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Abstract. From a molecule to the brain perception, olfaction is a com-
plex phenomenon that remains to be fully understood in neuroscience.
Latest studies reveal that the physico-chemical properties of volatile
molecules can partly explain the odor perception. Neuroscientists are
then looking for new hypotheses to guide their research: physico-chemical
descriptors distinguishing a subset of perceived odors. To answer this
problem, we present the platform h(odor) that implements descriptive
rule discovery algorithms suited for this task. Most importantly, the
olfaction experts can interact with the discovery algorithm to guide the
search in a huge description space w.r.t their non-formalized background
knowledge thanks to an ergonomic user interface.

1 Introduction

Olfaction, or the ability to perceive odors, was acknowledged as an object of sci-
ence (Nobel prize 2004 [2]). The olfactory percept encoded in odorant chemicals
contributes to our emotional balance and well-being. It is indeed agreed that
the physico-chemical characteristics of odorants affect the olfactory percept [6],
but no simple and/or universal rule governing this Structure Odor Relationship
(SOR) has yet been identified. Why does this odorant smell of roses and that one
of lemon? As only a part of the odorant message is encoded in the chemical struc-
ture, chemists and neuro-scientists are interested in eliciting hypotheses for the
SOR problem under the form of human-readable descriptive rules: for example,
〈MolecularWeight ≤ 151.28, 23 ≤ #atoms〉 → {Honey, V anillin}. The discov-
ery of such rules should bring new insights in the understanding of olfaction and
has applications for Healthcare and the perfume and flavor industries.

Subgroup Discovery algorithms are able to discover such rules [7]. As olfaction
datasets are composed of thousands of attributes, multi-labeled with a highly
skewed distribution, an interactive mining of rules is interesting for experts
that cannot formalize their domain knowledge, neither their mining preferences.
Existing interactive subgroup discovery tools [3–5] can thus not be directly used
due to the specificity of olfactory datasets. As such, we propose an original
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platform, h(odor), that enables to extract descriptive rules on physicochemical
properties that distinguish odors through an interactive process between the
algorithm and the neuroscientists.

2 System Overview

Input data and desired output. Our demo olfaction dataset is composed of
1,700 odorant molecules (objects) described by 1, 500 physicochemical descrip-
tors [1] and are associated to several olfactory qualities (odors) among 74 odors
given by scent experts. The data are represented in a tabular format (several CSV
files). The physicochemical properties are numeric attributes and each olfactory
quality is boolean. The goal is to extract subgroups s = (d, L), i.e., descriptive
rules, that covers a subset of molecules (supp(s)) where the description d over
the physicochemical descriptors distinguishes a subset of odors L.

Algorithm sketch. The search space of subgroups is a lattice based on both
the attribute space and the target space. The child s′ = (d′, L′) of a subgroup
s = (d, L) of the lattice is a specialization of s. This specialization consists of
(i) restricting the interval of a descriptor in d, or (ii) adding a new odor to L.
Since the search space growths exponentially with the number of descriptors and
labels, a naive exploration (DFS or BFS) is not suitable. For that, we use the
beam-search heuristic (BS). BS enables to proceed to a restricted BFS, i.e., for
each level of the search space only a part of the subgroups are kept and put
into the beam. Only the subgroups in the beam of the current level are explored
in the next one [4]. The quality of a subgroup is evaluated by a measure. It
adapts the F1-score by taking into account the label distribution for weighting
the precision and recall.

System architecture. A core module (server) is contacted by a client (Web
interface) to initiate the mining algorithm with the given parameters. This core
module allows the user to interact/guide the algorithm exploration based on the
likes/dislikes of the user (Fig. 1).
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Fig. 1. System architecture

Core Module. This is the back-end of the h(odor)
application. Based on NodeJS, the Core Module is
the gateway between the user and the algorithm:
it is in charge of the interaction. For that, JSON
data are sent to and received from the SD Algorithm
through sockets thanks to a dedicated communica-
tion process. Moreover, this module controls the UI
to display results extracted from the SD Algorithm
and collects the user preferences (like/dislike).

