
Information Technology and Management 1 (2000) 195–207 195

A KDD framework to support database audit ∗

Jean-François Boulicaut

Institut National des Sciences Appliquées de Lyon, LISI Bâtiment 501,
F-69621 Villeurbanne Cedex, France

E-mail: jean-francois.boulicaut@insa-lyon.fr

Understanding data semantics from real-life databases is considered following an audit
perspective: it must help experts to analyse what properties actually hold in the data and
support the comparison with desired properties. This is a typical problem of knowledge
discovery in databases (KDD) and it is specified within the framework of Mannila and
Toivonen where data mining consists in querying theories e.g., the theories of approximate
inclusion dependencies. This formalization enables us to identify an important subtask to
support database audit as well as a generic algorithm. Next, we consider the DREAM
relational database reverse engineering method and DREAM heuristics are revisited within
this new setting.

Keywords: data mining, integrity constraint, reverse engineering

1. Introduction

We are interested in understanding data semantics from real-life databases. This
process is considered following an audit perspective in the following sense: it must help
experts to analyse what properties actually hold in the data and support the comparison
with desired properties. This research paper takes examples from relational database
audit, assuming that inclusion and functional dependencies that (almost) hold in the
data capture the so-called data semantics. This will be called hereafter the basic
problem. However, our framework can be applied to other kinds of databases and/or
properties.

Auditing databases is an important topic. Integrity constraints that have been more
or less explicited at the design time of a database may not always hold in a given
instance. Indeed, only recent Data Base Management Systems enable to enforce im-
portant integrity constraints such as foreign keys. In most of the cases, it is assumed
that application programs enforce desired integrity constraints and, obviously, it is not
always done in real-life databases. Understanding data semantics in databases is of a
crucial interest to support their maintenance and evolution. The fact that some property

∗ This work has been done while the author was on sabbatical year in the Department of Computer
Science at the University of Helsinki (Finland). It is partly supported by AFFRST, Association Franco-
Finlandaise pour la Recherche Scientifique et Technique.

 Baltzer Science Publishers BV

196 J.-F. Boulicaut / A KDD framework to support database audit

holds or not in an instance can be used by experts to fix some integrity violation in the
data. It can also lead to an explicit definition of an integrity constraint for further use
of built-in checking mechanisms. Improving our knowledge of encoded data semantics
is also useful for semantic query optimization (see, e.g., [2]). Last but not least, audit
is an important preliminary step for a database reverse engineering process [5] or the
design of federated databases. Indeed, solving the basic problem provides the raw
knowledge that is needed to start a restructuring phase on a denormalized relational
schema [13].

Auditing as querying multiple theories. Auditing databases is a typical problem of
Knowledge Discovery in Databases (KDD). Discovering knowledge from databases
can be seen as a process containing several steps: understanding the domain, preparing
the data set, discovering patterns (e.g., dependencies), postprocessing of discovered
patterns (e.g., selecting dependencies that should become integrity constraints), and
putting the results into use [8]. This is a semi-automatic and iterative process that is
often described using ad-hoc formalisms and/or notations. However, a general KDD
framework has been proposed by Mannila and Toivonen [11]. Data mining consists in
querying the so-called theory of the database w.r.t. a class of patterns and a selection
predicate that defines their interestingness. Audit can then be supported by queries
over relevant theories. This approach emphasizes a human-centered process: expert
users can precisely specify the theories they are interested in and formulate queries to
learn about the properties that really hold in the data.

Contribution. First, we specify auditing tasks within this general KDD framework.
The basic problem is formalized as mining theories of approximate inclusion and
functional dependencies (see section 2). This enables us to identify an important
subtask to support database audit, i.e., querying an intensionally defined collection
of dependencies. A generic algorithm, the “guess-and-correct” scheme introduced in
[11], is a good starting point for the evaluation of such queries (section 3). Finally, in
section 4, we revisit the heuristics that constitute the core of the DREAM reverse
engineering method [16,17]. In this project, equi-joins that are performed in the
application programs are used to support the discovery of “relevant” dependencies.

