
AGGGCTTCCA UBIQUINOL-CYTOCHROME C REDUCTASE COMPLEX SUBUNIT VI REQUIRING PROTEIN
AGGTGGCAAG Tag matches mitochondrial sequence
ATAATTCTTT Ribosomal protein S29
ATCAAGGGTG Ribosomal protein L9
ATCACGCCCT Tag matches mitochondrial sequence
ATCAGTGGCT PROTEASOME BETA CHAIN PRECURSOR
ATGAAACCCC Homo sapiens mRNA expressed in osteoblast, complete cds
ATGGCTGGTA 40S RIBOSOMAL PROTEIN S2
ATTCTCCAGT Ribosomal protein L17
ATTTGAGAAG Tag matches mitochondrial sequence
CAAGCATCCC Tag matches mitochondrial sequence
CAATAAACTG PROTEIN TRANSLATION FACTOR SUI1 HOMOLOG
CAATAAATGT Ribosomal protein L37
CACAAACGGT 40S RIBOSOMAL PROTEIN S27
CAGCAGAAGC Homo sapiens 4F5rel mRNA, complete cds
CATCTAAACT Human mRNA for KIAA0038 gene, partial cds
CCACCCCGAA Testis enhanced gene transcript
CCACTCCTCA DEFENDER AGAINST CELL DEATH 1
CCAGGAGGAA HEAT SHOCK COGNATE 71 KD PROTEIN
CCAGTGGCCC Ribosomal protein S9
CCATTGCACT Ataxia telangiectasia mutated (includes complementation groups A, C and D)
CCCATCCGAA Ribosomal protein L26
CCCCAGCCAG Ribosomal protein S3
CCCCAGTTGC Calpain, small polypeptide
CCCGTCCGGA 60S RIBOSOMAL PROTEIN L13
CCCTGGGTTC Ferritin, light polypeptide
CCGGGTGATG Human copper transport protein HAH1 (HAH1) mRNA, complete cds
CCGTCCAAGG Ribosomal protein S16
CCGTGCTCAT ESTs, Highly  similar to ADIPOCYTE P27 PROTEIN [Mus musculus]
CCTAGCTGGA PEPTIDYL-PROLYL CIS-TRANS ISOMERASE A
CCTCGGAAAA 60S RIBOSOMAL PROTEIN L38
CCTGGAAGAG "Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), beta polypeptide (protein disulfide isomerase; 
CCTTCGAGAT Ribosomal protein S5
CGCCGCCGGC Human ribosomal protein L35 mRNA, complete cds
CGCCGCGGTG Homo sapiens Chromosome 16 BAC clone CIT987SK-A-761H5
CGCCGGAACA Ribosomal protein L4
CGCTGGTTCC Homo sapiens ribosomal protein L11 mRNA, complete cds
CGTGTTAATG CELLULAR NUCLEIC ACID BINDING PROTEIN
CTAAGACTTC Tag matches mitochondrial sequence
CTAGCCTCAC Actin, gamma 1
CTCATAAGGA Tag matches mitochondrial sequence
CTGCTATACG Ribosomal protein L5
CTGCTGAGTG ESTs, Highly  similar to HYPOTHETICAL 14.1 KD PROTEIN C31A2.02 IN CHROMOSOME I [Schizosaccharomyces pombe]
CTGGCTGCAA Cytochrome c oxidase subunit Vb
CTGGGTTAAT 40S RIBOSOMAL PROTEIN S19
CTGTTGATTG Heterogeneous nuclear ribonucleoprotein A1
CTGTTGGTGA 40S RIBOSOMAL PROTEIN S23
GAAAAATGGT Laminin receptor (2H5 epitope)
GAACACATCC Ribosomal protein L19
GAAGCAGGAC COFILIN, NON-MUSCLE ISOFORM
GAAGTTATGA T-COMPLEX PROTEIN 1, ALPHA SUBUNIT
GACGACACGA Ribosomal protein S28
GACTCACTTT Peptidylprolyl isomerase B (cyclophilin B)
GAGGGAGTTT Ribosomal protein L27a
GCAAAACCCC Homo sapiens tumor necrosis factor superfamily member LIGHT mRNA, complete cds
GCACAAGAAG ESTs
GCAGCCATCC Ribosomal protein L28
GCATAATAGG Ribosomal protein L21
GCATAGGCTG ELONGATION FACTOR TU, MITOCHONDRIAL PRECURSOR
GCCAGCCCAG Human transcriptional corepressor hKAP1/TIF1B mRNA, complete cds
GCCCCTCCGG ESTs, Weakly similar to TRANS-ACTING TRANSCRIPTIONAL PROTEIN ICP0 [Bovine herpesvirus type 1 (strain k22)]
GCCGAGGAAG Human mRNA for ribosomal protein S12
GCCGTGTCCG Human ribosomal protein S6 mRNA, complete cds
GCCTCCTCCC ESTs
GCCTGCTGGG Phospholipid hydroperoxide glutathione peroxidase
GCCTGTATGA Ribosomal protein S24
GCCTTCCAAT P68 PROTEIN
GCGAAACCCC Human G protein-coupled receptor (STRL22) mRNA, complete cds (signal)
GCGAAACCCT V-erb-b2 avian erythroblastic leukemia viral oncogene homolog 3 {alternative products}  (signal)
GCTGGCTGGC Homo sapiens chaperonin containing t-complex polypeptide 1, eta subunit (Ccth) mRNA, complete cds
GCTTTATTTG Human mRNA fragment encoding cytoplasmic actin. (isolated from cultured epidermal cells grown from human foreskin)
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Figure 2 (continued from the previous page)
The strictly minimal transcriptome set, representing the 156 tags that were found in each and every SAGE library constructed from more than 20,000
sequenced tags. The key shows the color code used for representing the function of the encoded proteins.

