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Abstract. Recently inductive databases (IDBs) have been proposed to
afford the problem of knowledge discovery from huge databases. Query-
ing these databases needs for primitives to: (1) select, manipulate and
query data, (2) select, manipulate and query “interesting” patterns (i.e.,
those patterns that satisfy certain constraints), and (3) cross over pat-
terns and data (e.g., selecting the data in which some patterns hold).
Designing such query languages is a long-term goal and only preliminary
approaches have been studied, mainly for the association rule mining
task. Starting from a discussion on the MINE RULE operator, we identify
several open issues for the design of inductive databases dedicated to
these descriptive rules. These issues concern not only the offered prim-
itives but also the availability of efficient evaluation schemes. We em-
phasize the need for primitives that work on more or less condensed
representations for the frequent itemsets, e.g., the (frequent) d-free and
closed itemsets. It is useful not only for optimizing single association rule
mining queries but also for sophisticated post-processing and interactive
rule mining.

1 Introduction

In the cIn(ﬂ project, we want to develop a new generation of databases, called
“inductive databases” (IDBs), suggested by Imielinski and Mannila in [15] and
formalized in, e.g., [10]. This kind of databases integrate raw data with knowledge
extracted from raw data, materialized under the form of patterns into a com-
mon framework that supports the knowledge discovery process within a database
framework. In this way, the process of KDD consists essentially in a querying
process, enabled by an ad-hoc, powerful and universal query language that can
deal either with raw data or patterns and that can be used throughout the whole
KDD process across many different applications. We are far from an understand-
ing of fundamental primitives for such query languages when considering various
kinds of knowledge discovery processes. The so-called association rule mining
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process introduced in [1] has received a lot of attention these last five years and
it provides an interesting context for studying the inductive database framework
and the identification of promising concepts. Indeed, when considering this kind
of local pattern, a few query languages can be considered as candidates like the
MINE RULE operator [23], MSQL [16], and DMQL [14] (see also [5] for a critical
evaluation of these three languages).

A query language for IDBs, is an extension of a query language that includes
primitives for supporting every step of the mining process. When considering
association rule mining, it means that the language enables to specify:

— The selection of data to be mined. It must offer the possibility to select (e.g.,
via standard queries but also by means of sampling), to manipulate and to
query data and views in the database. Also, primitives that support typical
preprocessing like quantitative value discretization are needed.

— The specification of the type of rules to be mined. It often concerns syntactic
constraints on the desired rules (e.g., the size of the body) but also the
specification of the sorts of the involved attributes.

— The specification of the needed background knowledge (e.g., the definition
of a concept hierarchy).

— The definition of constraints that the extracted patterns must satisfy. Among
others, this implies that the language allows the user to define constraints
that specify the interestingness (e.g., using measures like frequency, confi-
dence, etc) on the patterns to be mined.

— The post-processing of the generated results. The language must allow to
browse the collection of patterns, apply selection templates, cross over pat-
terns and data, e.g., by selecting the data in which some patterns hold, or
to manipulate results with some aggregate functions.

The satisfaction of a closure property, i.e., the user queries an inductive
database instance and the result is again an inductive database instance is cru-
cial for supporting the dynamic aspect of a discovery process and its inherent
interactivity. This closure property can be achieved by means of the storage of
the extracted patterns in the same database.

Contribution. Relating the inductive database framework with constraint-based
mining enables to widen the scope of interest of this framework to various contri-
butions in the data mining and machine learning communities. Then, we consider
that it is useful to emphasize the interest of several condensed representations
for frequent patterns that have been studied the last three years. However, al-
gorithms for mining these representations have been already published and will
not be discussed here. Only a few important conceptual issues like regeneration
or the need for constrained condensed representations are discussed. Last, we
sketch why these concepts are useful not only for the optimization of a single
association rule mining query but also for sophisticated rule post-processing and
interactive association rule mining.
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Organization of the paper. First, we discuss the MINE RULE proposal to identify
several open issues for the design of inductive databases dedicated to association
rule mining (Section 2). It concerns not only the offered primitives but also the
availability of efficient evaluation schemes. In Section 3, we provide a formal-
ization of the association rule mining task and the needed notations. Then, in
Section 4, we emphasize the need for primitives that work on more or less con-
densed representations for the frequent itemsets, e.g., the (frequent) d-free and
closed itemsets. In Section 5, the use of these condensed representations for both
the optimization of inductive queries and sophisticated rule post-processing is
discussed.

