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Abstract

Constraint-based mining has been proven to be ex-
tremely useful for supporting actionable pattern discovery.
However, useful conjunctions of constraints that support
domain driven mining tasks generally need to set several
parameter values and how to tune these parameters re-
mains fairly open. We study this problem for substring pat-
tern discovery, when using a conjunction of maximal fre-
quency, minimal frequency and size constraints. We propose
a method, based on pattern space sampling, to estimate the
number of patterns that satisfy such conjunctions. This per-
mits the user to probe the parameter space in many points,
and then to choose some initial promising parameter set-
tings. Our empirical validation confirms that we efficiently
obtain good approximations of the number of patterns that
will be extracted.

1. Introduction

Knowledge Discovery in Databases (KDD) processes
based on pattern discovery have been studied extensively
the last decade (e.g., processes based on itemsets and asso-
ciation rules, substrings, episode rules, subtrees, subgraphs,
etc.). However, tackling pattern relevancy remains a ma-
jor problem. Indeed, in real-life contexts, actionable pat-
terns are quite often hidden amongst many irrelevant ones
(see, e.g., [3]). Irrelevancy must be understood in terms of
both objective and subjective interestingness. For instance,
most of the time, avoiding the presentation or even better
the computation of known patterns for the analyst is im-
portant. A key issue is thus to take the most from domain
knowledge at each phase of the KDD life cycle. Data se-
lection and preprocessing quality heavily rely on domain
knowledge (e.g., for feature selection and feature construc-
tion). The data mining phase itself has to incorporate do-
main knowledge if we do not want to use all our computa-
tional resources for computing a huge amount of irrelevant

patterns at the price of missing the relevant ones. Last but
not the least, the crucial post-processing and interpretation
phase obviously need a strong involvement of domain ex-
perts. We believe that many of these problems, especially
for improving the data mining and post-processing phase
efficiency, can be solved by means of constraint-based data
mining systems (see, e.g., [1] for a recent overview in this
area).

If constraint-based data mining is the answer, we have
to specify the constraints and this can be difficult. Con-
straints are generally boolean combinations of primitives
that need to hold for parameters. When we have found a
parameter setting that gives promising results, it is possible
to slightly tune the values of the parameters to focus on the
most interesting patterns within a typical iterative and in-
teractive mining process. The situation is quite different at
the early exploratory mining stage. Indeed, when we start
such a process, we may have at hand many primitive con-
straints that can be combined into a mining query, and such
that most of these constraints require at least one parameter
value. However, we have a limited insight about the loca-
tion of the promising areas in the parameter space. A com-
mon practice is to count the number of patterns obtained for
a few different parameter settings to guess what could be
the interesting parameter values for a deeper investigation
(during which we will then look more closely at the pat-
terns, e.g., using some interestingness measures). In simple
contexts, e.g., when considering a single minimal frequency
constraint, a limited number of trials may be sufficient. This
is obviously not the case when considering a conjunction of
primitive constraints giving rise to a large multidimensional
parameter space: we cannot afford to run hundreds or thou-
sands of experiments to probe such a space.

We consider such a parameter tuning situation for a typ-
ical constraint-based mining task that supports differential
pattern discovery. In this context, important domain knowl-
edge is incorporated by the expert when she/he prepares the
two datasets to be used during the differential extraction.
We focus on a conjunction of primitive constraints com-
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monly used in differential mining of sub-string patterns and
related to the search for emergent patterns [4]. This con-
junction, denoted C, is defined informally as follows: to oc-
cur more than a given minimal number of times in a dataset
r1, and to occur no more than a given maximal number of
times in a second dataset r2, and to satisfy a constraint on
the size of the pattern. Such a conjunction has been shown
to be useful in several contexts. For instance, let us assume
that r1 (resp. r2) contains descriptions of molecules that are
active (resp. inactive) against a given organism and that the
language of patterns concerns linear fragments (i.e., strings)
in such molecules. Then computing solutions of C can pro-
vide an interesting hypothesis within a drug discovery pro-
cess [7]. A second typical example concerns abstractions of
WWW logs r1 and r2 for different periods of time (i.e., sets
of sequences of events during browsing sessions). Comput-
ing solutions of C can help to identify period-specific pat-
terns (i.e., signatures) [10]. Another recent application of
such a conjunction is where r1 (resp. r2) contains promoter
sequences of genes that are involved (resp. not involved)
in a given biological process such that solutions of C can
suggest regulation mechanisms and new transcription fac-
tor binding sites [11].