Tag_Sequence Description
AAAACATTCT Tag matches mitochondrial sequence
GGACCACTGA Ribosomal protein L3
GGAGTGGACA 60S RIBOSOMAL PROTEIN L18
GGCAAGAAGA Ribosomal protein L27
GGCAAGCCCC Heat shock 27kD protein 1
GGCCGCGTTC Ribosomal protein S17
GGCCTGCTGC ESTs, Highly similar to C10 [H.sapiens]
GGCTGGGGGC Human profilin mRNA, complete cds
GGCTTTACCC Eukaryotic translation initiation factor 5A
GGGCGCTGTG Homo sapiens mRNA for smallest subunit of ubiquinol-cytochrome c reductase, complete cds
GGGGAAATCG THYMOSIN BETA-10
GGGGGACGGC ESTs, Weakly similar to Y48E1B.1 [C.elegans]
GGGGGTCACC ATP SYNTHASE LIPID-BINDING PROTEIN P1 PRECURSOR
GGTCCAGTGT Phosphoglycerate mutase 1 (brain)
GGTGGATGTG Homo sapiens methyl-CpG binding protein MBD3 (MBD3) mRNA, complete cds
GGTTTGGCTT UBIQUINOL-CYTOCHROME C REDUCTASE COMPLEX 11 KD PROTEIN PRECURSOR
GTGAAACCTC Homo sapiens intrinsic factor-B12 receptor precursor, mRNA, complete cds
GTGAAGGCAG Ribosomal protein S3A
GTGACAACAC Voltage-dependent anion channel 1
GTGACAGAAG Eukaryotic translation initiation factor 4A (eIF-4A) isoform 1
GTGACCTCCT CYTOCHROME C OXIDASE POLYPEPTIDE VIII-LIVER/HEART PRECURSOR
GTGATGGTGT Thyroid autoantigen 70kD (Ku antigen)
GTGCTGAATG MYOSIN LIGHT CHAIN ALKALI, SMOOTH-MUSCLE ISOFORM
GTGGCACACG Eukaryotic translation initiation factor 3 (eIF-3) p36 subunit
GTGGCAGGTG Human mRNA for KIAA0340 gene, partial cds
GTGGCTCACA Adenosine A2b receptor
GTGTTAACCA Human ribosomal protein L10 mRNA, complete cds
GTGTTGCACA Ribosomal protein S13
GTTAACGTCC Homo sapiens Bruton's tyrosine kinase (BTK), alpha-D-galactosidase A (GLA), L44-like ribosomal protein (L44L) and FTP3 
GTTCGTGCCA Ribosomal protein L35a
GTTGTGGTTA BETA-2-MICROGLOBULIN PRECURSOR
TAAGGAGCTG Ribosomal protein S26
TAATAAAGGT 40S RIBOSOMAL PROTEIN S8
TACAAGAGGA Ribosomal protein L6
TACCATCAAT Glyceraldehyde-3-phosphate dehydrogenase
TACCCTAGAA Estrogen receptor
TAGGTTGTCT TRANSLATIONALLY CONTROLLED TUMOR PROTEIN
TAGTTGAAGT UBIQUINOL-CYTOCHROME C REDUCTASE COMPLEX 14 KD PROTEIN
TCACAAGCAA H.sapiens alpha NAC mRNA
TCAGATCTTT Ribosomal protein S4, X-linked
TCAGTTTGTC Human HS1 binding protein HAX-1 mRNA, nuclear gene encoding mitochondrial protein, complete cds
TCTCCAGGAA ESTs, Weakly similar to PUTATIVE MITOCHONDRIAL CARRIER C16C10.1 [C.elegans]
TCTTGTGCAT L-LACTATE DEHYDROGENASE M CHAIN
TGAAGGAGCC ATP SYNTHASE LIPID-BINDING PROTEIN P2 PRECURSOR
TGAGGGAATA Triosephosphate isomerase 1
TGCACGTTTT Human mRNA for antileukoprotease (ALP) from cervix uterus
TGCATCTGGT 78 KD GLUCOSE REGULATED PROTEIN PRECURSOR
TGGAATGCTG Homo sapiens NADH:ubiquinone dehydrogenase 51 kDa subunit (NDUFV1) mRNA, nuclear gene encoding mitochondrial 
TGGAGTGGAG Human guanylate kinase (GUK1) mRNA, complete cds
TGGCTGTGTG ESTs
TGGGCAAAGC Translation elongation factor 1 gamma
TGGTGTTGAG Human DNA sequence from clone 1033B10 on chromosome 6p21.2-21.31. Contains the BING5 gene, exons 11 to 15 of the 
TGTACCTGTA Human alpha-tubulin mRNA, complete cds
TGTGATCAGA Homo sapiens F1F0-type ATP synthase subunit g mRNA, complete cds
TGTGCTAAAT 60S RIBOSOMAL PROTEIN L34
TGTGTTGAGA Translation elongation factor 1-alpha-1
TTATGGGATC GUANINE NUCLEOTIDE-BINDING PROTEIN BETA SUBUNIT-LIKE PROTEIN 12.3
TTCATACACC Tag matches mitochondrial sequence
TTCTTGTGGC Ribosomal protein S11
TTGGAGATCT Human NADH:ubiquinone oxidoreductase MLRQ subunit mRNA, complete cds
TTGGGGTTTC Ferritin heavy chain
TTGGTCCTCT 60S RIBOSOMAL PROTEIN L41
TTGTAATCGT Human mRNA for ornithine decarboxylase antizyme, ORF 1 and ORF 2
TTGTTGTTGA Calmodulin 1 (phosphorylase kinase, delta)
TTTAACGGCC Tag matches mitochondrial sequence

