
A Methodology for Biologically Relevant
Pattern Discovery from Gene Expression Data
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Abstract. One of the most exciting scientific challenges in functional ge-
nomics concerns the discovery of biologically relevant patterns from gene
expression data. For instance, it is extremely useful to provide putative
synexpression groups or transcription modules to molecular biologists.
We propose a methodology that has been proved useful in real cases.
It is described as a prototypical KDD scenario which starts from raw
expression data selection until useful patterns are delivered. Our concep-
tual contribution is (a) to emphasize how to take the most from recent
progress in constraint-based mining of set patterns, and (b) to propose a
generic approach for gene expression data enrichment. The methodology
has been validated on real data sets.

1 Introduction

Thanks to a huge research effort and technological breakthroughs, one of the
challenges for molecular biologists is to discover knowledge from data generated
at very high throughput. This is true not only for genomic data but also for
gene expression data. Indeed, different techniques (e.g., microarray [1]) enable
to study the simultaneous expression of (tens of) thousands of genes in vari-
ous biological situations. Such data can be seen as expression matrices in which
the expression level of genes (the attributes or columns) are recorded in various
biological situations (the objects or lines). A toy example of a gene expression
matrix is in Fig. 1a. Exploratory data mining techniques are needed that can,
roughly speaking, be considered as the search for interesting bi-sets, i.e., sets
of biological situations and sets of genes that are associated in some way. In-
deed, it is interesting to look for groups of co-regulated genes, also known as
synexpression groups [2], which, based on the guilt by association approach, are
assumed to participate in a common function, or module, within the cell. Such
an association between a set of co-regulated genes and the set of biological sit-
uations that gives rise to this co-regulation is called a transcription module and
their discovery is a major goal in functional genomics. Various techniques can
be used to identify a priori interesting bi-sets. Biologists often use clustering
techniques to identify sets of genes that have similar expression profiles (see,
e.g., [3]). Statistical methods can be used as well (see, e.g., [4, 5]). Interesting
pattern discovery techniques can be applied on boolean matrices that encode
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expression properties of genes. Let O denote a set of biological situations and
P denotes a set of genes. Expression properties, e.g., over-expression, can be
encoded into r ⊆ O × P . (oi, gj) ∈ r denotes that gene j has the encoded ex-
pression property in situation i. For deriving a boolean context from raw gene
expression data, we generally apply discretization operators that, depending on
the chosen expression property, compute thresholds from which it is possible to
decide between whether the true or the false value must be assigned. On our toy
example, a value “1” for a biological situation and a gene means that the gene is
up (greater than |t|) or down (lower than −|t|) regulated in this situation. Using
threshold t = 0.3 leads to the boolean matrix in Fig. 1b. It is then possible
to look for putative synexpression groups by computing the so-called frequent
itemsets from the derived boolean contexts [6]. In our boolean toy example, the
genes g3 and g5 have the same encoded expression property in situations o1
and o4. This observation might lead us to derive the bi-set ({o1, o4}, {g3, g5})
as being potentially interesting. Notice that sets of genes that are frequently
co-regulated can be post-processed into association rules [7, 8]. Stronger rela-
tionships between the components of a bi-set can increase their relevancy. For
instance, ({o1, o4}, {g2, g3, g5}) is one of the formal concepts (see, e.g., [9]) in the
data from Fig. 1b. Informally, it means that {g2, g3, g5} is a maximal set of genes
that have the recorded expression property in every situation from {o1, o4} and
that {o1, o4} is a maximal set of situations which share the true value for every
gene from {g2, g3, g5}. Clearly, discovered concepts in this kind of boolean data
provide putative transcription modules [10, 11].

Genes

Sit. g1 g2 g3 g4 g5

o1 0.36 0.42 0.56 0.124 0.35
o2 -0.24 0.01 0.28 0.02 -0.32
o3 0.25 0.35 0.55 0.012 -0.21
o4 0.27 0.89 -1.02 0.71 0.52
o5 0.53 0.24 0.64 -0.6 -0.01

Genes

Sit. g1 g2 g3 g4 g5

o1 1 1 1 0 1
o2 0 0 0 0 1
o3 0 1 1 0 0
o4 0 1 1 1 1
o5 1 0 1 1 0

(a) (b)

Fig. 1. A gene expression matrix (a) and a derived boolean context (b).