2 The MINE RULE Operator [23]

Throughout this paper, we use the MINE RULE query example of Figure[l on the
relational database of Table[ll The database records several transactions made
by three customers in a store on different dates. The result of such a query is a
set of frequent and valid association rules. A rule like Coffee Boots = Darts is
frequent if enough customers buy within a same transaction Coffee, Boots and
Darts. This rule is said valid if a customer who buys Coffee and Boots tends
to buy Darts either.

Association rules are mined from a so-called transactional database that must
be specified within the query. The FROM clause of the query specifies which part
of the relational database (using any valid SQL query) is considered to con-
struct the transactional database (e.g., given the used WHERE clause, only the
transactions done after Nov. 8 are used). The GROUP BY clause specifies that the
rows of the purchase table are grouped by transactions to form the rows of the
transactional database (e.g., another choice would have been to group the rows
by customers). In our query example, the result of this grouping/selection step
is the transactional database T of Figure

The specified transactional database is used to perform association rule min-
ing under constraints. The SELECT clause specifies that the body and head of
the rules are products (a rule has the form body = head where body and
head are sets of products) and that their size is greater than one (with no
upper bound). This query also defines the constraints that must be fulfilled
by the rules. The rules must be frequent (with a frequency threshold of 0.5),
valid (with a confidence threshold of 0.7), and must satisfy the other constraints
expressed in the SELECT clause: Co(X = Y) = VA € Y, Aprice > 100 and
(X =Y) = |(XUY)Nn{Album, Boots}| < 1. C, means that all products in the
head of the rule must have a price greater than 100 and C, means that the rule
must contain at most one product out of {Album, Boots}. Finally, the answer to
this query is the set of rules that satisfy Cereq ACoont ACq ACy on the transactional
database T of Figure

Let us now review some of the open problems with the MINE RULE proposal.

— Data selection and preprocessing. Indeed, query languages based on SQL en-
able to use the full power of this standard query language for data selection.
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Table 1. Part of the purchase table.

tr. cust. product date price
1 cust; Coffee Nov. 8 20
1 cust; Darts Nov. 8 50
2 custe Album  Nov. 9 110
2 custe Boots Nov. 9 120
2 custo Coffee Nov. 9 20
2 custe Darts Nov. 9 50
3 cust; Boots Nov.9 120
3 cust; Coffee Nov. 9 20
4 custz Album Nov. 10 110
4 custs Coffee Nov. 10 20

MINE RULE result AS
SELECT DISTINCT l..n product AS BODY,
1..n product AS HEAD, SUPPORT, CONFIDENCE
WHERE HEAD.price> 100 AND
|(HEAD U BODY) N {Album, Boots}| <1
FROM purchase WHERE date > Nov. 8
GROUP BY transaction
EXTRACTING RULES WITH SUPPORT: 0.5, CONFIDENCE: 0.7

Fig. 1. A MINE RULE query on the purchase database.

It is out of the scope of this paper to discuss this phase but it is interesting
to note that MINE RULE offers no specific primitive for data preprocessing
(e.g., discretization) and that the other languages like MSQL offer just a few
[16]. Preprocessing remains ad-hoc for many data mining processes and it is
often assumed that it is performed beforehand by means of various software
tools.

The specification of the type of rules to be mined is defined in MINE RULE by
the SELECT clause. It enables the definition of simple syntactic constraints,
the specification of the sorts of attributes, and the definition of the so-called
mining conditions that can make use of some background knowledge. Using
MINE RULE, it is assumed that this knowledge has been encoded within the
relational database.

In MINE RULE, it is possible to define minimal frequency and minimal confi-
dence for the desired rules.

