
Modeling KDD Processes within

the Inductive Database Framework

Jean-Fran�cois Boulicaut�, Mika Klemettineny, and Heikki Mannilaz ?

� INSA de Lyon, LISI Bâtiment 501, F{69621 Villeurbanne cedex, France

y University of Helsinki, Department of Computer Science

P.O. Box 26, FIN{00014 University of Helsinki, Finland

z Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399, USA

Abstract. One of the most challenging problems in data manipulation

in the future is to be able to e�ciently handle very large databases but
also multiple induced properties or generalizations in that data. Pop-

ular examples of useful properties are association rules, and inclusion

and functional dependencies. Our view of a possible approach for this
task is to specify and query inductive databases, which are databases

that in addition to data also contain intensionally de�ned generaliza-

tions about the data. We formalize this concept and show how it can
be used throughout the whole process of data mining due to the closure

property of the framework. We show that simple query languages can be

de�ned using normal database terminology. We demonstrate the use of
this framework to model typical data mining processes. It is then pos-

sible to perform various tasks on these descriptions like, e.g., optimizing

the selection of interesting properties or comparing two processes.

1 Introduction

Data mining, or knowledge discovery in databases (KDD), sets new challenges to
database technology: new concepts and methods are needed for general purpose
query languages [8]. A possible approach is to formulate a data mining task as
locating interesting sentences from a given logic that are true in the database.
Then the task of the user/analyst can be viewed as querying this set, the so-called
theory of the database [12].

Discovering knowledge fromdata, the so-called KDD process, contains several
steps: understanding the domain, preparing the data set, discovering patterns,
postprocessing of discovered patterns, and putting the results into use. This is a
complex interactive and iterative process for which many related theories have to
be computed: di�erent selection predicates but also di�erent classes of patterns
must be used.

For KDD, we need a query language that enables the user to select subsets
of the data, but also to specify data mining tasks and select patterns from the
corresponding theories. Our special interest is in the combined pattern discovery
and postprocessing steps via a querying approach. For this purpose, a closure

? Email: jfboulic@lisi.insa-lyon.fr, mklemett@cs.helsinki.�, mannila@microsoft.com.

Mukesh Mohania and A Min Tjoa (Eds.): DaWaK’99, LNCS 1676, pp. 293-302, 1999
 Springer-Verlag Berlin Heidelberg 1999

property of the query language is desirable: the result of a KDD query should be
an object of a similar type than its arguments. Furthermore, the user must also
be able to cross the boundary between data and patterns, e.g., when exceptions
to a pattern are to be analysed. This gives rise to the concept of inductive
databases, i.e., databases that contain inductive generalizations about the data,
in addition to the usual data. The KDD process can then be described as a
sequence of queries on an inductive database. The inductive database concept
has been suggested in [8, 11]. In this paper, we use the simple formalization
we introduced in [4]. However, the topic is di�erent. In [4], we considered the
MINE RULE operator as a possible querying language on association rule inductive
databases. Here we emphasize the genericity of the framework and its use for
KDD process modeling. It leads us to propose a research agenda to design general
purpose query languages for KDD applications. Our basic message is very simple:
(1) An inductive database consists of a normal database associated to a subset
of patterns from a class of patterns, and an evaluation function that tells how the
patterns occur in the data. (2) An inductive database can be queried (in principle)
just by using normal relational algebra or SQL, with the added property of being
able to refer to the values of the evaluation function on the patterns. (3) Modeling
KDD processes as a sequence of queries on an inductive database gives rise to
chances for reasoning and optimizing these processes.

The paper is organized as follows. In Section 2 we de�ne the inductive data-
base framework and introduce KDD queries by means of examples. Section 3
considers the description of KDD processes and the add-value of the framework
for their understanding and their optimization. Section 4 is a short conclusion
with open problems concerning the research in progress.

2 Inductive Databases

The schema of an inductive database is a pair R = (R; (QR; e;V)), where R is
a database schema, QR is a collection of patterns, V is a set of result values, and
e is the evaluation function that de�nes pattern semantics. This function maps
each pair (r; �i) to an element of V, where r is a database over R and �i 2 QR
is a pattern. An instance of the schema, an inductive database (r; s) over the
schema R consists of a database r over the schema R and a subset s � QR.

Example 1 If the patterns are boolean formulae about the database, V is ftrue,
falseg, and the evaluation function e(r; �) has value true i� the formula � is
true about r. In practice, a user might select the true or the false formulas from
the intensionally de�ned collection of all boolean formulas. 2

At each stage of manipulating the inductive database (r; s), the user can think
that the value of e(r; �) is available for each pattern � which is present in the set
s. Obviously, if the pattern class is large (as it is the case for boolean formulas),
an implementation can not compute all the values of the evaluation function
beforehand; rather, only those values e(r; �) that user's queries require to be
computed should be computed.