This paper is a methodological paper. It abstracts our practice in several
real-life gene expression data analysis projects in order to disseminate a promis-
ing practice within the scientific community. Our methodology covers the whole
KDD process and not just the mining phase. Starting from raw gene expression
data, it supports the analysis and the discovery of relevant biological information
via a constraint-based bi-set mining approach from computed boolean data sets.
The generic process is described within the framework of inductive databases,
i.e., each step of the process can be formalized as a query on data and/or patterns
that satisfy some constraints [12, 13]. It leads us to a formalization of boolean
gene expression data enrichment. We already experimented a couple of prac-
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tical instances of this approach and it has turned to be crucial for increasing
the biological relevancy of the extracted patterns. An original validation of the
methodology on a real data set w.r.t. a non trivial biological problem is provided.

In Section 2, the methodology is described by means of the definition of a
prototypical KDD scenario. Each critical step is specified and difficulties for its
execution are emphasized. In Section 3, we consider our recent contributions for
supporting some of these steps. In other terms, we explain how we can execute
specific instances of the given prototypical scenario by using our own data pre-
processing tools (e.g., [14]), mining algorithms (e.g., [15]), and post-processing
software (e.g., [16]). In Section 4, we illustrate an original application of the
methodology for a real gene expression data analysis task. Section 5 concludes.

2 A Prototypical KDD Scenario

We assume that raw expression data, i.e., a function that assigns a real expression
value to each couple (o, g) ∈ O × P is available and that some open problems
have been selected by the molecular biologists. A typical example concerns the
discovery of putative transcription modules that involve at least a given set
of genes that are already known to be co-regulated in some class of biological
situations, e.g., cancerous ones.

Due to the lack of space, we do not consider the typical data manipulation
statements that are needed, e.g., for data normalization, data cleaning, gene
and/or biological situation selection according to some background knowledge
(e.g., removing the so-called housekeeping genes from consideration).

Discretization. The discretization step concerns gene expression property en-
coding and is obviously crucial. The simplest case concerns the computation of
a boolean matrix r ⊂ O×P which encode a simple expression property for each
gene in each situation, e.g., over-expression. Different algorithms can be applied
and parameters like thresholds have to be be chosen. For instance, [7] introduces
three techniques for encoding gene over-expression:

– “Mid-Ranged”. The highest and lowest expression values in a biological sit-
uation are identified for each gene and the mid-range value is defined. Then,
for a given gene, all expression values that are strictly above the mid-range
value give rise to value 1, 0 otherwise.

– “Max - X% Max”. The cut off is fixed w.r.t. the maximal expression value
observed for each gene. From this value, we deduce a percentage X of this
value. All expression values that are greater than the (100 - X)% of the Max
value give rise to value 1, 0 otherwise.

– “X% Max”. For each gene, we consider the biological situations in which its
level of expression is in X% of the highest values. These genes are assigned
to value 1, 0 for the others.

The impact of the chosen algorithm and the used parameters on both the
quantity and the relevancy of the extracted patterns is crucial. For instance,
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the density of the discretized data depends on the discretization parameters and
the cardinalities of the resulting sets (collections of itemsets, association rules
or formal concepts) can be very different. Therefore, we need to evaluate the
goodness of a discretization process. Our thesis is that a good discretization
might preserve some properties that can be already observed from raw data (see
Section 3).

Boolean Gene Expression Data Enrichment. We can mine boolean gene
expression matrices for frequent sets of genes and/or situations, association rules
between genes and/or situations, formal concepts, etc. In the following, we fo-
cus on mining phases that compute concepts. When the extractions are feasible,
many patterns are discovered (up to several millions) while only a few of them
are interesting. It is however extremely hard to decide of the interestingness
characteristics a priori. We now propose an extremely powerful approach for
improving the relevancy of the extracted concepts by boolean data enrichment.
It can be done a priori with some complementary information related to genes
and/or situations. For instance, we can add information about the known func-
tions of genes as it is recorded in various sources like Gene Ontology [17]. Other
information can be considered like the associated transcription factors. A simple
way to encode this kind of knowledge consists in adding a row to r for each
gene property. Dually, we can add some properties to the situations vectors. For
instance, if we know the class of a group of situations (e.g. cancerous vs. non
cancerous cells) we can add a column to r. We can also add boolean properties
about, e.g., cell type or environmental features. Enrichment of boolean data can
be performed by more or less trivial data manipulation queries from various
bioinformatics databases. r′ ⊂ O′ × P ′ will denote the relation of the enriched
boolean context.