Rule post-processing. When using MINE RULE, no specific post-processing
primitive is offered. This contrasts with the obvious needs for pattern post-
processing in unsupervized data mining processes like association rule min-
ing. Indeed, extracted rules can be stored under a relational schema and
then be queried by means of SQL. However, it has been shown (see, e.g.,
[5]) that simple post-processing queries are then quite difficult to express.
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To the best of our knowledge, in the MINE RULE architecture, the collection
of frequent itemsets and their frequencies is not directly available for further
use. It means that the computation of other interestingness measures like
the J-measure [29] is not possible without looking again at the data. For
rule post-processing, MSQL is richer than the other languages in its offer
of few built-in post-processing primitives (it reserves a dedicated operator,
SelectRules for these purposes and primitives for crossing over the rules
to the data). However, none of the proposed languages supports complex
post-processing processes (e.g., the computation of non redundant rules) as
needed in real-life association rule mining.

It is useful to abstract the meaning of such mining queries. A simple model
has been introduced in [22] that considers a data mining process as a sequence
of queries over the data but also the theory of the data. Given a language £
of patterns (e.g., association rules), the theory of a database r with respect to
L and a selection predicate g is the set Th(r,L,q) = {¢ € L | q(r, ) is true}.
The predicate ¢ indicates whether a pattern ¢ is considered interesting (e.g.,
q specifies that ¢ is “frequent” in r). The selection predicate can be defined
as a combination (boolean expression) of atomic constraints that have to be
satisfied by the patterns. Some of them refer to the “behavior” of a pattern in
the data (e.g., its “frequency” in r is above a threshold), some others define
syntactical restrictions on the desired patterns (e.g., its “length” is below a
threshold). Preprocessing defines r, the mining phase is often the computation
of the specified theory while post-processing can be considered as a querying
activity on a materialized theory or the computation of a new theory. A “generate
and test” approach that would enumerate the sentences of £ and then test
the selection predicate ¢ is generally impossible. A huge effort has concerned
the “active” use of the primitive constraints occurring in ¢ to have a tractable
evaluation of useful mining queries.

Indeed, given the (restricted) collection of primitives offered by the MINE
RULE operator, it is possible to have an efficient implementation thanks to the
availability of efficient algorithms for computing frequent itemsets from huge but
sparse databases [2]26]. To further extend both the efficiency of single query eval-
uation (especially in the difficult contexts where expressive constraints are used
and/or the data are highly-correlated), the offered primitives for post-processing
and the optimization of sequence of queries, we now consider an abstract frame-
work in which the impact of the so-called condensed representations of frequent
patterns can be emphasized.

3 Association Rule Mining Queries

Assume that Items is a finite set of symbols denoted by capital letters, e.g.,
Items= {A,B,C,...}. A transactional database is a collection of rows where each
row is a subset of Items. An itemset is a subset of Items. A row r supports
an itemset S if S C r. The support (denoted support(S)) of an itemset S is
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the multi-set of all rows of the database that support S. The frequency of an
itemset S is |support(S)|/|support(@)| and is denoted F(S). Figure B provides
an example of a transactional database and the supports and the frequencies of
some itemsets. We often use a string notation for itemsets, e.g., AB for {A, B}.

An association rule is denoted X = Y where X NY = 0 and X C Items
is the body of the rule and Y C Items is the head of the rule. The support and
frequency of a rule are defined as the support and frequency of the itemset XUY".
A row r supports a rule X = Y if it supports X UY. A row r is an exception for
arule X = Y if it supports X and it does not support Y. The confidence of the
ruleis CF(X = Y)=F(X =Y)/F(X)=F(XUY)/F(X). The confidence
of the rule gives the conditional probability that a row supports X UY when
it supports X. A rule with a confidence of one has no exception and is called
a logical rule. Frequency and confidence are two popular evaluation functions
for association rules. Interestingly, the association rule mining task is not well
specified as a theory computation. Indeed, in this kind of process, we need not
only the patterns that satisfy ¢ but also the results of some evaluation functions
for each of these selected patterns.

‘We now define constraints on itemsets and rules.