2. A formal framework for database audit

Notations. The reader is supposed to be familiar with relational database concepts.
Suppose r is a relational database instance over the schema R. A relation Ri(Xi)
belongs to R and is defined by a relation name Ri and a set of attributes Xi. Each
relation Ri(Xi) is associated with a table ri which is a set of tuples. The database
extension r represents the set of tables ri. ri[Y] is the projection of the table ri on
Y ⊆ Xi and t[Y] is the projection of the tuple t following Y. Let Y and Z be two
subsets of Xi, a functional dependency denoted by Ri :Y → Z on Ri(Xi) is true in
ri iff ∀t, t′ ∈ ri t[Y] = t

′
[Y] ⇒ t[Z] = t

′
[Z]. It can be written r |= Y → Z.

J.-F. Boulicaut / A KDD framework to support database audit 197

Let Ri(Xi) and Rj(Xj) be two relations associated with tables ri and rj , respectively.
Let Y (resp. Z) be a subset of attributes of Xi (resp. Xj). An inclusion dependency
denoted by Ri[Y] ⊆ Rj[Z] is true in ri and rj iff ri[Y] ⊆ rj[Z]. It can be written
r |= Ri[Y] ⊆ Rj[Z].

2.1. Computing theories

First, we introduce the KDD framework of Mannila and Toivonen [11]. Given
a database instance r, assume the definition of a language L for expressing properties
of the data and a selection predicate q. The predicate q is used for evaluating whether
a sentence ϕ ∈ L defines a potentially interesting property of r. Therefore, a mining
task is to compute the theory of r with respect to L and q, i.e., the set Th(L, r, q) =
{ϕ ∈ L | q(r,ϕ) is true}. It is possible to consider generic algorithms to compute such
theories following the popular “learning as search” paradigm. A reasonable collection
of data mining tasks (association rules, sequential patterns, data dependencies, etc.)
have already been carried out using this approach (see [12] for a survey).

Example 2.1. Consider the discovery of dependencies that hold in a database. As-
sume L1 is the language of inclusion dependencies and consider q1 as the satisfaction
predicate: let r and s be the instances of R and S, and δ = R[X] ⊆ S[Y] ∈ L1,
q1(r, δ) is true iff r |= δ. Let L2 be the language of functional dependencies. Here
again, the predicate q2 is the satisfaction predicate.

For instance, assume R = {A,B,C,D} and S = {E,F ,G} and the two follow-
ing instances:

A B C D
1 2 4 5
2 2 2 3
3 1 1 2
4 2 2 3

E F G
1 2 3
2 3 4
3 2 2

R[〈B〉] ⊆ S[〈E〉] ∈ L1 and satisfies q1. R[〈D〉] ⊆ S[〈E〉] ∈ L1 and does not
satisfy q1. AB → C ∈ L2 and satisfies q2. BC → A ∈ L2 and does not satisfy q1.

Looking for a generic data mining technique, a key issue is to organize the search
through the space of L sentences and get some safe pruning strategies. Here, to be
safe means that we do not want to miss any interesting sentence w.r.t. the selection
predicate. A simple idea is to define a specialization relation on L and then use
a levelwise algorithm to compute Th(L, r, q) [11]. A specialization relation � is a
partial order: ϕ is more general than θ, if ϕ � θ (θ is more specific than ϕ). It is a
monotone specialization relation w.r.t. q if for all r and ϕ, if q(r,ϕ) and γ � ϕ then
q(r, γ). In other words, if a sentence ϕ satisfies q, then also all more general sentences
γ satisfy q. A simple but powerful “generate-and-test” algorithm can now be derived:
start from the most general sentences and then try to generate and to evaluate more and

198 J.-F. Boulicaut / A KDD framework to support database audit

more specific sentences, but do not evaluate those sentences that are not interesting
given the available information.