294 J.-F. Boulicaut, M. Klemettinen, and H. Mannila

A typical KDD process operates on both of the components of an inductive
database. The user can select a subset of the rows or more generally select data
from the database or the data warehouse. In that case, the pattern component
remains the same. The user can also select subsets of the patterns, and in the
answer the data component is the same as before.

The situation can be compared with deductive databases where some form
of deduction is used to augment fact databases with a potentially in�nite set of
derived facts. However, within the inductive database framework, the intensional
facts denote generalizations that have to be learned from the data. So far, the
discovery of the patterns we are interested in can not be described using available
deductive database mechanisms.

Using the above de�nition for inductive databases it is easy to formulate query
languages for them. For example, we can write relational algebra queries, where
in addition to the normal operations we can also refer to the patterns and the
value of the evaluation function on the patterns. To refer to the values of e(r; �)
for any � 2 s, we can think in terms of object-oriented databases: the evaluation
function e is a method that encodes the semantics of the patterns.

In the following, we �rst illustrate the framework on association (Section 2.1),
and then we generalize the approach and point out key issues for query evaluation
in general (Section 2.2).

2.1 Association Rules

The association rule mining problem has received much attention since its in-
troduction in [1]. Given a schema R = fA1; : : : ; Ang of attributes with domain
f0; 1g, and a relation r over R, an association rule about r is an expression of
the form X) B, where X � R and B 2 R nX. The intuitive meaning of the
rule is that if a row of the matrix r has a 1 in each column of X, then the row
tends to have a 1 also in column B. This semantics is captured by frequency and
con�dence values. GivenW � R, support(W; r) denotes the fraction of rows of r
that have a 1 in each column ofW . The frequency of X) B in r is de�ned to be
support(X [fBg; r) while its con�dence is support(X [fBg; r)=support(X; r).
Typically, we are interested in association rules for which the frequency and the
con�dence are greater than given thresholds. Though an exponential search space
is concerned, association rules can be computed thanks to these thresholds on
one hand and a safe pruning criteria that drastically reduce the search space on
the other hand (the so-called apriori trick [2]).

However, the corresponding inductive database schema de�nes intensionally
all the potential association rules. In this case, V is the set [0; 1]2, and e(r; �) =
(f(r; �); c(r; �)), where f(r; �) and c(r; �) are the frequency and the con�dence
of the rule � in the database r. Notice that many other objective interestingness
measures have been introduced for that kind of patterns (e.g., the J-measure [15]
or the conviction [5]). All these measures could be taken into account by a new
evaluation function.

We now describe the querying approach by using self-explanatory notations

295Modeling KDD Processes within the Inductive Database Framework

s0 e(r0).f e(r0).c

A) B 0.25 0.33
A) C 0.50 0.66
B) A 0.25 0.50
B) C 0.50 1.00
C) A 0.50 0.66
C) B 0.50 0.66
AB) C 0.25 1.00
AC) B 0.25 0.50
BC) A 0.25 0.50

s1 e(r1).f e(r1).c

A) B 0.33 0.33
A) C 0.66 0.66
B) A 0.33 1.00
B) C 0.33 1.00
C) A 0.66 1.00
C) B 0.33 0.50
AB) C 0.33 1.00
AC) B 0.33 0.50
BC) A 0.33 1.00

s2 e(r2).f e(r2).c

B) C 0.50 1.00

Instance r0

A B C

1 0 0
1 1 1
1 0 1
0 1 1

Table 1. Patterns in three instances of an inductive database.

for the simple extension of the relational algebra that �ts to our need 2.

Example 2 Mining association rules is now considered as querying inductive
database instances of schema (R; (QR; e; [0; 1]2)). Let us consider the data set is
the instance r0 in Table 1 of the relational schema R = fA;B;Cg.

The inductive database idb = (r0; s0) associates to r0 the association rules
on the leftmost table of Table 1. Indeed, in such an example, the intensionally
de�ned collection of all the association rules can be presented. We illustrate (1)
the selection on tuples, and (2) the selection on patterns in the typical situation
where the user de�nes some thresholds for frequency and con�dence.

1. �A6=0(idb) = (r1; s1) where r1 = �A6=0(r0) and s1 contains the association
rules in the middle table of Table 1.