Transcription
Signal

Translation
Ribosomal

Mitochondrial
Proteasome

EST
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Figure 3 (see legend on the next page) 
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Figure 3 (see figure on the previous page)
Gene-expression profiles represented as copies per cell, derived by normalization from the values obtained in the 74 libraries used. (a) Mitochondrial
ribosomal protein L20; (b) GW128 protein; (c) RAB5C, member of the Ras family; (d) Poly(A)-binding protein, cytoplasmic 1; (e) glyceraldehyde-3-
phosphate dehydrogenase (GAPDH); (f) eukaryotic translation initiation factor 5A. (g) Repartition of GAPDH frequency (in number of tags) as a
function of the size of the library from which that frequency was deduced. Three tags are shown that belong to the strictly minimal transcriptome set (d-
f) and three tags not belonging to that set (a-c).

Figure 4
Schematic description of the discretization protocols used. On the left is shown the original matrix containing continuous values expressed as copies of
transcript per cell, in the center the discretization procedure used, and on the right the resulting boolean matrix. (a) The max minus 25% approach. We
took the highest value (65) and calculated 25% of 65 (16.25). Values above 65 - 16.25 (= 48.75) were given a boolean value of 1; all others were given a
value of 0. (b) The mid-range approach. We took the highest value (65), the lowest value (18), and calculated the mid-range as ((65-18)/2)+18= 41.5.
Values above 41.5 were given a boolean value of 1; all others were given a value of 0. (c) The 30% cut-off. We took the highest 30% of the number of
values (here 7 x 0.3 = 2.1, that is, the two highest values), set them to 1 and the rest to 0. Note that this 30% value is not the actual value used for the
extraction (see below) but is given as an illustration. Note also that these three different procedures resulted in different matrix densities. The last
procedure resulted in the same number of boolean 1 results for all tags, whereas the first two generated different densities of 1, depending on the gene-
expression pattern throughout the various libraries.
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therefore to be determined empirically on a given boolean

matrix. It can also be seen from this table that the number of

rules generated for a low-frequency threshold can be so high

that even a properly designed algorithm is unable to extract

them. In some cases at a low threshold, although rules can

be extracted, their very high number renders their analysis

impossible, at least with the post-processing strategies and

tools currently available.

The 68 rules extracted from the ‘Max minus 25% matrix’

using an ac-miner frequency threshold at 5% were then

transferred into an Excel file and color-coded according to

the function encoded by the genes associated in the rules

(Figure 5). It was immediately obvious that we obtained a

very high level of homogeneity in the rules, with most of the

rules associating genes encoding ribosomal proteins.