In this paper, our main contribution is a method based on
pattern space sampling (and not on data sampling) to esti-
mate the number of patterns satisfying a user-defined con-
straint. The approach is simple but we demonstrate empir-
ically that it is efficient and accurate for guessing promis-
ing parameter settings. To the best of our knowledge, such
an idea has not been reported previously. Moreover, we
are more flexible than methods based on a global analytical
model. To support this claim, we show that it can be com-
bined easily with three different symbol distributions. Fur-
thermore, we believe that because of this flexibility, it has
the potential for handling other pattern domains (i.e., other
types of patterns and constraints), and to support the inte-
gration of various background knowledge in the estimate.

The rest of the paper is organized as follows. Section 2
specifies the mining task, and considers different parame-
ter tuning approaches. The method to estimate the number
of patterns satisfying the conjunction of constraints is de-
scribed in Section 3. Section 4 presents an empirical eval-
uation. Related work is discussed in Section 5. Section 6
briefly concludes.

2. Tuning parameters

We consider string database mining and the context of
substring pattern extraction under a typical and non trivial
conjunction of primitive constraints. Let Σ be a finite alpha-
bet, then a string φ over Σ is a finite sequence of symbols
from Σ. The language of patterns L is Σ∗, i.e., the set of

all strings over Σ. A string database r is a multi-set1 of
strings from Σ∗. The length of a string φ is denoted |φ|, and
φi represents the ith symbol of φ. A substring φ′ of φ is a
sequence of contiguous symbols in φ, and we note φ′ � φ.

The primitive constraints we use to specify the string
mining tasks are a minimal frequency constraint on one
dataset, a maximal frequency constraint on another dataset,
and a syntactic constraint. We also consider two kinds of
pattern occurrences: exact occurrences and soft ones. The
concept of soft occurrence is useful to handle degenerated
occurrences of patterns in many real-life application do-
mains (e.g., motif discovery in genomics, browsing patterns
for WWW usage mining). Let us now define more precisely
these notions and the corresponding frequency constraints.

An exact occurrence of a pattern φ is simply a substring
of a string in r that is equal to φ. The exact support of φ,
denoted suppE(φ, r), is the number of strings in r that con-
tain at least one exact occurrence of φ. Notice that multiple
occurrences of a pattern in the same string do not change its
support.

Let δ be a positive integer, then a δ-soft occurrence of
a pattern φ is a substring φ′ of a string in r, having the
same length as φ and such that hamming(φ, φ′) ≤ δ, where
hamming(φ, φ′) is the Hamming distance between φ and
φ′ (i.e., the number of positions where φ and φ′ are differ-
ent). The δ-soft support of φ is the number of strings in r
that contain at least one δ-soft occurrence of φ. It is denoted
suppS(φ, r, δ).

Example 1 If r = {atgcaaac, acttggac, gatagata,
tgtgtgtg, gtcaactg}, we have suppE(gac, r) = 1 since
only string acttggac contains gac. We also have
suppS(gac, r, 1) = 4 because atgcaaac, acttggac,
gatagata and gtcaactg contain some 1-soft occurrences of
gac.

Definition 1 (Frequency constraints) In the case of an
exact support, given a threshold value f , the minimal
(resp. maximal) frequency constraint is MinFr(φ, r, f) ≡
suppE(φ, r) ≥ f (resp. MaxFr(φ, r, f) ≡ suppE(φ, r) ≤
f ). For a δ-soft support, the constraints are defined as
MinFr(φ, r, f) ≡ suppS(φ, r, δ) ≥ f ∧ suppE(φ, r) ≥ 1
and MaxFr(φ, r, f) ≡ suppS(φ, r, δ) ≤ f .

Notice that, in the case of the soft support, our definition
of MinFr enforces the presence of at least one exact oc-
currence, to discard patterns that only occur as degenerated
instances ( useful, for instance, when looking for transcrip-
tion factor binding sites).