2. �e(r0):f�0:5^e(r0):c�0:7 (idb) = (r2; s2) where r2 = r0 and s2 contains the
association rules from the rightmost table (on the top) of Table 1.

To simplify the presentation, we have denoted by e(r):f and e(r):c the values for
frequency and con�dence. 2

An important feature is that operations can be composed due to the closure
property.

Example 3 Consider that the two operations given in Example 2 are composed
and applied to the instance idb = (r0; s0). Now, �e(r0):f�0:5^e(r0):c�0:7 (�A6=0(idb))
= (r3; s3) where r3 = �A6=0(r0) and s3 is reduced to the association rule C) A

with frequency 0.66 and con�dence 1. 2

The selection of association rules given in that example is rather classical. Of
course, a language to express selection criteria has to be de�ned. It is out of the
scope of this paper to provide such a de�nition. However, let us just emphasize
that less conventional association rule mining can also be easily speci�ed.

Example 4 Consider an instance idb = (r0; s0). It can be interesting to look
for rules that have a high con�dence and whose right-hand side does not belong
to a set of very frequent attributes F : �e(r0):c�0:9^e(r0):rhs=2F (idb)) = (r0; s1).
The intuition is that rhs denotes the righ-hand side of an association rule. The

2 Selection of tuples and patterns are respectively denoted by � and � . As it is always

clear from the context, the operation can also be applied on inductive database

instances while formally, we should introduce new notations for them.

296 J.-F. Boulicaut, M. Klemettinen, and H. Mannila

rules in s1 are not all frequent (no frequency constraint) but have a rather high
con�dence while their right-hand sides are not very frequent. Indeed, computing
unfrequent rules will be in practice untractable except if other constraints can help
to reduce the search space (and are used for that during the mining process). 2

The concept of exceptional data w.r.t. a pattern or a set of patterns is in-
teresting in practice. So, in addition to the normal algebraic operations, let us
introduce the so-called apply operation, denoted by �, that enables to cross the
boundary between data and patterns by removing the tuples in the data set such
that all the patterns are true in the new collection of tuples.

In the case of association rules, assume the following de�nition: a pattern � is
false in the tuple t if its left-hand side holds while its right-hand side does not hold;
in the other cases a pattern is true. In other terms, an association rule � is true
in a tuple t 2 r i� e(ftg; �):f = e(ftg; �):c = 1. Let us de�ne �((r; s)) = (r0; s)
where r0 is the greatest subset of r such that 8� 2 s, e(r0; �):c = 1. Note that
r0 n r is the collection of tuples that are exceptions w.r.t. the patterns in s.

Example 5 Continuing Example 2, assume the instance (r0; s4) where s4 con-
tains the rule AC) B with frequency 0:25 and con�dence 0:5. Let �((r0; s4)) =
(r4; s4). Only the tuple h1; 0; 1i is removed from r0 since the rule AC) B is
true in the other ones. The pattern AC) B remains the unique pattern (s4
is unchanged) though its frequency and con�dence in r4 are now 0:33 and 1,
respectively. 2

2.2 Generalization to Other Pattern Types

The formal de�nition we gave is very general. In this section, we �rst consider
an other example of data mining task where inductive database concepts can be
illustrated. We also point out crucial issues for query evaluation.

One typical KDD process we studied is the discovery of approximate inclusion
and functional dependencies in a relational database. It can be useful either for
debugging purposes, semantic query optimization or even reverse engineering
[3]. We suppose that the reader is familiar with data dependencies in relational
databases.

Example 6 Assume R = fA;B;C;Dg and S = fE;F;Gg with the two follow-
ing instances in which, among others, S[hGi] � R[hAi] is an inclusion depend-
ency and AB ! C a functional dependency (see Table 2(a{b)). 2

Dependencies that almost hold are interesting: it is possible to de�ne natural
error measures for inclusion dependencies and functional dependencies. For in-
stance, let us consider an error measure for an inclusion dependency R[X] � S[Y]
in r that gives the proportion of tuples that must be removed from r, the instance
of R, to get a true dependency. With the same idea, let us consider an error meas-
ure for functional dependencies that gives the minimumnumber of rows that need
to be removed from the instance r of R for a dependency R : X ! B to hold.

Example 7 Continuing Example 6, a few approximate inclusion and functional
dependencies are given (see Table 2(c)). 2

297Modeling KDD Processes within the Inductive Database Framework

A B C D

1 2 4 5
2 2 2 3
3 1 1 2
4 2 2 3

E F G

1 2 3
2 3 4
3 2 2

Inclusion dependencies Error Functional dependencies Error
R[hBi] � S[hEi] 0 B ! A 0.5
R[hDi] � S[hEi] 0.25 C ! A 0.25
S[hEi] � R[hBi] 0.33 BC ! A 0.25
R[hC;Di] � S[hE; F i] 0.25 BCD! A 0.25

(a) (b) (c)

Table 2. Tables for Examples 6 and 7.