We then analyzed the rules from the ‘mid-range-based’ cutoff

using an ac-miner frequency threshold at 10%. The resulting

1,746 rules were transferred into an Excel file and color-

coded according to the function encoded by the genes associ-

ated in the rules (see Additional data files). Once more, it was

immediately obvious that we obtained a very high level of

homogeneity in the rules, and once again most of the rules

associated genes encoding ribosomal proteins. This time, a

higher incidence of other translation-related non-ribosomal

proteins was observed. It was also clear that because of the

high number of rules generated, a post-processing task would

need to be carried out to identify a smaller number of rules

with the highest biological relevance. This is always the case

with such unsupervised data mining techniques.

Finally, we analyzed the rules extracted from the ‘5% of

highest value’ matrix using two different ac-miner frequency

thresholds. The 5% frequency value resulted in the generation

of 301 rules that were transferred into an Excel file and color-

coded according to the function encoded by the genes associ-

ated in the rules (see Additional data files). Once again, the

rules were homogeneous, mostly associating protein synthe-

sis-related (ribosomal or not) tags. Nevertheless, it was also

apparent that some clustering of genes found in mitochondrial

DNA was beginning to appear. This was made much more

obvious by extracting rules at a 2% frequency value, and by

selecting from the resulting 32,329 rules those that visually

contained more than one tag identifying a mitochondrial gene.

This approach resulted in a set of 436 rules that were highly

homogeneous (see Additional data files). 

Biological significance of the discovered rules 
To explore the biological significance of the generated rules,

we decided to investigate in detail a subset of the longest

rules generated from the mid-range-based approach. We

focused on a set of 47 rules associating 13 different genes

(see Additional data files). As previously noted, the rules are

very homogeneous, mostly associating protein synthesis-

related tags. Only two tags were not categorized as such: a

yellow-coded tag (number 763, transcription) and a gray-

coded tag (631, expressed sequence tag (EST)). First, we

rechecked the identity of tag 763 (sequence TGGTGTTGAG),

by using the ‘tag to gene’ function of the National Center for

Biotechnology Information (NCBI) website [6]. It provided

the identification: Hs.275865: ribosomal protein S18. The

initial identification of this tag was thus misleading and this

shows that our data-mining technique can allow the correct

reassignment of wrongly labeled tags.

We then rechecked the identity of tag 631 (sequence GTTG-

GTCTGT). It provided the following identification:

Hs.288967: Homo sapiens cDNA FLJ14105 fis, clone

MAMMA1001202. This is an EST of unknown function. The

results obtained with our mining technique suggest that the

putative protein encoded by this EST is involved in protein

synthesis. The ability both to correctly relabel wrongly

attributed tags and to propose a function for an unknown

protein is a first element of biological validation of the gen-

erated set of rules, although final verification will depend on

biological experiments demonstrating a function.

To gain further insight into the biological meaning of the

rules generated, we decided to investigate in finer detail

several rules associating proteins involved in signal trans-

duction. The following rules were highlighted:

When the gene encoding the S6 kinase (RSK-B) (Tag n° 579) is

overexpressed (that is, it has an expression value of 1), then the

gene encoding the Lamin A (Tag n° 598) is also overexpressed,

and this is true in 4 different cell types (see line 10 in Figure 5a

for the actual the rule). This association of S6 kinase and lamin

A is in good accordance with the previous identification of S6

kinase II as a potentially important lamin kinase [16].
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Table 2

Effect of varying the frequency threshold on the number of rules
extracted

Matrix Frequency threshold (%) Number of rules

Max minus 25% 10 0

Max minus 25% 6 10

Max minus 25% 5 68 (Figure 5)

Max minus 25% 2 4,084

Mid-range-based 10 1,746

Mid-range-based 6 36,550

Mid-range-based 5 111,143

Mid-range-based 2 Intractable

5% of HV 10 0

5% of HV 6 21

5% of HV 5 301

5% of HV 2 32,329
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Figure 5
Rules generated. (a) The 68 rules generated by ac-miner on a ‘max minus 25%’ boolean matrix using a 5% frequency threshold. The rules were
translated into a color-coded Excel file. For the color-coding conventions used, see Figure 2. (b) The first three rules generated. The first rule reads:
‘When the gene encoding the ribosomal protein S24 (identified by the tag no. 150) is overexpressed, then the gene encoding the cytochrome c oxidase
subunit IV (identified by tag 255) is also overexpressed’. This rule is true in four different libraries. The second rule associates three tags identifying the
ribosomal proteins S5, L19 and S18 (true in five libraries). The third rule associates five tags identifying the ribosomal proteins L21, S5, S23, L19 and S18
(true in four libraries).

Ribosom150 , Cytochrome 255 : 4
Ribosom270 , Ribosom364 ribosom 763 : 5
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Ribosom270 Ribosom640 , Ribosom364 ribosom 763 Ribosom37 Ribosom130 60S RIB772 Human 806 : 4
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Cytochrome 255
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When the gene encoding the ras-related GTP-binding

protein (Tag n° 312), is overexpressed (that is, it has an

expression value of 1), then the gene encoding the Platelet-

endothelial tetraspan antigen 3 (Tag n° 730) is also overex-

pressed, and this is true in 8 different cell types.