Example 2.2. A monotone specialization relation w.r.t. inclusion dependencies is de-
fined as follows: for ϕ = R[X] ⊆ S[Y] and θ = R′[X ′] ⊆ S′[Y ′], we have
ϕ �1 θ only if R = R′, S = S′, and furthermore X ′ = 〈A1, . . . ,Ak〉, Y ′ =
〈B1, . . . ,Bk〉, and for some disjoint i1, . . . , ih ∈ {1, . . . , k} with h < k we have
X = 〈Ai1 , . . . ,Aih〉, Y = 〈Bi1 , . . . ,Bih〉. For instance, given R = {A,B,C,D} and
S = {E,F ,G}, R[〈A〉] ⊆ S[〈E〉] �1 R[〈A,B〉] ⊆ S[〈E,F 〉]. Notice that this is
not true within the instances of example 2.1. The most general sentences are all the
potential unary inclusion dependencies and at each iteration, one consider “longer at-
tribute sequences”. Now, assuming the restriction to functional dependencies with a
fixed right-hand side denoted as B, a monotone specialization relation w.r.t. functional
dependencies is the reverse of set inclusion: for X, Y ⊆ R and B ∈ R we have
X → B �2 Y → B iff Y ⊆ X. For instance, AB → D �2 A → D. The most
general sentences have the whole set R as the left-hand side. At each iteration, one con-
siders shorter left-hand sides. The selection predicate q1 (resp. q2) is monotone w.r.t.
�1 (resp. �2). It means that if R[〈A,B〉] ⊆ S[〈E,F 〉] holds then R[〈A〉] ⊆ S[〈E〉]
holds. A safe pruning criteria is now obvious: if R[〈A〉] ⊆ S[〈E〉] does not hold then
R[〈A,B〉] ⊆ S[〈E,F 〉] does not hold either and should be discarded at the candidate
generation step. The same idea applies for functional dependencies: if AB → D does
not hold then A→ D does not hold either and might be pruned.

By alternating candidate generation and candidate evaluation, a levelwise algorithm
moves gradually to the more specific interesting sentences. This has been already
implemented for inclusion and functional dependency computation (see [11] for a
complexity analysis and pointers to related work). It provides the best known algorithm
for the discovery of all the inclusion dependencies. For functional dependencies, better
algorithms are available (e.g., [9]). However, it is clear that functional dependency
discovery is a very hard problem due to its inherent exponential complexity and the
fact that functional dependencies with long left-hand sides are less likely to hold than
functional dependencies with shorter ones.

A problem with such a scheme is that the computation of the most interesting
sentences in a theory can be quite slow if there are interesting statements that are
far from the most general sentences (the typical case for functional dependencies).
Furthermore, a framework designed to support (basic) audit task might consider some
important specificities of this kind of application. First, one should not consider only
exact dependencies: we want to study dependencies even in the case where some tu-
ples violate these constraints. Next, the expert user is quite often interested in tightly
specified subsets of the dependencies that hold. For instance, he/she just wants depen-
dencies that involve a given collection of attributes. Finally, quite often, dependencies
do not have to be computed from scratch, i.e., either the expert user has already a

J.-F. Boulicaut / A KDD framework to support database audit 199

good knowledge of constraints that should hold and/or the computation of constraints
has been already done on a previous state of the database.

This motivates the definition of the theories of approximate dependencies, a
querying approach over intensionally defined theories, and the use of a variation of
the levelwise algorithm, the so-called “guess-and-correct” scheme.

2.2. Solving the basic problem

Computing approximate dependencies. Inconsistencies in the database can be allowed
by defining q

′
(r, δ) to be true if some error measure of the dependency δ is lower or

equal to a user-defined threshold. Let us define an error measure g for the inclusion
dependency δ = R[X] ⊆ S[Y] in r:

g(δ, r) = 1−max{|r′| | r′ ⊆ r ∧ (r′ ∪ (r \ r)) |= δ}/|r|
where r is the instance of R. Using g enables one to consider dependencies that
almost hold since it gives the proportion of tuples that must be removed from r to
get a true dependency. Among the several ways of defining approximate functional
dependencies in an instance r of R, one can also consider the minimum number of
rows that need to be removed from r for the dependency γ = R :X → B to hold (the
so-called g3 error measure in [9]):

g3(γ, r) = 1−max{|r′| | r′ ⊆ r ∧ r′ |= γ}/|r|.