The generic conjunction of constraints considered in this
paper is: C ≡ MinFr(φ, r1, f1) ∧ MaxFr(φ, r2, f2) ∧
Csynt(φ), where r1 and r2 are string databases, f1 and f2

are frequency thresholds, and Csynt is a syntactic constraint

1The dataset may contain multiple occurrences of the same string.
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on the pattern. We have been using the quite simple syn-
tactic constraint Csynt(φ) ≡ |φ| = k, where k is a user
defined size value. However, let us emphasize that our
framework can easily be extended to other constraints like
Csynt(φ) ≡ |φ| op k where op can be ≤ or ≥.

As mentioned in the introduction, this generic conjunc-
tion has been shown to be useful in many application do-
mains: differential mining appears as a simple but powerful
way to integrate domain knowledge and thus to support do-
main driven data mining.

In an exploratory data mining task based on pattern ex-
traction, one of the most commonly used parameter tuning
strategies, in the early exploration stage, is to run a few ex-
periments with different settings, and to simply count the
number of patterns that are obtained. Then, using some do-
main knowledge, the user tries to guess some potentially in-
teresting parameter settings. After that stage, the user enters
a more iterative process, in which she/he also looks at the
patterns themselves and at their scores (according to vari-
ous quality measures), and uses her/his knowledge of the
domain to focus on some patterns and/or to change the pa-
rameters by some “local” variations of their values.

We want to support the early exploratory stage such that
the user can guess promising initial parameter settings. We
propose to probe the parameter space in a more systematic
way, so that it could be possible to provide graphics that
depict the extraction landscape, i.e., the number of patterns
that will be obtained for a wide range of parameter values.
This idea is very simple, and many (if not all) of the prac-
titioners have one day written their own script/code to run
such sets of experiments. However, in many cases, the cost
of running real extractions for hundreds of different param-
eter settings is clearly prohibitive.

Instead of running real experiments, a second way is to
exhibit an analytical model, that estimates the number of
patterns satisfying the constraint C, with respect to the dis-
tribution of the symbols and the structure (number of strings
and size) of the datasets, and with respect to the values of
the parameters used in C. In this approach, the effort has
to be made on the design of the model, and in most cases
this is a non-trivial task. For instance, to the best of our
knowledge, in the literature there is no analytical model of
the number of patterns satisfying C ≡ MinFr(φ, r1, f1) ∧
MaxFr(φ, r2, f2) ∧ |φ| = k when the distribution of the
symbols is represented by a first-order Markov chain and
when soft-occurrences are used to handle degenerated pat-
terns (even in the simple case where δ = 1). Designing an
analytical model to handle this case is certainly not straight-
forward, in particular because of the specific symbol distri-
bution that has to be incorporated in the model. We propose
a third approach based on the following key remark. When
a pattern φ is given, together with the distribution of the
symbols, the structure of the datasets and the values of the

parameters in C, we can compute P (φ sat. C), the probabil-
ity that φ satisfies C in this dataset. In most cases, designing
a function to compute P (φ sat. C) is rather easy in compar-
ison to the effort needed to exhibit an analytical model that
estimates the number of patterns satisfying the constraint C.
Having at hand a function to compute P (φ sat. C), the next
step is then to estimate the total number of patterns that will
be extracted, but without having to compute P (φ sat. C)
for all patterns in the pattern space. Therefore, we propose
a simple pattern space sampling approach, that leads to a
fast and accurate estimate of the number of patterns that
will be extracted. Finally, we can compute such an estimate
for a large number of points in the parameter space and it
provides views of the whole extraction landscape.

3. Estimate based on pattern space sampling

3.1. Symbol distributions and probability to
satisfy the constraint

We choose three symbol distributions, to show that our
method can be used with different models. However, this
choice is not central in the contribution, and depending on
the application domain, other dedicated models that would
be more accurate could be used to provide a better estimate.

The three models of distributions retained here are:

• ME : independence of all occurrences of the symbols
with equal occurrence frequencies of each symbol;

• MD: independence of all occurrences of the symbols
with different occurrence frequencies of the symbols;

• MM : a first-order Markov chain.

For each of the three models mentioned above, it is easy
to compute the probability for a given pattern φ to occur in
a string, then to obtain the probability to satisfy a frequency
constraint using a binomial law, and to finally determine
P (φ sat. C).