Tetraspans are membrane proteins that are proposed to act

as ‘molecular facilitators’, grouping specific cell-surface

proteins and thus increasing the formation and stability of

functional signaling complexes [17]. Although they were

proposed to activate the Jun N-terminal kinase (JNK)

pathway [18], no association with Ras-family proteins has

previously been reported. ARD results would support the

contention that the function of Ras-family proteins is coor-

dinated with that of tetraspan.

When both the genes encoding the G protein-coupled recep-

tor (STRL22) (Tag n° 459) and the KH type splicing regula-

tory protein KSRP (Tag n° 795) are overexpressed, then the

gene encoding the KIAA0340 gene (Tag n° 607) is also over-

expressed, and this is true in 8 different cell types. This rule

suggests the existence of a functional association between a

G-protein-coupled receptor related to chemokine receptors

[19], a splicing factor [20], and a member of the RAS gene

superfamily (KIAA0340, also known as RAB3A, RIM, RIM1,

RAB3IP2, RIMS1 [21]). That the expression of a G protein-

coupled receptor correlates with that of a small GTP-binding

protein may not be surprising. However, the indication that

this signaling pathway may somehow be functionally corre-

lated with a splicing event is an interesting prediction.

Comparing association rules with self-organizing maps
To compare the output of ac-miner with a traditional clus-

tering method, we decided to use a recently described imple-

mentation of the SOM algorithm called SOTA, which is

freely available on the web [22,23]. The expression matrix,

before boolean transformation, was computed through

SOTA, using a variability threshold of 90%, and the resulting

clusters were color-coded (see Additional data files). As

such, it is clear that this approach does not allow either rela-

beling of tags, or assignment of putative functions to tags

encoding unknown proteins. Nevertheless, it can be quite

useful to compare the results generated by the two methods,

especially for exploring the rules associating heterogeneous

members. One can for example note that one SOTA cluster

associates several of the genes that were associated in the

longest rules (Figure 6). The fact that four genes (including

the EST of unknown function) belong at the same time to a

strong rule and to a SOTA cluster clearly reinforces the pre-

diction that those four genes are co-regulated and partici-

pate in a similar function.

Discussion
We have used a new data-mining technique (ARD) for ana-

lyzing gene-expression matrices to discover potentially

interesting strong association rules. To validate the potential

of this technique, we used expression data that are freely

available (human SAGE data). Because of the very high

dimensionality of SAGE data, application of the recently

developed algorithm Min-Ex has proved very useful com-

pared to the previously developed association-rule algo-

rithms based on the Apriori algorithm [4]. 

This approach was successful in generating a set of rules that

were biologically meaningful according to two main criteria.

This first criterion was that the rules generated were very

homogeneous in terms of the function associated with the

tags. The very strong message revealed by our approach is

that some ribosomal mRNAs are strongly co-regulated. A

very similar finding has been recently described in various

biological systems, including many tumors and cell lines [24-

26], cells overexpressing erbB-2 [27], cells overexpressing N-

myc [28], NGF-treated PC12 cells [29] and yeast cells

examined at a compendium level [30]. Both the underlying

mechanism(s) and the biological function(s) for such co-

regulation are still essentially elusive (see discussion in [29]),

especially in light of the described translational control of

ribosomal protein synthesis [31]. It is nevertheless clear that

our ‘blind’ mining technique essentially captured a biological

phenomenon that until now has been described on dissimilar

occasions, and could represent a more general phenomenon

than anticipated. We also observed the expected co-regula-

tion of genes encoded by mitochondrial DNA (see [32] for a

recent review). We were also able to extract several rules

involving signal transduction proteins, some of which were

confirmed by previous published evidence, and some of

which point in yet-unexplored directions.

The color-coding we used is somewhat ‘crude’ and finer bio-

logical definitions would be necessary for investigating the

biological meaning of the rules in greater detail. We plan to

use the newly described Gene Ontology classification [33] as a

basis for establishing tag meta-identity. It would be very inter-

esting to see whether rule homogeneity can be observed at the

three GO levels: not only at the biological process level, but

also at the molecular function and cellular component levels.

The homogeneity that was generated in the rules was suffi-

cient to relabel a wrongly labeled tag, and to propose a puta-

tive function for an EST-encoded protein. Beyond the

validation purpose, the heterogeneous sets of rules might be

considered as the most biologically interesting, as they might

point to previously unidentified functionally connected sets

of genes. It is clear that the usefulness of such a set of rules

for the scientific community will be very much improved by

the use not only of the minimal transcriptome set, but of all

the thousands of non-ambiguous tags (tags identifying only

one gene and present at least once in two different libraries,

see [9]). This work is in progress in our laboratories.