Example 2.3. Assuming the instances of example 2.1 for R = {A,B,C,D} and
S = {E,F ,G}, a few approximate inclusion and functional dependencies are given.

Inclusion dependencies Error Functional dependencies Error

R[〈B〉] ⊆ S[〈E〉] 0 B → A 0.5
R[〈D〉] ⊆ S[〈E〉] 0.25 C → A 0.25
S[〈E〉] ⊆ R[〈B〉] 0.33 BC → A 0.25
R[〈C,D〉] ⊆ S[〈E,F 〉] 0.25 BCD→ A 0.25

The selection predicate q1 (resp. q2) can be modified to denote that all the
approximate inclusion (resp. functional) dependencies whose error is lower or equal
to a user-supplied threshold are desired. These selection predicates remain monotone
w.r.t. their respective specialization relations.

Now, one naive approach to solve the basic problem might be to compute theo-
ries of approximate dependencies for some error thresholds, store them in a “SQL3”
table and then query such tables using available query languages. This is a typical
approach in many KDD applications where interestingness of patterns is considered
in a postprocessing phase while pattern discovery is mainly guided by simple criteria
like statistical significance or error thresholds. This gives rise to several problems.

200 J.-F. Boulicaut / A KDD framework to support database audit

The size of such theories can be huge while the expert user is interested in only a few
dependencies. Not only is it untractable to compute the whole theories but also it gives
rise to tedious postprocessing phases (e.g., a posteriori elimination of redundancies). It
motivates a flexible querying framework that supports the analysis of tightly specified
theories.

Querying tightly specified theories. It happens that, a priori, only small subsets of the
languages of dependencies L1 or L2 are interesting. Restrictions of practical interest
concern nontrivial inclusion or functional dependencies, unary inclusion dependencies
but also various selection criteria over attributes. Attribute data types and application
domain semantics guide the definition of such restrictions.

Example 2.4. Continuing example 2.1, an inclusion dependency like R[〈B〉] ⊆
S[〈E〉] can be considered as irrelevant if the corresponding domains for E and B
are respectively, a collection of transaction identifiers and {1,2} to denote male or
female. Also, in an application domain like relational schema restructuring, it is clear
that not all the functional dependencies are interesting (see section 4).

In fact, only expert users can define such restrictions. It is possible to define them
either as context-sensitive restrictions to the definition of L1 and L2 or by means of
new selection predicates. These different views influence the computation process and
its efficiency: it is more or less a “generate-and-test” scheme when the generation
of candidate dependencies can make an active use of given restrictions. Notice that
refining the language (re)definition is the basic technique for dependency discovery
with inductive logic programming systems, the so-called declarative linguistic bias
definition (see, e.g., [7]).

A typical audit process requires the computation of many related theories. Not
only, several theories for the same dependency class are needed, depending on the
dynamically evolving user’s interest, but also different theories for different kinds of
dependencies might be useful. An obvious example is the audit of referential integrity
constraints for which one must consider inclusion dependencies whose right-hand side
sets of attributes are a key, i.e., a special case of functional dependency.

To cope with such a querying approach, the conceptual framework of inductive
databases has recently emerged. It suggests an elegant approach to support audit or
more generally data mining over multiple theories.

2.3. Towards inductive databases

An inductive database, is a database that contains inductive generalizations about
the data, in addition to the usual data [3]. The idea is that the user can then query
the data, the properties in the data as well as the ”behavior” of the data w.r.t. some
properties.

Theories are here defined intensionally. Indeed, it is not realistic to consider that
querying properties can be carried out by means of queries over some materializations

J.-F. Boulicaut / A KDD framework to support database audit 201

of every properties (e.g., data dependencies). The idea is that properties are computed
only at query evaluation time, when the user is asking for some specific ones. However,
during the formulation of the query, he can think that every property is just there.

Formally, the schema of an inductive database is a pair R = (R, (QR, e,V)),
where R is a database schema, QR is a collection of patterns, V is a set of result
values, and e is the evaluation function that defines how patterns occur in the data.
The function e maps each pair (r, θi) to an element of V , where r is a database over
R and θi is a pattern from QR. An instance (r, s) of an inductive database over the
schema R consists of a database r over the schema R and a subset s ⊆ QR.