Definition 1 (constraint). If B denotes the set of all transactional databases
and 21" the set of all itemsets, an itemset constraint C is a predicate over
2ttems B, Similarly, a rule constraint is a predicate over R x B where R is the set
of association rules. An itemset S € 21" (resp. a rule R) satisfies a constraint
C in the database B € B iff C(S,B) = true (resp. C(R, B) = true). When it is
clear from the context, we write C(S) (resp. C(R)). Given a subset I of Items,
we define SAT¢(I) = {S € I, S satisfies C} for an itemset constraint (resp. if J
is a subset of R, SAT¢(J) = {R € J, R satisfies C} for a rule constraint). SAT¢
denotes SAT¢(2™°") or SAT¢(R).

We can now define the frequency constraint for itemsets and the frequency
and confidence constraints for association rules. Cireq(S) = F(S) > 7, Cireq(X =
Y)=FX=Y) > Comt(X =Y) =CF(X =Y) > 0 where v is the
frequency threshold and 6 the confidence threshold. A rule that satisfies Ceeq is
said frequent. A rule that satisfies Ceons is said valid.

Example 1 Consider the dataset of Figure [d where Items= {A,B,C,D}. If the
frequency threshold is 0.5, then with the constraint Cy(S) = |S N {A,B}| < 1,
SATe,,..ac, = {0, A,B,C,AC,BC} If the confidence threshold is 0.7, then the rules
satisfying the constraint of Figurel are SATc, acyACHeqACeons = 10 = A, C = A}

Let us now formalize that inductive queries that return itemsets or rules must
also provide the results of the evaluation functions for further use.

Definition 2 (itemset query). A itemset query is a pair (C,r) where r is
a transactional database and C is an itemset constraint. The result of a query
Q = (C,r) is defined as the set Res(Q) = {(S,F(S))|S € 21" AC(S) = true}.
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Itemset Support Frequency

ta|ABCD
t2 BC A {t27t47t57 t67t7} 083
t3 AC B {t2,t3,te, tr} 0.67
= . AB {tQat67t7} 0.5
ts|AC
AC {t27t47t57 t67t7} 0.83
t6|ABCD
t7|ABC CD {t2,t6} 0.33
' ACD {t2,t6} 0.33

Fig. 2. Supports and frequencies of some itemsets in a transactional database. This
database is constructed during the evaluation of the MINE RULE query of Figure []
from the purchase table of Table [

Definition 3 (association rule query). An association rule query is a pair
(C,r) where r is a transactional database and C is an association rule con-
straint. The result of a query Q = (C,r) is defined as the set Res(Q) =
{(r, F(R),CF(R))

|[R € RANC(R) = true}.

The classical association rule mining problem can be stated in an associa-
tion rule query where the constraint part is the conjunction of the frequency and
confidence constraint [I]. Our framework enables more complex queries and does
not require that the frequency and/or frequency constraints appear in C. How-
ever, if the constraint C is not enough selective, the query will not be tractable.
Selectivity can not been predicted beforehand. Fortunately, when the constraint
has some nice properties, e.g., it is a conjunction of anti-monotone and mono-
tone atomic constraints, efficient evaluation strategies have been identified (see
the end of this section).

Our definition of an association rule query can also be modified to include
other quality measures (e.g., the J-measure [29]) and not only the frequency and
the confidence.

Computing the result of the classical association rule mining problem is gen-
erally done in two steps [2]: first the computation of all the frequent itemsets and
their frequency and then the computation of every valid association rule that
can be made from disjoint subsets of each frequent itemset. This second step is
far less expensive than the first one because no access to the database is needed:
only the collection of the frequent itemsets and their frequencies are needed.

To compute the result of an arbitrary association rule query, the same strat-
egy can be used. First, derive an itemset query from the association rule query,
then compute the result of this query using the transactional database and fi-
nally generate the association rules from the itemsets. For the first step, there is
no general method. This is generally done in an ad-hoc manner (see Example )
and supporting this remains an open problem. The generation of the rules can
be performed by the following algorithm:

Algorithm 1 (Rule_Gen) Given an association rule query (r,C) and the re-
sult Res of the itemset query, do:
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For each pair (S,F(S)) € Res and for each T C S
Construct the rule R:==T = (S —T)
Compute F(R) := F(S) and CF(R) := F(S)/F(T).
Output (R, F(R),CF(R)) if it satisfies the rule constraint C.