We are currently exploring other promising future direc-

tions. One is to evaluate a number of various objective mea-
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sures of interestingness to rank the rules according to crite-

ria complementary to user-based knowledge. For example,

conviction [34] is interesting, because, contrary to the confi-

dence measure, it takes the support of the right-hand side of

the rule into account. Roughly speaking, conviction mea-

sures the quality of a rule seen as an implication. The J-

measure [35] measures two important criteria for the quality

of a rule, namely simplicity and goodness-of-fit between the

rule and the data. Interestingly, when applied to frequent

rules, we need only know the frequent itemsets (see Materi-

als and methods for a definition) and their frequencies. Thus

these measures can be evaluated efficiently.

Another extremely interesting scientific challenge is to con-

sider other user-defined constraints that can be inserted in

the association-rule miner algorithms [36]. These would not

only be related to frequency and confidence thresholds but

also to various constraints, for example, those that enforce

the presence or absence of some attribute. This might enable

work at lower-frequency thresholds and a focus on rules that

involve the desired attributes. This is important, as it might

enable the identification of association rules that are not suf-

ficiently strong to be discovered at present.

Another line of enquiry is the possibility of applying the asso-

ciation-rule approach to associate cell types rather than genes,

in order to identify closely related cell types. Such an

approach has already been implemented, using a clustering

algorithm on human SAGE data [9]. It remains to be seen

whether the ARD approach can give rise to rules that produce

cell regroupings that can be compared with these clusters, just

as rules and clusters associating genes have been compared. 

To conclude, we have demonstrated the usefulness of ARD,

and in particular that this approach can be used to highlight

various properties concealed in the mass of data, depending

on the discretization procedure applied. This approach

should be regarded as highly complementary to the more

traditional clustering approaches, and should prove as useful

for extracting properties from microarray-generated expres-

sion data as we demonstrated for SAGE-generated data.

Materials and methods
The association-rule discovery technique
The classical framework
In the standard presentation of ARD [4], the data are in the

form of a (large) boolean matrix. In the case of gene-expres-

sion data, it may be generated from DNA arrays or SAGE

approaches, and initial values are continuous. The genera-

tion of the boolean matrix from such continuous data is a

critical step that may impinge on the interpretation of the

rules generated. We have described three different

approaches to generating such matrices (see ‘ Preprocessing

raw data and preparing the boolean context’) that all try to

capture a gene-expression pattern.

12 Genome Biology Vol 3 No 12 Becquet et al.

Figure 6
Side-by-side comparison of one rule generated by ac-miner, belonging to the longest set and one cluster generated by SOTA (see Additional data files).
The arrows indicate tags that were found to associate through both methods. 
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If the columns of the matrix are denoted C1, C2, …, Cn, then

the ARD technique discovers association rule that are

expressions X ——> Y where X and Y are sets of columns

(often called itemsets) and X � Y= � (for an example of

the actual rules extracted, see Figure 5). The relevance of a

rule X ——> Y  can be measured by its frequency and its confi-

dence. The frequency is the number of rows where all

columns in X and Y have a value of 1 (true) simultaneously.

This number is often divided by the number of rows to

provide a relative frequency. The confidence is the ratio

between the frequency and the number of rows where all

the columns in X have a value of 1, that is, it estimates the

conditional probability of observing the properties denoted

by Y when the properties denoted by X are true. Thus,

when a rule has a confidence of 1, it means that 100% of

the rows that have 1 in the columns in X also have 1 in the

columns in Y. The classical association-rule mining task

concerns the discovery of every rule such that its frequency

and its confidence are greater or equal to user-defined

thresholds [4].

Given our example dataset in Table 1 we define that gene a is

overexpressed in condition � if its level of expression is greater

than the mean level of expression of a across all conditions (�

to �). Otherwise, it is considered to be underexpressed (see ‘

Preprocessing raw data and preparing the boolean context’

above for the actual discretization procedures used). In this

way we build a boolean matrix as shown in Table 3.

In the example shown above, the rule gene a  ——> gene c has

the frequency 3/7 and the confidence 3/4. In other words,

genes a and c are overexpressed simultaneously in 3/7 of the

situations, and when gene a is overexpressed then in 75% of

the situations gene c is also overexpressed. If the frequency

threshold had been fixed at 30% and the confidence thresh-

old at 70%, then the rule gene a  ——>  gene c would be discov-

ered. At these thresholds, a rule such as gene c  ——> gene b

would not be discovered because it is not sufficiently valid

(4/6 = 66%), although it is sufficiently frequent (4/7 = 57%).

Similarly, the rule gene a, gene b, gene c  ——> gene d would

not be discovered because it is not sufficiently frequent (1/7

= 14%), although it is valid (confidence = 100%).