For our basic problem, we need two inductive databases that associate to a data-
base all the inclusion dependencies and functional dependencies that can be built from
its schema. We can choose that evaluation functions respectively return the g and g3

error measures as previously defined.
At each stage of manipulating an inductive database (r, s), the user can think that

the value of e(r, θ) is available for each pattern θ which is present in the set s, i.e., that
every dependency is actually in s. He/she sends queries over the intensionally defined
collections of all dependencies to select only dependencies fulfilling some constraints.

Example 2.5. Continuing example 2.1, a user might be interested in “selecting” only
inclusion dependencies between instances r and s that do not involve attribute R.A
in their left-hand side and have a g error value lower than 0.3. One expects that a
sentence like R[〈C,D〉] ⊆ S[〈E,F 〉] belongs to the answer.

The definition of a concrete query language for inductive databases is out of the scope
of this paper. However, let us take ideas from the SQL-like operator MINE RULE
[15] and propose two queries.

Example 2.6. The first part of a query specifies the kind of dependency one wants to
mine while the second one, that begins with the keyword FROM, defines the data in
which mining is performed. The intuition is that all the power of SQL can be used for
that selection of the data part. The query introduced in example 2.5 can be written as
follows:
MINE INCLUSION DEPENDENCIES as IND
SELECT 1..n as LHS-IND

1..n as RHS-IND
ERROR

WHERE (ERROR < 0.3) AND (R.A NOT IN LHS-IND)
FROM R,S

The schema of the output table IND has three attributes LHS-IND, RHS-IND and
ERROR that correspond respectively to the left-hand side, the right-hand side and the
error measure of inclusion dependencies. Given the instances in example 2.1, we
expect that the tuple (〈C,D〉 , 〈E,F 〉 , 0.25) that denotes the approximate inclusion
dependency R[〈C,D〉] ⊆ S[〈E,F 〉] belongs to IND.

202 J.-F. Boulicaut / A KDD framework to support database audit

One can now search for functional dependencies in s whose left-hand sides are a
right-hand side of a previously discovered inclusion dependency. Such a query might
look like:

MINE FUNCTIONAL DEPENDENCIES as FD
SELECT 1..n as LHS-FD

1..1 as RHS-FD
ERROR

WHERE (ERROR=0) AND (LHS-FD IN (SELECT IND.RHS-IND FROM
IND))

FROM S

The schema of the output table FD has also three attributes LHS-FD, RHS-FD and
ERROR with the obvious meaning. Given the instances in example 2.1, we expect that
the tuple (〈E,F 〉 , 〈G〉 , 0) that denotes EF → G belongs to FD.
Evaluating this kind of query provides information about potential foreign keys between
R = {A,B,C,D} and S = {E,F ,G}.

Actual object-relational query languages can be used as a basis for inductive data-
base query languages. However, non classical optimization schemes are needed since
selections of properties lead to complex data mining phases. Indeed, implementing
such query languages is difficult because selections of properties are not performed
over previously materialized collections. Optimizing this kind of query remains an
open problem for properties like functional dependencies. However, many inspiring
ideas emerge from current research on association rule mining [3].

3. The “guess-and-correct” generic algorithm

Ref. [11] provides a generic algorithm that starts the process of finding Th(L, r, q)
from an initial guess S ⊆ L. It appears as an interesting basis for query evaluation.
Consider a set S ⊆ L closed downwards under �, i.e., if ϕ ∈ S and γ � ϕ, then γ ∈ S
(by definition, this is true for Th(L, r, q)). The border Bd(S) of S consists of those
sentences ϕ such that all generalizations of ϕ are in S, the so-called positive border
Bd+(S), and none of the specializations of ϕ is in S, the so-called negative border
Bd−(S)). Bd+(S) consists of the most specific sentences in S, and Bd−(S) consists
of the most general sentences that are not in S. Roughly speaking, the positive border
is the collection of the sentences that are “just in” the theory while the negative border
is the set of sentences that are “just off”.