In Fig. 2a, we add two gene properties p1 and p2. A value “1” assigned to
a property for some gene means that this gene has the property. For instance,
p1 could mean that the gene has a given function or is regulated by a given
transcription factor. Dually, we consider two classes of situations c1 and c2.

Genes

Sit. g1 g2 g3 g4 g5 c1 c2

o1 1 1 1 0 1 1 0
o2 0 0 0 0 1 1 0
o3 0 1 1 0 0 0 1
o4 0 1 1 1 1 0 1
o5 1 0 1 1 0 0 1

p1 1 1 0 1 0 1 1
p2 1 0 0 1 1 1 1

Genes

Sit. g1 g2 g3 g4 g5 c1 c2

o1 1 1 1 0 1 1 0
o2 0 0 0 0 1 1 0
o3 0 1 1 0 0 0 1
o4 0 1 1 1 1 0 1
o5 1 0 1 1 0 0 1

p1 1 1 0 1 0 1 1
p2 1 0 0 1 1 1 1

p3 1 0 1 1 0 1 1
p4 1 1 1 0 1 1 1

(a) (b)

Fig. 2. Two examples of enriched boolean microarray contexts.
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A value “1” for a situation and a class means that this situation belongs to the
class but this could be interpreted in terms of situation properties as well. For
instance, c1 could mean whether biological situations are cancerous ones or not.
In the data in Fig. 2a, a formal concept like ({o4, o5}, {g3, g4, c2}) informs us
about a maximal rectangle that involves two genes in two situations that are of
class c2. This could reveal sets of genes that are co-regulated in non cancerous
situations but not in cancerous ones. We discuss later how iterative enrichment
is a key technique for improving the relevancy of the extracted patterns.

Constraint-Based Extraction of Formal Concepts. We consider here only
formal concept discovery from eventually enriched boolean contexts. A formal
concept is a maximal rectangle of “1” (1-rectangle) in the boolean matrix, and
it can be represented as a bi-set of genes (eventually with situation properties)
and situations (eventually with gene properties).

Definition 1. (Concept and CConcept constraint) A bi-set (T,G) ∈ O × P is a
concept in r when it satisfies constraint CConcept in r and CConcept(T,G, r) ≡
(T = ψ(G, r)) ∧ (G = φ(T, r)) where ψ and φ are the Galois operators [9]. Let
us recall that we have φ(T, r) = {g ∈ P | ∀o ∈ O, (o, g) ∈ r} and ψ(G, r) = {o ∈
O | ∀g ∈ G, (o, g) ∈ r}. (φ, ψ) is the Galois connection between O and P.

It is now possible to apply an algorithm for concept extraction to obtain
the whole set of concepts and thus putative transcription modules. Notice that
by construction, concepts are built on closed sets. It means that every algo-
rithm that compute closed sets can be used to compute the concepts (see, e.g.,
[11] for the use of frequent closed set computation algorithms). Given Fig. 2a,
({o1, o4}, {g2, g3, g5, }) and ({o1, o2, p2}, {g5, c1}) are among the 29 concepts.

Mining every concept is not always tractable. If it is tractable, it provides
potentially huge collections of patterns that have to be materialized for further
post-processing guided by the molecular biologists. When the computation of
every concept is not tractable, it is possible that pushing other user-defined con-
straints leads to tractable computations. For instance, we can extract concepts
that contains a minimal or a maximal number of situations and/or genes, or
that contains some particular situation and/or genes and/or their associated
properties in the case of enriched contexts. Let us formalize such constraints:

Definition 2. (Constraints on concept) A concept (T,G) is called frequent when
it satisfies constraint Ct(r, σ1, T ) ≡ |T | ≥ σ1 (resp. Cg(r, σ2, G) ≡ |G| ≥ σ2). A
concept (T,G) satisfies a syntactical constraint of inclusion CInclusion(r, X,G) ≡
X ⊆ G (resp. exclusion CExclusion(r, X,G) ≡ X �⊆ G). Dually, we can use
CInclusion(r, Y, T ) ≡ Y ⊆ T (resp. CExclusion(r, Y, T ) ≡ Y �⊆ T ).