3.2. Estimate of the number of patterns sat-
isfying the constraint

Let SC be the set of patterns in L that satisfy the
constraint C ≡ MinFr(φ, r1, f1) ∧MaxFr(φ, r2, f2) ∧
Csynt(φ). In this section, we present a simple method to es-
timate |SC | by sampling the pattern space and using a func-
tion that gives P (φ sat. C) for any pattern φ.

Let us associate to each pattern φ a random variable Xφ,
such that Xφ = 1 when φ satisfies C and Xφ = 0 otherwise.
Then |SC | =

∑
φ∈L Xφ. Considering the expected value

of |SC |, by linearity of the expectation operator we have
E(|SC |) =

∑
φ∈L E(Xφ). Since E(Xφ) = 1 × P (Xφ =
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1) + 0 × P (Xφ = 0), then E(|SC |) =
∑

φ∈L P (φ sat. C).
Let SCsynt

be the set of patterns in L that satisfy Csynt . As
P (φ sat. C) = 0 for all patterns that do not satisfy Csynt ,
we have E(|SC |) =

∑
φ∈SCsynt

P (φ sat. C).
Computing this sum over SCsynt

would be prohibitive,
since we want to obtain E(|SC |) for a large number of points
in the parameter space. Thus we estimate E(|SC |) using
only a sample of the patterns in SCsynt

. Let Ssamp be such
a sample, then we use the following value as an estimate of
E(|SC |):

|SCsynt
|

|Ssamp | ×
∑

φ∈Ssamp

P (φ sat. C)

In practice, many techniques can be used to compute the
sample. In the experiments presented in the next section,
we use the following process:

• Step 1: build an initial sample Ssamp of Csynt (sam-
pling with replacement) of size 5% of |Csynt | and com-
pute the estimate of E(|SC |).

• Step 2: go on sampling with replacement to add 1,000
elements to Ssamp . Compute the estimate, and if the
absolute value of the difference between the new es-
timate and the previous one is greater than 5% of the
previous estimate, then repeat Step 2.

Since the variables Xφ are not independent (the occur-
rence of a pattern has an impact on the possibility of occur-
rence of other patterns), there is no straightforward analyti-
cal confidence bound of the estimate. It is out of the scope
of this paper to further discuss this issue. However, in the
next section, we show that the estimate is quite accurate in
practice.

4. Experiments

4.1. Empirical evaluation of the estimate

To empirically assess our method, we have to check both
its efficiency in terms of running time and accuracy. Recall
that we may need to estimate the expected number of pat-
terns satisfying a user-defined constraint for a large number
of values in parameter domains.

We generated three pairs of random datasets r1 and r2,
and on each pair we performed a set of experiments. Each
pair is based on a different symbol distribution and/or on a
different dataset structure. The symbol distributions used
for the estimate were the same as the ones used for the gen-
eration. For each set of experiments, we present graphics
to compare the estimate of the expected number of patterns
versus the real number of patterns extracted in the datasets
when using the same parameters. In the experiments, we

explore different regions in the parameter space, at different
scales, and we do not try to focus on parameter ranges that
lead to the best estimates.

In the experiments, we consider the extraction of all
patterns satisfying MinFr(φ, r1, f1) ∧ MaxFr(φ, r2, f2) ∧
|φ| = k, varying the minimal (resp. maximal) support
threshold f1 (resp. f2) and the size k, using in turn both
exact supports and soft supports (with δ = 1). In all graph-
ics, the isolated dots represent the estimates, the dots linked
by a line represent the real number of extracted patterns, the
minimal support corresponds to the horizontal axis, and the
number of patterns corresponds to the vertical axis (for the
sake of readability, we use for some of the graphics a log
scale axis). The settings used for the three sets of experi-
ments are the following:

• First set of experiments (Figure 1): 4 symbols with
distribution MD (frequencies of the symbols are 0.4,
0.1, 0.2 and 0.3), datasets r1 and r2 contain 100 strings
of length 1,000.