User Interface (UI). The front-end of the appli-
cation, based on Bootstrap and AngularJS, enables
the user to select the parameters of the SD Algo-
rithm and to run it. Once the subgroups of the first
level of the beam search are extracted (the algorithm
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is paused waiting the user preferences), the UI displays these subgroups and the
user can like/dislike some of them: the liked subgroups are forced to be within
the beam for the next step, and the disliked subgroups are removed from the
beam. When the algorithm finishes, the UI displays the results.

3 Use Case: Eliciting Hypotheses for the Musk Odor

We develop a use case of the application as an end user, typically a neuroscientist
or a odor-chemist that seeks to extract descriptive rules to study the Structure-
Odor Relationships. The application is available online with a video tutorial
supporting this use case http://liris.cnrs.fr/dm2l/hodor/. In this scenario, we
proceed in the following steps, knowing that the expert wishes to discover rules
involving at least the musk odor.

1- Algorithms, parameters and dataset selection. In the Algorithms section
of the left hand side menu, the user can choose the exploration method and
its parameters. In this use case, we consider the ELMMut algorithm. This
algorithm implements a beam search strategy to extract subgroups based on a
quality measure. We plan to add new/existing algorithms and subgroup quality
measures. Once the exploration method is chosen, we have to select the olfactory
dataset as introduced in the previous section, and choose to focus on the musk
odor. Considering our use case, we decided to set the size of the beam to 50
(the exploration is quite large enough) and the minimum support threshold to
15 (since |supp(Musk)| = 52, at least the subgroups have to cover 30% of the
musk odorants). Other parameters are fixed to their default value.

2- Interactive running steps. When the datasets and the parameters have been
fixed, the user can launch the mining task clicking on the Start mining button.
When the first step of the beam search is finished, the SD Algorithm is paused
and the subgroups obtained at this step are displayed to the user. The interac-
tion view in the front-end presents the olfactory qualities involved at this level of
the exploration (see Fig. 2). Each subgroup is displayed in a white box with the
current descriptive rule on the physicochemical descriptors and some quantita-
tive measures. For each subgroup box, the user can select in the top right corner
if he likes/dislikes this subgroup. For example, at the first step, the application
displays the subgroups extracted at the first level for the Musk odor. As it is a
known fact in chemistry that the musk odor involves large molecules, we like the
subgroup which description is d = [238.46 ≤ MW ≤ 270.41]. After that, we keep
on exploring by clicking the Next button. Another interactive step begins, but the
expert has no particular opinion so he can jump to the next level. Once the algo-
rithm finished (the quality measures cannot improve), we can study the table of
results. For example, the description of one of the best extracted subgroups s is:
[238.46 ≤ MW ≤ 270.41][−0.931 ≤ Hy ≤ −0.621][2.714 ≤ MLOGP ≤ 4.817][384.96 ≤ SAtot ≤
447.506][0 ≤ nR07 ≤ 0][0 ≤ ARR ≤ 0.316][1 ≤ nCsp2 ≤ 7] that involves large odorants.
Moreover, according to the experts, this latter topological descriptor is consis-
tent with the presence of double bonds (or so-called sp2 carbon atoms) within
most musky chemical structure, that provides them with a certain hydrophilic-
ity. The goal of the h(odor) application is to confirm knowledge and to elicit new
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Fig. 2. The interaction view of the application. For each step of the beam search, the
algorithm waits for the user’s preferences (like/dislike). The subgroups are displayed
into white boxes. On the right part, complementary information is displayed: part of
value domain of a chosen restriction on a descriptor, and parameters of the run.

hypotheses for the SOR problem. In the case of s, the neuroscientists are inter-
ested in understanding why these descriptors (excepted the Molecular Weight)
are involved in the Musk odor.

Learning user preferences. Besides, the h(odor) application enables to save
all the choices taken by the different users. Indeed, the application archived all
the actions the users did into log files. The goal here is to use these log files to
learn user preferences, not only for a single run of the algorithm [3] but for all
experiments performed by the users. This kind data (choices made by experts)
is hard to collect by simply asking experts and will be explored in future work.

Acknowledgments. The authors thank Florian Paturaux, Sylvio Menubarbe and
Pierre Houdyer for helping developing the prototype. This research is partially sup-
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