It is quite useful to use these constraints in enriched contexts. For instance,
we can specify that we want concepts whose situations belong to Class c2 (say
non cancerous cells) and such that the gene set contain some genes that are
already known to participate to the studied regulatory way (e.g., g1). It can be
specified as the following inductive query:
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q1 : CConcept(T,G, r) ∧ CInclusion(r, c2, G) ∧ CInclusion(r, g1, G).

Then, we can ask for a second collection with all the concepts (T,G) such that
the class attribute c1 is included in T :

q2 : CConcept(T,G, r) ∧ CInclusion(r, c1, G).

Post-processing and Iteration. Concept extraction, even constraint-based
mining, can produce large numbers of patterns, especially in the first iterations of
the KDD process, i.e., when very few information can be used to further constrain
the bi-sets to be delivered. Notice also that from a practical perspective, not all
the specified constraints can be pushed into concept mining algorithms, in which
case some of these constraints have to be checked in a post-processing phase.

KDD processes are clearly complex iterative processes for which every result
can give rise to new ideas for more relevant constraint-based mining phases
(inductive queries) or data manipulations. When a collection of patterns has
been computed, it can be used for deriving new boolean properties. In particular,
we have obtained two sets of patterns that can characterize two classes of genes
and, dually, two classes of situations. Therefore, we can define two new class
properties related to genes and their dual class properties related to situations.
The boolean context r′ can then be extended towards r′′ ⊂ O′′×P ′′. Considering
our running example, we can associate a new property p3 (resp. p4) for the genes
belonging to the concepts which are returned by q1 (resp. q2). It leads to a new
enriched boolean context given in Fig. 2b. New constraints on the classes can be
used for the next mining phase. New set size constraints can be defined as well
to avoid results due to noise. A new iteration will provide a new set of concepts.
Each time a collection of concepts is available, we can decide either to analyze
it by hand, e.g., studying each gene separately, or looking for new boolean data
enrichment and new constraints for a new iteration.

In any case, at the end of the process, we have a set of putative interesting
genes and a set of putative interesting situations. When considering our running
example of putative transcription module discovery from an initial gene set (here
{g1}, called hereafter the seed set), it is interesting to stop iterations when the
sets of genes include (almost) all the genes from the seed set and when the total
number of genes which are not in the seed gene set can be studied in a reasonable
time by means of biological experiments.

In our toy example (Fig. 2b), let us enforce the absence in T of p4, i.e., those
genes that are contained in the concepts concerning the situation belonging to
Class c1. The result is a single concept ({o4, o5, p1, p2, p3}, {g4, c2}). The gene g4
is co-regulated in two situations associated to Class c2 but it is not in the seed
set of genes known to be involved in the studied transcription process. It means
that g4 is a putative interesting gene that can be studied further to verify if
its function is related to the studied biological problem. Notice also that genes
to which we can associate new functions appear as interesting candidates for
performing new iterations and take advantage of larger seed gene sets.
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3 About Scenario Practical Executions

The prototypical scenario we have presented in the previous section can be ex-
ecuted in different ways, depending on available algorithms and tools. In this
section, we explain how we can execute it on practical cases by taking the most
from some recent advances on constraint-based set mining and gene expression
data analysis. We do not provide here new results but evidence that such a
prototypical scenario can be used by practitioners.

We have explained that discretization of raw gene expression data is a crucial
phase. We clearly need a method to evaluate different boolean encoding (different
techniques and/or various parameters) of the same raw data and thus a frame-
work to support user decision about the discretization from which the mining
process can start. Let E denote a gene expression matrix. Let {Bini, i = 1..b} de-
note a set of different discretization operators and {ri, i = 1..b} a set of boolean
contexts obtained by applying these operators, i.e. ∀i = 1..b, ri = Bini(E). Let
S : R

n,m 	−→ R denote an evaluation function that measure the quality of the
discretization of a gene expression matrix. We say that a boolean context ri is
more valid than another context rj w.r.t the S measure if S(ri) > S(rj). In
[14], we recently studied an original method for such an evaluation. We suggest
to compare the similarity between the dendrogram generated by a hierarchical
clustering algorithm (e.g., [3]) applied to the raw expression data and the dendro-
grams generated by the same algorithm applied to each derived boolean matrix.
Given a gene expression matrix E and two derived boolean contexts ri and rj

for two distinct discretizations, we can choose the discretization that leads to
the dendrogram which is the most similar to the one built on E. The idea is that
a discretization that preserves the expression profile similarities is considered
more relevant. In [14], a simple measure of similarity between dendrograms has
been studied and experimentally validated on various gene expression data sets.
It is used in Section 4 for our original application to the drosophila data set.