• Second set of experiments (Figure 2): 4 symbols
with distribution MM , datasets r1 and r2 contain 100
strings of length 1,000. The arbitrary conditional prob-
abilities Prob(φi = Y |φi−1 = X) used for the
Markov chain (with symbols A, B, C and D) are given
by the table:

�����X
Y

A B C D

A 0.2 0.28 0.18 0.34
B 0.04 0.36 0.3 0.3
C 0.32 0.08 0.2 0.4
D 0.2 0.24 0.24 0.32

• Third set of experiments (Figure 3): 8 symbols with
distribution ME , datasets r1 and r2 contain 100
strings of length 30,000. In four of the graphics, the
estimates are so close to the real values that the corre-
sponding dots are superimposed.

In all experiments, the estimates closely follow the
trends of the real extractions, and in most cases, the esti-
mates are sufficiently accurate to give a reasonable picture
of the shape of the extraction landscape. For each experi-
ment, only between 4, 000 and 8, 000 sampled patterns were
necessary to converge to a stable estimate, i.e., the differ-
ence between two successive estimates is smaller than 5%
of the first one.

The experiments were run on a Linux platform with
an Intel 2Ghz processor and 1Gb of RAM. The real pat-
tern extractions on the datasets were performed using the
Marguerite [9, 10] prototype (implemented in C++) that
supports constraint-based string mining with exact and soft
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Figure 1. Experiments under MD distribution (with symbol frequencies 0.4, 0.1, 0.2 and 0.3). Hori-
zontal axis: minimum support, vertical axis: number of patterns.
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Figure 2. Experiments under MM distribution (1st-order Markov chain). Horizontal axis: minimum
support, vertical axis: number of patterns.
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Figure 3. Experiments under ME distribution (same frequency for symbols) and string size 30,000.
Horizontal axis: minimum support, vertical axis: number of patterns.
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supports, and that handles in particular the conjunction of
constraints used in this paper. The estimate of the number
of patterns, based on the pattern space sampling, was imple-
mented in Perl. For each single extraction with exact sup-
port, the running time was about a few tens of seconds to a
few minutes. In the case of soft support, an extraction takes
from a few tens of minutes to several hours to complete,
while for the sampling-based estimate, computing one esti-
mate requires between 1 and 30 seconds.

4.2. Application to Real Data

We use two datasets of DNA sequences that are promoter
sequences of genes. Each sequence is a string of 4,000
symbols over an alphabet of size 4 (nucleotides a, c, g, and
t). The first dataset r1 contains promoter sequences of 29
genes and dataset r2 contains promoter sequences of 21
genes. These two datasets represent two biologically op-
posite situations of interest, and extracting string patterns
that have a high support in r1 and a small support in r2 is a
way to identify putative binding sites of transcription factors
(molecules that bind on the promoter sequences to activate
or to repress a gene). The data were prepared and provided
by Dr. Gandrillon and his team [2].

We look for patterns satisfying MinFr(φ, r1, f1) ∧
MaxFr(φ, r2, f2) ∧ |φ| = k, and for the support we used
the soft support definition with δ = 1 (slightly degenerated
occurrences). Such a conjunction of constraints, with soft
support definition based on the Hamming distance, has been
shown to be useful in practice for transcription factor bind-
ing sites identification [11].

The estimates were computed with distribution MD, us-
ing as symbol frequencies their respective frequencies in the
data (0.23, 0.26, 0.27, 0.24 respectively for a, c, g, and t).
In this case, the model is more a description of the random
background than a description of the biological organization
along the sequences. Representative graphics obtained us-
ing these estimates, and depicting portions of the extraction
landscape, are presented in Figure 4, on the right. A typi-
cal use of such graphics is for instance to look for points,
in the parameter space, corresponding to a large support on
r1, but a low support on r2, a large pattern size, and a rather
small number of expected patterns (since here the distribu-
tion represents the random background). Such a point, that
can be used as an initial guess of the parameters to perform
real extractions, is for instance: pattern size = 10, minimal
support on r1 of 15 and maximal support on r2 of 5 (the
graphic in the middle on the right indicates that, for this set-
ting, only about 1 pattern due to the random background is
expected).