Since the database is used only during the computation of itemsets, the
generation of rules is efficient.

Example 2 The constraint used in the query of Figure[d is: Cor(X = Y)
Cireq N Ceont A Co(X = Y)ANC(X = Y) where Co(X = Y) = VA
Y, A.price > 100 and Cp(X = Y) = [(X UY) N {Album, Boots}| < 1. C
can be rewritten as an itemset constraint: Cp(S) = |S N {Album, Boots}| < 1.
Furthermore, since (as specified in the MINE RULE query) rules cannot have
an empty head, Co(X = Y) = VA € Y, Aprice > 100 AC.(X UY) where
C.(S)=|SN{I € Items, I.price > 100}| > 1 is a useful itemset constraint.

Finally, we can derive an itemset query Q; = (C;,r) with the constraint
Ci = Cireq N\ Cy AC,, and be sure that the result of this itemset query will allow
the generation of the result of the association rule query Q@ = (Cur,r) using
Algorithm [0

m |l

The efficiency of the extraction of the answer to the itemset query relies on the
possibility to use constraints during the itemset computation. A classical result is
that effective safe pruning can be achieved when considering anti-monotone con-
straints [2226]. It relies on the fact that if an itemset violates an anti-monotone
constraint then all its supersets violate it as well and therefore this itemset and
its supersets can be pruned.

Definition 4 (Anti-monotonicity). An anti-monotone constraint is a con-
straint C such that for all itemsets S, S’: (S C S AC(S)) = C(Y).

The prototypical anti-monotone constraint is the frequency constraint. The
constraint C;, of Example 2]is another anti-monotone constraint and many other
examples can be found, e.g., in [26]. Notice that the conjunction or disjunction
of anti-monotone constraints is anti-monotone.

The monotone constraints can also be used to improve the efficiency of item-
set extraction (optimization of the candidate generation phase that prevents to
consider candidates that do not satisfy the monotone constraint) [17]. However,
pushing monotone constraints sometimes increases the computation times since
it prevents effective pruning based on anti-monotone constraints [30/912].

Definition 5 (Monotonicity). A monotone constraint is a constraint C such
that for all itemsets S, S': (S C S" A S satisfies C) = S’ satisfies C.

Example 3 C, (see Ezample [@), C(S) = {A,B,C,D} C 8, C(S) =
Sum(S.price) > 100 (the sum of the prices of items from S is greater than
100) and C(S) = SN {A,B,C} # 0 are examples of monotone constraints.
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4 Condensed Representations of Frequent Sets

To answer an association rule query, we must be able to provide efficiently the
frequency of many itemsets (see Algorithm[I). Computing the frequent itemsets
is a first solution. Another one is to use condensed representations with respect to
frequency queries. Condensed representation is a general concept (see, e.g., [21]).
In our context, the intuition is to substitute to the database or the collection
of the frequent itemsets, another representation from which we can derive the
whole collection of the frequent itemsets and their frequencies. In this paper,
given a set S of pairs (X, F(X)), we are interested in condensed representations
of § that are subsets of S with two properties: (1) It is much smaller than S
and faster to compute, and (2), the whole set S can be generated from the
condensed representation with no access to the database, i.e., efficiently. User-
defined constraints can also be used to further optimize the computation of
condensed representations [17].

Several algorithms exist to compute various condensed representations of fre-
quent itemsets: CLOSE [27], CLOSET [28], CHARM [31], MIN-EX [6], or PASCAL
[M]. These algorithms compute different condensed representations: the frequent
closed itemsets (CLOSE, CLOSET, CHARM), the frequent free itemsets (MIN-EX,
PAsCAL), or the frequent J-free itemsets for MIN-EX. Also, a new promising
condensed representation, the disjoint-free itemsets, has been proposed in [I1].
These algorithms enable tractable extractions from dense and highly-correlated
data, i.e., extractions for frequency thresholds on which APRIORI-like algorithms
are intractable. Let us now discuss two representations on which we have been
working: the closed itemsets and the d-free itemsets.