A second major problem concerns constraint-based mining of concepts. In
our applications to gene expression data, we can get rather dense boolean con-
texts that are hard to process if further user-defined constraints are not only
specified but also pushed deeply into the extraction algorithms. Using user-
defined constraints enables to produce putative interesting concepts before any
post-processing phase. Indeed, concept discovery techniques can provide huge
collection of patterns and supporting post-processing on such collections is hard
or even impossible. It motivates the a priori use of constraints on both 2O and
2P . We saw typical examples of constraints on the size of T and G. The recent
algorithm D-Miner introduced in [15] computes concepts under monotonic con-
straints and can be used in dense boolean data sets when the previous algorithms
(concept lattice discovery algorithms or frequent closed set computation algo-
rithms) generally fail.

Another important problem concerns the postprocessing of concept collec-
tions. As the number of concepts to analyze starts to be huge, we need efficient
exploration techniques to support the subjective search of interesting concepts.
In [16], we propose an “Eisen-like” visualization technique, that allows to group
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similar concepts by means of a hierarchial clustering algorithm using an origi-
nal definition of distance. Thanks to this approach we can reduce the effects of
concept multiplication due to noise in data and support the post-processing of
thousands of concepts with a graphical approach.

4 An Application

We have used our methodology on a real gene expression data analysis problem
for which it was possible to evaluate the relevancy of the results thanks to the
available documentation [18]. It concerns the gene expression of the Drosophila
melanogaster during its life cycle. The paper considers the expression level of
4 028 genes for 66 sequential time periods from the embryonic state till the adult-
hood. The related data set is available on line1. The total number of samples
is 81 since the gene expression during the adult state is measured for male and
female individuals and the expression level of more genes is available. For our
experiment we have selected a set of 4 137 genes and 20 time periods concerning
adult individuals. This set is composed of 8 male adult samples, 8 female adult
samples, 2 male and 2 female tudor samples. We selected 4 of the 4 137 genes
which are known to be “male somatic genes”, i.e., a class of genes that charac-
terize the male individuals (Genes CG2858, CG2267, CG17843, and CG2082).
Let us denote this set by KG = {kg1, kg2, kg3, kg4}. We want to discover new
knowledge about this group, i.e., adding other genes to the seed set KG by
applying our methodology. Notice that the genes from KG have been selected
randomly among the known male somatic genes. In this experiment, our goal is
to demonstrate that, given a small gene set, we are able to increase our knowl-
edge with two simple iterations of the method. In other terms, we do not claim
that we want to find all “male somatic genes” but we want to rediscover part of
this knowledge thanks to the available biological results from [18].

Preprocessing. We marked a group of 351 genes as being always under-
expressed (in all the 20 situations). Another group of 353 genes has been marked
since it is over-expressed in more than 10 biological situations. We performed a
projection on non-marked genes and we obtain at the end a 20×3 433 expression
matrix denoted E. To discretize E, we choose the “Max - X% Max” method:

bi = Bin(ei)

where, for each gene vector bi,

bij =
{

1, if (1 −X)maxj (eij) < eij < maxj (eij)
0, otherwise (1)

where j = 1..20 and ei ∈ E.

1 http://genome-www5.stanford.edu/
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Different values can be chosen for X and we applied the method described in
[14] when considering X values between 0.01 and 0.9. The result of this analysis
for gene dendrograms are summarized in Fig. 3. The best value for our similarity
score is when X = 0.54. Consequently this is the threshold we used in order to
derive the boolean gene expression data.

Fig. 3. Gene similarity scores for “Max - X%Max” on E when X varies.

Then, we associated two sex class properties to situations by adding two
columns to the boolean matrix. The first property cM is set to “1” for all male
individuals while the second one cF gets the “1” value for all female individuals.
This enriched boolean context r has been the starting point for our concept
mining process.

Extraction. We performed the sequence of operations described in Section 2.
First we tried to get the whole collection of concepts:

GT =
{
(T,G) ∈ 2O × 2P | CConcept(T,G, r)

}
.

It has been feasible in this context and |GT | = 14 884 (excluding those containing
only situation and gene properties).