For the sake of completeness, in Figure 4 on the left,
we give the real numbers of extracted patterns. In practice,
these graphics are not easily accessible to the user, since in

these experiments the running time of a single extraction
ranges from several tens of minutes to several hours (while
for an estimate, only a few tens of seconds is needed). Even
though the global trends correspond to the estimates, they
are important differences in some portions of the param-
eter space (these differences could be expected since the
distribution used does not incorporate complex biological
knowledge). However, the estimates can still be used to
help to choose initial parameter values in an exploratory
mining stage, and moreover, finding such differences, when
running the real extractions, can also be a useful piece of in-
formation in itself. For example, for the setting pattern size
= 10, minimal support = 15 and maximal support = 5, we
have about 100 patterns really extracted, while we expected
only one. If we suppose that the pattern space sampling can
provide reasonable estimates when the data satisfy distribu-
tion MD (as supported by the experiments of Section 4.1),
then the 100 patterns obtained are likely to be due to a par-
ticular unknown structure in the data and not to the distribu-
tion MD only. This suggest that it makes sense to look for
patterns in this region of the parameter space, since we can
expect to obtain some interesting/useful patterns (not only
patterns due to the random background captured by MD).

5. Related work

Estimating the expected number of patterns that satisfy
a constraint is in general much more difficult than estimat-
ing the probability that a given pattern satisfies such a con-
straint. This second problem has received a lot of atten-
tion, leading to many statistical measures to assess the in-
terestingness of the patterns. Concerning the first problem,
only a few solutions have been proposed. [12] and [8] an-
alyze the feasible distributions of frequent itemsets (also of
closed itemsets for [8] and of maximal itemsets for [12]).
[12] focuses on the kind of distributions one can expect
for various kinds of datasets. They answer the question
whether there exists a frequent or maximal frequent itemset
collection that has a given number of frequent itemsets of a
given length. [8] computes the average number of frequent
(closed) itemsets using probabilistic techniques. These au-
thors especially focus on minimal frequency threshold and
how it influences the number of extracted patterns, con-
sidering fixed and/or proportional thresholds. Another ap-
proach has been proposed by Geerts et al. [5], providing
a tight upper bound on the number of candidate patterns
that can arise while mining frequent patterns in a level-wise
setting. Given the current level and the current set of fre-
quent patterns, they propose a tight bound of the maximal
number of candidate patterns that can be generated on the
next level. In the domain of string mining, [6] designs an
estimate of the number of patterns due to the random back-
ground, and that are likely to be extracted with respect to
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Figure 4. Expected and real number of extracted patterns, using two promoter sequence datasets.
Horizontal axis: minimum support, vertical axis: number of patterns.
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a frequency constraint and according to the structure of the
dataset. These proposals are all based on a global analyti-
cal model, i.e., an interesting approach that needs however
to develop complex and specific models. As a result, they
cannot be easily extended to handle complex conjunctions
of constraints, to incorporate different symbol distributions
or different semantics for pattern occurrences. To the best
of our knowledge, no method has been proposed to estimate
the number of patterns satisfying a constraint while avoid-
ing to develop a global analytical model. Our approach re-
quires only to know how to compute for a given pattern its
probability to satisfy the constraint (this can be obtained
in many situations), and it remains efficient in practice by
adopting a pattern space sampling scheme.

6. Conclusion

Using constraints to specify subjective interestingness is-
sues and to support actionable pattern discovery has become
popular. Constraint-based mining techniques are now well
studied for many pattern domains but one of the bottlenecks
for using them within Knowledge Discovery processes is
the extraction parameter tuning. This is especially true in
the context of differential mining where domain knowledge
is used to provide different datasets to support the search of
truly interesting patterns. From a user perspective, a simple
approach would be to get graphics that depict the extraction
landscape (i.e., the number of extracted patterns for many
points in the parameter space). We developed an efficient
technique based on pattern space sampling, that provides
an estimate on the number of extracted patterns. This has
been applied to non trivial substring pattern mining tasks,
and we demonstrated by means of many experiments that
the technique is effective. It provides reasonable estimates
given execution times that enable to probe a large number
of points in the parameter space. Notice that domain knowl-
edge is also exploited here when selecting the distribution
model. Future directions of work include to adapt the ap-
proach to other pattern domains and to different constraints.
Another interesting aspect to investigate is the use of more
sophisticated sampling schemes (e.g., [13]), that could be
incorporated in the approach when more complex syntacti-
cal constraints are handled (e.g., a grammar to specify the
shape of the patterns).
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