Example 3.1. Assume that the collection of maximal nontrivial inclusion dependencies
between R = {A,B,C,D} and S = {E,F ,G}, i.e., the positive border of the theory
is {R[〈A,B,D〉] ⊆ S[〈G,F ,E〉], R[〈C〉] ⊆ S[〈E〉], S[〈E〉] ⊆ R[〈C〉], S[〈E〉] ⊆
R[〈D〉]}. Its negative border contains many non-dependencies like R[〈A〉] ⊆ S[〈E〉],
or R[〈B〉] ⊆ S[〈E〉].

J.-F. Boulicaut / A KDD framework to support database audit 203

Computing borders is not a simple task in general but it might be tractable for sets of
data dependencies in real-life business databases.

Algorithm 3.1. The “guess-and-correct” algorithm [11]. Given, a database r, a lan-
guage L with specialization relation �, a selection predicate q, and an initial guess S
closed under generalizations, this algorithm outputs Th(L, r, q).

1. E := ∅; // correct S downward

2. C := Bd+(S);

3. while C 6= ∅ do

4. E := E ∪ C;

5. S := S \ {ϕ ∈ C | q(r,ϕ) is false};

6. C := Bd+(S) \ E ;

7. od;

8. C := Bd−(S) \ E ; // S ⊆ Th(L, r, q); expand S upwards

9. while C 6= ∅ do

10. E := E ∪ C;
// evaluation: find which sentences of Ci satisfy q:

11. S := S ∪ {ϕ ∈ C | q(r,ϕ) is true};
// generation: compute Ci+1 ⊂ L using S:

12. C := Bd−(S);

13. od;

14. output S;

The algorithm first evaluates the sentences in the positive border Bd+(S) and removes
from S those that are not interesting. These steps are repeated until the positive border
only contains sentences satisfying q, and thus S ⊆ Th(L, r, q). Then the algorithm
expands S upwards, it evaluates such sentences in the negative border Bd−(S) that
have not been evaluated yet, and adds those that satisfy q to S. Again, these steps are
repeated until there are no sentences to evaluate. Finally, the output is S = Th(L, r, q).
Notice that, from the complexity point of view, the selection predicate has to be
evaluated on every sentence that belongs to the border of a theory. If the initial guess
S = ∅ then Bd+(S) = ∅ and the first part of the algorithm is just skipped while the
second part starts with the candidate set C containing the most general sentences of L.
We get the simple levelwise algorithm that has been sketched in section 2.1.

The discovery of (approximate) functional and inclusion dependencies in a data-
base can be solved by algorithm 3.1 given the specialization relations we introduced.

204 J.-F. Boulicaut / A KDD framework to support database audit

Results about the complexity of such a scheme can be found in [11] and are
not discussed here. However, it is clear that the better the guess is, the better is the
efficiency of the algorithm. How to obtain good original guesses S? One fairly widely
applicable method is sampling: take a small sample s from r, compute Th(L, s, q) and
use it as S. Another obvious situation where a guess is available is when a new
audit is performed on the same database: most of the dependencies should have been
preserved. Definitions at the schema level and application programs can also be used
to produce a guess.

4. Revisiting DREAM heuristics

This section revisits heuristics about dependency discovery for relational database
reverse engineering. Given an operational database, the aim of a Database Reverse
Engineering (DBRE) process is to improve the understanding of the data semantics
and to support the (re)definition of a validated conceptual model. A DBRE process is
naturally split into two major steps [17]:

• Eliciting the data semantics from the existing system
Various sources of information can be relevant for tackling this task, e.g., the
physical schema or the dictionary, the data, the application programs, but especially
expert users. Among other things, application programs might encode integrity
constraints that have not been encoded at the schema level.

• Expressing the extracted semantics with a high level data model
This task consists in a schema translation activity and gives rise to several difficulties
since the concepts of the original model (e.g., a relational schema) do not overlap
those of the target model (e.g., an Entity-Relationship model).

Many works have been done where a conceptual schema is more or less automatically
derived from a hierarchical database, a network database or a relational database [1,4,
16]. For relational databases, it is not realistic to assume that functional dependencies
or foreign keys are available at the beginning of a DBRE process. Furthermore, the
less we make assumptions on the knowledge a priori (normalization, attribute naming
discipline, etc.), the more we can cope with real-life databases. Several works [18,
16,19] have proposed independently to fetch the needed information from the data
manipulation statements embedded in application programs.