The following step has been to further constrain the solution set. We decided
to focus on the collection of concepts that concern male individuals and that
contains at least one gene from KG. The associated constraint CM is:

CM (T,G, r) ≡ CConcept(T,G, r) ∧ CInclusion(r, cM , G) ∧ Ca(r,KG,G)

where Ca(r,KG,G) is a “at-least-one” constraint, and it is satisfied if ∃kg ∈
KG | CInclusion(r, kg,G).
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Let GTM denote this set, D-Miner can compute it and |GTM | = 440.
Then, we have been looking for concepts that concern only female individuals.

Furthermore, to tackle noisy data in the boolean context, we specified also a
constraint of minimal size for gene sets (σg = 20) and situation sets σt = 5:

CF (T,G, r) ≡ CConcept(T,G, r) ∧ CInclusion(r, cF , G) ∧ Cg(r, σg , G) ∧ Ct(r, σt, T )

where Ct and Cg are constraints on minimal size that are efficiently pushed into
the computation by the D-Miner algorithm.

The result denoted by GTF is a collection of |GTF | = 515 concepts.

Boolean Context Enrichment. To reduce the size of concepts and thus the
number of genes to analyze, we have defined a new class for genes that are not
in the GTF set. The genes contained in such a set do not characterize male
individuals and can be excluded from consideration at the next extraction task.
We added a new row called rM that is true (1) for all genes not contained in⋃
G | (T,G) ∈ GTF . 713 genes were contained in such a set and thus the rM

property is true for 2 720 genes. Let r′ denote this new boolean context.

Second Extraction. We then processed the new boolean context using a new
constraint CMG using the rM property:

CMG(T,G; r′) ≡ CConcept(T,G, r′) ∧ CInclusion(r′, rM , T ) ∧ Ca(r′,KG,G)

where Ca is defined as before. We obtained a reduced set GT ′
M of 295 concepts.

We decided to further reduce the size of the collection of concepts by means
of a minimal size constraint on situations. We wanted to keep only concepts that
contains at least 6 situations, i.e., one more than 1/2 of the total number of male
individuals:

C′
MG(T,G, r′) ≡ CMG(T,G; r′) ∧ Ct(r′, 6, T )

It has given a set GT ′′
MG of 83 concepts. This has been considered as a

relatively small set for subjective exploration.

Final Post-processing. We finally performed some post-processing on GT ′′
MG.

We selected the genes contained in the concepts of GT ′′
MG when they were ap-

pearing in at least 0.5 · |GT ′′
MG| concepts, i.e. genes that were fairly represented.

As result, we got a quite small collection of 11 genes. None of the genes from our
seed set KG occurs in this collection. On the other hand, three of these genes
are already described in [18] as belonging to the ”male somatic gene” class. This
result has been obtained by analyzing in detail only 11 genes among the 3 433
genes of the expression matrix. Another important result is the presence of a
very interesting concept in the last set of concepts we built (Tab. 1). It concerns
8 male individuals and 14 genes, 5 of them being presented in [18] as “male
somatic genes”. Among these, only one was present in our seed set KG.
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Table 1. A concept concerning 14 genes (5 somatic) and 8 male individuals. Each cell
in the table contains the original expression value. Only somatic genes are represented.

Genes

Situations . . . CG17843 CG6761 CG10096 CG18284 CG7157 . . .

A03M . . . 1.789 2.199 2.659 4.159 3.749 . . .
A05M . . . 2.628 2.728 4.168 4.788 3.858 . . .
A10M . . . 2.29 1.83 2.89 3.53 3.86 . . .
A15M . . . 2.048 1.588 4.728 4.998 4.628 . . .
A20M . . . 2.587 2.127 3.377 3.597 4.967 . . .
A25M . . . 2.336 1.886 3.636 4.516 3.716 . . .
A30M . . . 2.568 1.958 3.048 3.858 3.808 . . .
AT05M . . . 3.505 1.925 5.125 5.535 5.385 . . .

5 Conclusion

We have designed a new data mining methodology to analyze gene expression
data thanks to constraint-based mining of formal concepts. We have described a
prototypical KDD scenario that has been proved useful in several real-life gene
expression data analysis problems. Boolean data enrichment is a very powerful
technique for supporting the iterative search of relevant patterns w.r.t. a given
analysis task. It is indeed related to the many contribution to feature construc-
tion techniques. We are currently applying the whole method on the data from
[19] to improve our understanding of insulino-regulation.
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