Definition 6 (closures and closed itemsets). The closure of an itemset S
(denoted by closure(S)) is the mazimal (for set inclusion) superset of S which
has the same support than S. A closed itemset is an itemset that is equal to its
closure.

The next proposition shows how to compute the frequency of an itemset
using the collection of the frequent closed itemsets efficiently, i.e., with no access
to the database.

Proposition 1 Given an itemset S and the set of frequent closed itemsets,

— If S is not included in a frequent closed itemset then S is not frequent.
— Else S is frequent and F(S) = Max{F(X), S C X and X is closed}.

Using this proposition, it is possible to design an algorithm to compute the
result of a frequent itemset query using the frequent closed itemsets. This al-
gorithm is not given here (see, e.g., [20M4]). As a result, y-frequent closed item-
sets are like the v-frequent itemsets a 7/2-adequate representation for frequency
queries [6], i.e., the error on the exact frequency for any itemset is bound by ~y/2
(the /2 value is given to infrequent itemsets and the frequency of any frequent
itemset is known exactly).



Constraint-Based Discovery and Inductive Queries 119

Example 4 In the transactional database of Figure[d, if the frequency threshold
is 0.2, every itemset is frequent (16 frequent itemsets). The frequent closed sets
are C, AC, BC, ABC, and ABCD and we can use the previous property to get the
frequency of non-closed itemsets from closed ones (e.g., F(AB) = F(ABC) since
ABC is the smallest closed superset of AB).

We can compute the closed sets from the free sets.

Definition 7 (free itemset). An itemset S is free if no logical rule holds
between its items, i.e., it does not exist two distinct itemsets X, Y such that
S=XUY,Y #0 and X =Y is a logical rule.

Example 5 In the transactional database of Figure[d, if the frequency threshold
is 0.2, the frequent free sets are ), A, B, D, and AB.

The closed sets are the closure of the free one. Freeness is an anti-monotone
property and thus can be used efficiently, e.g., within a level-wise algorithm.

When they can be computed, closed itemsets constitute a good condensed
representation (see, e.g., [6] for experiments with real-life dense and correlated
data sets). The free sets can be generalized to d-free itemset<d. Representations
based on J-free itemsets are quite interesting when it is not possible to mine
the closed sets, i.e., when the computation is intractable given the user-defined
frequency threshold. Indeed, algorithms like CLOSE [27] or PASCAL [4] use logical
rule to prune candidate itemsets because their frequencies can be inferred from
the frequencies of free/closed itemsets. However, to be efficient, these algorithms
need that such logical rules hold in the data. If it is not the case, then the
frequent free sets are exactly the frequent itemsets and we get no improvement
over APRIORI-like algorithms.

The MIN-EX algorithm introduced in [6l8] computes d-free itemsets. The
concept of closure is extended, providing new possibilities for pruning. However,
we must trade this efficiency improvement against precision: the frequency of the
frequent itemsets are only known within a bounded error. The MIN-EX algorithm
uses rules with few exceptions to further prune the search space. Given an itemset
S =XUY and arule Y = Z with less than § exceptions, then the frequency of
X UY U Z can be approximated by the frequency of S. More formally, MIN-Ex
uses an extended notion of closure.

Definition 8 (J-closure and J-free itemsets). Let § be an integer and S an
itemset. The §-closure of S, closures(S) is the mazimal (w.r.t. the set inclusion)
superset Y of S such that for every item A € Y — S, |Support(S U {A})| is at
least |Support(S)| — 8. An itemset S is d-free if no association rule with less
than 6 exceptions holds between its subsets.

Example 6 In the transactional database of Figure[d, if the frequency threshold
is 0.2 and § = 1, the frequent 1-free sets are (), A, B, and D.