Mining of frequent and valid association rules has led to a

great deal of research since the definition of the Apriori algo-

rithm [4]. Many data-mining software tools include an

implementation of this algorithm, for example, commercial

packages such as Clementine [37] and free academic soft-

ware packages such as Weka [38].

Solutions to the classical association-rule mining problem
Most of the available implementations of association-rule

miners perform well on sparse and weakly correlated

boolean data. They are based on a two-phase process. First,

every frequent itemset is identified and its frequency com-

puted. An example of an itemset would be the sets of genes

that are overexpressed together in more than 10% of the bio-

logical situations. This will represent the limiting step, in

terms of computing time, for the whole process.

Valid rules are identified from each discovered frequent

itemset. The discovery of valid frequent rules from the fre-

quent itemsets is a straightforward operation. For each fre-

quent itemset X, the rule X\{Y}——>Y is generated for every

subset Y of X, and its confidence is calculated. Rules are

listed only if their confidence is greater or equal to the user-

defined threshold. Using this approach, the derivation of fre-

quent/valid rules is quite efficient as infrequent itemsets

have already been eliminated to reduce the numbers of cal-

culations to determine validity and confidence of rules.

It turns out that the challenging issues related to associa-

tion-rule mining are now being able to compute every fre-

quent itemset and its frequency for the desired frequency

threshold, and being able to support the identification of

useful rules among the (thousands of) extracted frequent

and valid rules. The identification of frequent itemsets in a

boolean matrix consists of retrieving all possible attribute

combinations that are true-valued in a number of lines of the

matrix greater than the frequency threshold. For example in

a matrix of 1,000 columns the initial number of candidates is

21,000. The computation of frequent itemsets is only feasible

if an efficient candidate-enumeration strategy enables the

search space to be pruned of most of the infrequent subsets

without having to count their frequency. Fortunately, one

can use the so-called anti-monotonicity of the minimal fre-

quency as a constraint. Thus, an itemset cannot be frequent

if one of its subsets is not frequent. Thus by identifying first

singletons, then pairs, then itemsets of size 3, and so on, it is

possible to prune most of the search space. This is because as

soon as an itemset is known to be infrequent, all its super-

sets can be ignored. By considering larger and larger item-

sets, it is clear that eventually the whole collection of the

frequent itemsets will be identified. In practice, apriori-

based frequent-itemset-extraction algorithms work if the

largest frequent itemset has a size lower or equal to 15 (at
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Table 3

Boolean matrix built from the matrix of expression values

a b c d

� 0 1 1 0

� 1 0 1 0

� 1 1 0 0

� 1 1 1 1

� 0 1 1 1

� 1 0 1 0

� 0 1 1 1



least 215 itemsets have been considered by the counting pro-

cedure). Clearly, the lower the frequency threshold, the

larger the number of frequent itemsets.

A reasonable frequency threshold can be operationally

defined as one at which the extraction of rules remains

tractable (that is, does not require excessive computing

time) but which nevertheless conserves sufficiently interest-

ing properties. Thus the properties one wishes to study

should have to involve perhaps at least 5% of the situations,

whereas the extraction becomes intractable below 30%. We

might want to compute the frequent sets for the lowest pos-

sible threshold to provide more input for the post-processing

phase. Apriori-like implementations can fail because of this

essential requirement to identify and count for at least every

frequent itemset. In situations in which the number of fre-

quent itemsets is high, the frequency threshold must be

increased and the risk that the frequent patterns discovered

are trivial also increases similarly.

The post-processing phase is important for reporting results

and supporting the discovery of interesting rules among the

frequent and valid rules. Taking into account the huge

number of generated rules, we must provide not only tools

allowing us to browse and select the rules (subjective criteria

of interestingness) but also various objective measures of

interestingness to rank the rules according to complemen-

tary criteria (see Discussion).

Furthermore, among the set of frequent and valid rules, a

large number of rules will certainly be redundant. For

example in the situation of rules r1 = X1 ——> Y1 and r2 = 

X2 ——> Y2 (when X1 � X2 and Y2 � Y1) are both frequent

rules and have (almost) the same confidence. We can con-

sider that r1 is more general than r2 and therefore discard r2

from the output because r2 does not provide any additional

information. Application of this simple technique allows

thousands and in some cases hundreds of thousands of

redundant rules to be discarded without losing any informa-

tion. Note, however, that this is an application-independent

post-processing operation: no domain knowledge is used to

eliminate uninteresting rules. In a complementary manner,

domain knowledge can be applied to select subsets of gener-

ated rules, for example, the rules that contain some attrib-

utes could be discarded or attention can be focused on the

subsets of rules in which others attributes occur.