In the DREAM project [16], we began to study the use of equi-joins to sup-
port 3NF schema reverse engineering. This work has been extended to cope with
denormalized schema in [17]. In the spirit of [14], the DREAM approach considers
the relational schemas that can be translated into conceptual schemas, by looking into
the method which has been used to design them. The key problems can be resumed
as follows: identifying the relevant objects of the application domain, recovering the
structure of each of these objects and eliciting the links (or relationships) between these
objects. This process is inherently iterative and interactive: only a part of dependency
discovery can be done automatically.

J.-F. Boulicaut / A KDD framework to support database audit 205

To cope with denormalized schemas, [17] propose a restructuring phase that
leads to 3NF schemas where, according to the experts in charge of the validation,
each relation maps exactly one object of the application domain. For that purpose,
one has to find the functional dependencies which are meaningful for the application
domain while they are not conceptualized as relations. Assuming that primary keys are
known, the difficulty is to find out the non-key attributes that correspond to identifiers
of objects of the application domain. These attributes constitute the left hand side
of relevant functional dependencies and are involved in some (approximate) inclusion
dependencies (foreign keys). As a matter of fact, one must support the discovery of
hidden objects [10] that can even be encoded in 3NF schemas.

The main contribution in the DREAM proposal has been to explore how the
attributes on which equi-joins are performed help the discovery of interesting inclusion
and functional dependencies for these restructuring purposes. The main result has been
the following heuristics.

• Equi-joins between sets of attributes that are embedded in application programs can
be used to discover “relevant” inclusion dependencies.

• Non-key attributes of discovered inclusion dependencies are good candidates for
the left-hand side of “relevant” functional dependencies.

These heuristics obviously reduce the number of dependencies to be considered and
“relevancy” refers to the interestingness of discovered dependencies for the restructur-
ing process. A complete scenario is considered in [17] though the following example
carries out the intuition.

Example 4.1. Given emp={code,name,tel,add}, dept={dep,director,
add} and the dependencies (1) dept[director] ⊆ emp[code] (2) emp[add]
⊆ dept[add] (3) code → name, tel, add and (4) tel → add. De-
pendencies (1) and (3) seem relevant for a restructuring phase while (2) and (4)
are just integrity constraints. The DREAM heuristics rely on the assumption that
dept.director ./ emp.code is probably performed in application programs
(pointing out the potentially interesting dependency (1) and that code is a candidate for
a left-hand side of a potentially interesting functional dependency) while dept.add
./ emp.add probably does not occur.

It is now clear that analyzing the set of equi-joins in application programs, enables
to focus on interesting inclusion dependencies. Furthermore, it helps to fix integrity
problems when we find that, e.g., R.C ./ S.E is performed while neither R[〈C〉] ⊆
S[〈E〉] or S[〈E〉] ⊆ R[〈C〉] hold.

The collection of equi-joins can be considered as a theory Th(L, r, q) where L
is the language of all the equi-joins between sets of attributes from r and q is the
predicate that says if a given equi-join is performed on r. Computing such theories
requires nontrivial compilation techniques. Indeed, even if we consider only SQL
queries, equi-joins can be performed in many ways, with nested or unnested queries,

206 J.-F. Boulicaut / A KDD framework to support database audit

with a where clause or with an intersect operator, etc. Such a collection is a valuable
source of information to support maintenance of application code as well as data
semantics elicitation.

DREAM heuristics can be encoded in queries over the inductive databases of
inclusion and functional dependencies, using selection criteria derived from equi-join
occurrences. The DREAM method does not claim any completeness about discovered
dependencies. However, it appears that by combining the different sources of informa-
tion, we can compute guesses and speed up the discovery of the complete collections.