2 There is no such generalization for closed sets
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Notice that with § = 0, it is the same closure operator than for CLOSE, i.e.,
closurey = closure. Larger values of § leads to more efficient pruning (there
are less d-free itemsets) but also larger errors on the frequencies of itemsets when
they are regenerated from the J-free ones (see below).

The output of the MIN-EX algorithm is formally given by the three following
sets: F'F(r,v,0) is the set of the y-frequent d-free itemsets, IF(r,~,d) is the
set of the minimal (w.r.t. the set inclusion) infrequent d0-free itemsets (i.e., the
infrequent 0-free itemsets whose all subsets are ~-frequent). FN(r,~,d) is the
set of the minimal y-frequent non-d-free itemsets (i.e., the y-frequent non-é-free
itemsets whose all subsets are J-free). The two pairs (FF,IF) and (FF,FN) are
two condensed representations based on J-free itemsets. The next proposition
shows that it is possible to compute an approximation of the frequency of an
itemset using one of these two condensed representations.

Proposition 2 Let S be an itemset. If there exists X € IF(r,v,d) such that
X C S then S is infrequent. If S ¢ FF(r,v,d) and there does not exist
X € FN(r,v,0) such that X C S then S is infrequent. In these two cases,
the frequency of S can be approzimated by /2 Else, let F' be the §-free item-
set such that: F(F) = Min{F(X), X C S and X is §-free}. Assuming that
ng = |support(S)| and ng = |support(F)|, then np > ng > nrp—48(|S|—|F)|), or,
dividing this by n, the number of rows inr, F(F) > F(S) > F(F)—2(|S|—|F|).

Typical § values range from zero to a few hundreds. With a database size of
several tens of thousands of rows, the error made is below few percents [g].

Using Proposition 2, it is also possible to regenerate an approximation of the
answer to a frequent itemset query from one of the condensed representation
(FF,IF) or (FF,FN):

— The frequency of an itemset is approximated with an error bound given by
Proposition 2 (notice that this error is computed during the regeneration
and thus can be presented to the user with the frequency of each itemset).

— Some of the computed itemsets might be infrequent because the uncertainty
on their frequencies does not enable to classify them as frequent or infrequent
(e.g., if vy = 0.5 and the F(X) = 0.49 with an error of 0.02).

If 6 = 0, then the two condensed representations enable to regenerate exactly
the answer to a frequent itemset query.

Given an arbitrary itemset query @ = (C,r), there are therefore two solutions
to compute its answer:

— Pushing the anti-monotone and monotone part of the constraint C as
sketched in Section 3.

— Using condensed representation to answer a more general query (with only
the frequency constraint) and then filter the itemsets that do not verify the
constraint C.

We now consider how to combine these two methods for mining condensed rep-
resentations that satisfy a conjunction of an anti-monotone and a monotone
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constraint. In [17], we presented an algorithm to perform this extraction. This
algorithm uses an extension of the J-free itemsets, the contextual d-free itemsets.

Definition 9 (contextual J-free itemset). An itemset S is contextual §-free
with respect to a monotone constraint Cp, if it does not exist two distinct subsets
X, Y of S such that X satisfies Cp, and X =Y has less than 0 exceptions.

The input and output of this algorithm are formalized as follows:

Input: a query @ = (Cam A Cm,r) where Cqyp, is an anti-monotone constraint
and C,, a monotone constraint.
Output: three collections F'F', IF, FN and, if § = 0, the collection O.

— FF ={(S,F(S))|S is contextual é-free and Cys, (S) A Cry (S) is true},
— IF and F'N are defined as for MIN-EX and
— O = {(closure(S), F(95))|S is free and Creq(S) A Cam(S) is true}.

These collections give three condensed representations O (if § = 0), (FF,IF)
and (F'F, FN). The regeneration of the answer to the query @ using the collec-
tion O of closed itemsets can be done by:

Given an itemset .S
If C,,,(S) is true, then use Proposition 1 to compute F(.5)
If Cym(S) is true then output (S, F(9)).