With respect to the data described in Results, we have tried

the classical approach and had difficulties using an Apriori-

based implementation. Not only were we forced by

constraints of tractability to work at rather high frequency

thresholds, but despite this, in this exploratory context, we

were nevertheless drowned by the number of rules gener-

ated. Instead of implementing tedious post-processing

phases, we decided to apply a recent technique that proposes

solutions to these two problems.

Mining rules in dense boolean matrices: the Min-Ex
approach
A huge research effort has been made to solve these problems

of Apriori-like algorithms. The proposals concern both the

efficient computation of the frequent itemsets and the possi-

bility of directly identifying rules of greater potential interest.

The design of Min-Ex and its implementation ac-miner is the

result of this international effort [39]. Not only does it enable

the more efficient computation of frequent itemsets but it

also directly identifies a subset of the frequent and valid rules

in condensed representation of the frequent itemsets.

Min-Ex is based on the concept of �-free itemsets. An

itemset is designated �-free if none of its subsets is linked

together in a �-strong rule, that is, a rule with at most �

exceptions. In the research reported here, we used only rules

that were 100% true, that is � = 0. In this case, an itemset X

is �-free if there is no association rule with confidence of

100% between subsets of X. There are two very interesting

properties of �-free itemsets. First, anti-monotonicity of

freeness; every subset of a �-free itemset is also �-free and

every superset of a non �-free itemsets is also non �-free.

Second, frequent �-free itemsets are a condensed represen-

tation of frequent itemsets, that is, they are less numerous

than the frequent itemset while providing almost the same

information (exactly the same information if � = 0).

Taken together, those two properties allow that when X is

known to be a frequent �-free itemset, the frequency of

(many) supersets of X can be derived from the frequency of

X without having to count them. More precisely, for each 0-

free set X, one can efficiently compute the maximal superset

F such that its frequency is equal to the frequency of X, the

so-called closure of X. As a result, every set that is included

between X and F is known to have the frequency of X.

In real-life data, it enables one to reduce significantly the

number of sets for which the counting phase is needed. Also,

it reduces the size of the explored search space [39]. Formal-

ization and technical algorithmic details for computing

�-free itemsets and their closures are described in [39]. In

the present paper, we use the implementation called ac-

miner-close.

Example

In the example boolean matrix, {gene a, gene b} is 0-free

(there is no 100% confidence rule gene a ——> gene b or gene

b ——> gene a). {gene b, gene c, gene d} is not 0-free and its

frequency can be derived from the frequency of {gene d} since

there is a 100% confidence rule gene d  ——> gene b, gene c.

The ac-miner-close association rule miner provides each fre-

quent 0-free set, its frequency and its closure. For instance

< gene d, gene b gene c: 3> says that {gene d} is 0-free and is

true in 3 lines (above the provided frequency threshold).

Furthermore, it says that each time gene d is true (that is,
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has a value of 1, and is thus considered as overexpressed),

gene b and gene c are true as well. In other terms, we have a

rule gene d ——> gene b gene c with a confidence value of 1

(logical rule). Thus, mining 0-free sets and their closures

leads to association rules with confidence 1.

When considering the whole collection of logical rules

extracted with ac-miner-close, we have an important prop-

erty that these rules are not only frequent and logical (confi-

dence 1) but maximal: X ——> Y is maximal if another frequent

and logical rule Z ——> W such that Z � X and/or Y � W does

not exist. Ac-miner-close provides the collection of such

rules, designated strong rules, directly. These rules have a

minimal left-hand side and a maximal right-hand side and

many redundant rules are not provided.

Clearly, provided that the computation is tractable, which will

be determined by the frequency threshold, the strong rules

can also be computed from the output of an Apriori-based

association rule miner. It needs for the computation of the so-

called structural cover of the extracted rules (discarding rules

that do not satisfy the above property of maximality).

Additional data files 
Four supplemental figures are available with the online

version of this paper. The rules in the table are color-coded

according to the function encoded by the genes associated in

the rules. For the color-coding conventions used in the sup-

plemental figures, see Figure 2.

Supplemental figure 1 shows the first 566 rules (out of

1,746) generated by ac-miner on a mid-range-based boolean

matrix using a 10% frequency threshold. 

Supplemental figure 2 shows (a) The 301 rules generated by

ac-miner on a ‘5% cut-off’ boolean matrix using a 5% fre-

quency threshold. (b) The 436 rules, out of 32,329 gener-

ated by ac-miner on a 5% cut-off boolean matrix using a 2%

frequency threshold, and from which the rules containing

mitochondrial tags were visually extracted. 

Supplemental figure 3 shows the longer set of rules: from

the 1,746 rules generated by ac-miner on a mid-range-based

boolean matrix using a 10% frequency threshold. Those 49

rules associated 13 tags and were true in 8 libraries. Shown

are the rules (a) before and (b) after the proper reassign-

ment of the tag 763.

Supplemental figure 4 shows the SOTA clustering output

translated into a color-coded Excel file. 
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