5. Conclusions

We presented a framework for the audit of databases based on a KDD perspective.
It emphasizes that high-level querying tools are needed to support expert analysis of
operational databases. It provides a nice application domain for an ongoing research on
generic data mining tools (inductive database management systems) though it brings a
solution to concrete problems of practical interest (e.g., mining approximate dependen-
cies). We must now study typical audit tasks. For instance, supporting the elicitation
of referencial integrity constraints can be useful when migrating from an old DBMS
to a recent one. It needs not only to mine inclusion and functional dependencies but
also to support the efficient search for erroneous data. Finally, it seems interesting to
study the relationship between approximate inclusion dependency discovery and other
measures of similarity between sets of attributes, e.g., [6].

References

[1] C. Batini, S. Ceri and S. Navathe, Conceptual Database Design: An Entity-Relationship Approach
(Benjamin Cummings, 1997).

[2] S. Bell, Discovering rules in relational databases for semantic query optimisation, in: Proc.
PADD’97, Practical Application Company (1997) pp. 79–90.

[3] J-F. Boulicaut, M. Klemettinen and H. Mannila, Querying inductive databases: A case study on the
MINE RULE operator, in: Proc. PKDD’98, LNAI 1510, Springer-Verlag (1998) pp. 194–202.

[4] R.H.L. Chiang, T.M. Barron and V.C. Storey, Reverse engineering of relational databases: extraction
of an EER model from a relational database, Data & Knowledge Engineering 10(12) (1994) 107–
142.

[5] R.H.L. Chiang, T.M. Barron and V.C. Storey, A framework for the design and evaluation of reverse
engineering methods for relational databases, Data & Knowledge Engineering 21 (1996) 53–77.

[6] C. Chua, R.H.L. Chiang and E-P. Lim, Instance-based attribute identification in database integration,
in: Proc. WITS’98, eds. S.T. March and J. Bubenko Jr., pp. 147–156.

[7] L. de Raedt and L. Dehaspe, Clausal discovery, Machine Learning 26 (2) (1997) 99–146.
[8] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (eds.), Advances in Knowledge

Discovery and Data Mining (AAAI Press, 1996).
[9] Y. Huhtala, J. Kärkkäinen, P. Porkka and H. Toivonen, Efficient discovery of functional and ap-

proximate dependencies using partitions, in: Proc. ICDE’98 (IEEE Computer Society Press, 1998)
pp. 392–401.

[10] P. Johannesson, A method for translating relational schemas into conceptual structures, in: Proc.
ICDE’94 (IEEE Computer Society Press, 1994) pp. 190–201.

J.-F. Boulicaut / A KDD framework to support database audit 207

[11] H. Mannila and H. Toivonen, Levelwise search and borders of theories in knowledge discovery,
Data Mining and Knowledge Discovery 1(3) (1997) 241–258.

[12] H. Mannila, Methods and problems in data mining, in: Proc. ICDT’97, LNCS 1186, Springer-Verlag
(1997) pp. 41–55.

[13] H. Mannila and K.-J. Räihä, The Design of Relational Databases (Addison-Wesley, 1992).
[14] V.M. Markowitz and J.A. Makowsky, Identifying extended entity-relationship object structures in

relational schemas, IEEE Trans. on Software Engineering 16(8) (1990) 777–790.
[15] R. Meo, G. Psaila and S. Ceri, A new SQL-like operator for mining association rules, in: Proc.

VLDB’96 (1996).
[16] J.-M. Petit, J. Kouloumdjian, J.-F. Boulicaut and F. Toumani, Usign queries to improve database

reverse engineering, in: Proc. ER’94, LNCS 881, Springer-Verlag (1994) pp. 369–386.
[17] J.-M. Petit, F. Toumani, J.-F. Boulicaut and J. Kouloumdjian, Towards the reverse engineering

of denormalized relational databases, in: Proc. ICDE’96 (IEEE Computer Society Press, 1996)
pp. 218–227.

[18] W.J. Premerlani and M. Blaha, An approach for reverse engineering of relational databases, Com-
munications of the ACM 37(5) 1994 42–49.

[19] O. Signore, M. Loffredo, M. Gregori and M. Cima, Reconstruction of ER schema from database
applications: A cognitive approach, in: Proc. ER’94, LNCS 881, Springer-Verlag (1994) pp. 387–
402.