When considering (F'F,IF) or (FF,FN):

If C,,,(S) is true, then use (FF,IF) or (FF,FN) as in Proposition 2 to
compute F(S5).
If Cym (S) is true or unknown then output (S, F(S))

The result of Cym, (S) can be unknown due to the uncertainty on the frequency

(if 6 # 0).

5 Uses of Condensed Representations
Let us now sketch several applications of such condensed representations.

Optimization of MINE RULE queries. It is clear that the given condensed repre-
sentations of the frequent patterns can be used, in a transparent way for the
end-user, for optimization purposes. In such a context, we just have to replace
the algorithmic core that concerns frequent itemset mining by our algorithms
that compute free/closed itemsets and then derive the whole collection of the
frequent itemsets. Also, the optimized way to push conjunction of monotone and
anti-monotone constraints might be implemented.

Condensed representations have other interesting applications beyond the
optimization of an association rule mining query.
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Generation of non-redundant association rules. One of the problems in asso-
ciation rule mining from real-life data is the huge number of extracted rules.
However, many of the rules are in some sense redundant and might be useless,
e.g., AB = C is not interesting if A = BC has the same confidence. In [3], an
algorithm is presented to extract a minimal cover of the set of frequent associ-
ation rules. This set is generated from the closed and free itemsets. This cover
can be generated by considering only rules of the form X = (Y — X) where
X is a free itemset and Y is a closed itemset containing X. It leads to a much
smaller collection of association rules than the one computed from itemsets using
Algorithm [1 In this volume, [T9] considers other concise representations of as-
sociation rules. In our practice, post-processing the discovered rules can clearly
make use of the properties of the free and close sets. In other terms, materializing
these collections can be useful for post-processing, not only the optimization of
the mining phase. For instance, it makes sense to look for association rules that
contain free itemsets as their left-hand sides and some targeted attributes on
the right-hand sides without any minimal frequency constraint. It might remain
tractable, thanks to the anti-monotonicity of freeness (extraction of the whole
collection of the free itemsets), and need a reasonable amount of computation
when computing the frequency and the confidence of each candidate rule.

Using condensed representation as a knowledge cache. A user generally submits
a query, gets the results and refines it until he is satisfied by the extracted pat-
terns. Since computing the result for one single query can be expensive (several
minutes up to several hours), it is highly desirable that the data mining system
optimizes sequences of queries. A classical solution is to cache the results of pre-
vious queries to answer faster to new queries. This has been studied by caching
itemsets (e.g., [I325]). Most of these works require that some strong relation
holds between the queries like inclusion or equivalence. Caching condensed rep-
resentations seems quite natural and we began to study the use of free itemsets
for that purpose [1§]. In [I8], we assume the user defines constraints on closed
sets and can refine them in a sequence of queries. Free sets from previous queries
are put in a cache. A cache of free itemsets is much smaller than a cache con-
taining itemsets and our algorithm ensures that the intersection between the
union of the results of all previous queries and the result of the new query is not
recomputed. Finally, we do not make any assumption on the relation between
two queries in the sequence. The algorithm improves the performance of the ex-
traction with respect to an algorithm that mines the closed sets without making
use of the previous computations. The speedup is roughly equal to the relative
size of the intersection between the answer to a new query and the content of
the cache. Again, such an optimization could be integrated into the MINE RULE
architecture in a transparent way.

6 Conclusion

Even though this paper has emphasized the use of frequent itemsets for associa-
tion rule mining, the interest of inductive querying on itemsets goes far beyond
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this popular mining task. For instance, constrained itemsets and their frequen-
cies can be used for computing similarity measures between attributes and thus
for clustering tasks (see, e.g., [24]). It can also be used for the discovery of more
general kinds of rules, like rules with restricted forms of disjunctions or nega-
tions [2Il[7] and the approximation of the joint distribution [20]. Our future line
of work will be, (1) to investigate the multiple uses of the condensed representa-
tions of frequent itemsets, and (2) to study evaluation strategies for association
rule mining queries when we have complex selection criteria (i.e., general boolean
expression instead of conjunctions of monotone and anti-monotone constraints).
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