It is now possible to consider the two inductive databases that associate to a
database all the inclusion dependencies and functional dependencies that can be
built from its schema. Evaluation functions return the respective error measures.
When the error is null, it means that the dependency holds. Indeed, here again it
is not realistic to consider that querying can be carried out by means of queries
over some materializations of all the dependencies that almost hold.

Example 8 Continuing again Example 6, a user might be interested in \select-
ing" only inclusion dependencies between instances r and s that do not involve
attribute R:A in their left-hand side and have an error measure lower than 0:3.
One expects that a sentence like R[hC;Di] � S[hE;F i] belongs to the answer.
The \apply" operation can be used to get the tuples that are involved in the de-
pendency violation. One can now search for functional dependencies in s whose
left-hand sides are a right-hand side of a previously discovered inclusion depend-
ency. For instance, we expect that a sentence like EF ! G belongs to the answer.
Evaluating this kind of query provides information about potential foreign keys
between R = fA;B;C;Dg and S = fE;F;Gg. 2

Query evaluation We already noticed that object-relational query languages can
be used as a basis for inductive database query languages. However, non-classical
optimization schemes are needed since selections of properties lead to complex
data mining phases. Indeed, implementing such query languages is di�cult be-
cause selections of properties are not performed over previously materialized
collections. First one must know e�cient algorithms to compute collection of
patterns and evaluate the evaluation function on very large data sets. But the
most challenging issue is the formal study of selection language properties for
general classes of patterns: given a data set and a potentially in�nite collection
of patterns, how can we exploit an active use of a selection criteria to optimize
the generation/evaluation of the relevant patterns.

Example 9 When mining association rules that do not involve a given attrib-
ute, instead of computing all the association rules and then eliminate those which
contain that attribute, one can directly eliminate that attribute during the can-
didate generation phase for frequent sets discovery. Notice that such a simple
trick can not be used if the given attribute must be avoided in the left-hand side
only. 2

The complexity of mining frequent association rules mainly consist of �nd-
ing frequent sets. Provided boolean constraints over attributes, [16] show how

298 J.-F. Boulicaut, M. Klemettinen, and H. Mannila

to optimize the generation of frequent sets using this kind of constraints during
the generation/evaluation process. This approach has been considerably exten-
ded in [14]. Other interesting ideas come from the generalization of the apriori
trick, and it can be found in di�erent approach like [6] or [17]. [6] propose an
algorithm that generalize the apriori trick to the context of frequent atomsets.
This typical inductive logic programming tool enable to mine association rules
from multiple relations. [17] consider query
ocks that are parametrized Data-
log queries for which a selection criteria on the result of the queries must hold.
When the �lter condition is related to the frequency of answers and queries are
conjunctive queries augmented with arithmetic and union, they can propose an
optimizing scheme. In the general framework, three important questions arise:

1. How to evaluate a class of similar patterns faster than by looking at each of
them individually? An explicit evaluation of all the patterns of the schema
against the database (and all databases resulting from it by queries) is not
feasible for large data sets. Safe pruning criteria have to be found.

2. How to evaluate patterns without looking at the whole data set? This is an im-
portant issue to reduce dimensionality of the mining task, e.g., via sampling.
In somes cases, it might be also possible not to use the data set and perform a
simple selection over a previously materialized collection of patterns or more
or less condensed representation [11].

3. How to evaluate operation sequences, e.g., in replays, more e�ciently? Com-
piling schemes can be de�ned for this purpose. For instance, crucial issues
are the study of pattern selection commutativity for useful classes of pat-
terns. The formal study of selection criteria for pattern classes that are more
complex than frequent sets is to be done.

A framework for object-oriented query optimization when using expensive
methods [7] can also serve as a basis for optimization strategies.

3 Inductive Databases and KDD Processes

Already in the case of a unique class of patterns, real-life mining processes are
complex. This is due to the dynamic nature of knowledge acquisition, where
gathered knowledge often a�ects the search process, giving rise to new goals in
addition to the original ones.

In the following, we introduce a scenario about telecommunication networks
fault analysis using association rules. It is a simpli�ed problem of knowledge
discovery to support o�-line network surveillance, where a network manager tries
to identify and correct faults based on sent alarms. A comprehensive discussion
on this application is available in [10].

Assume that the schema for the data part is R = (alarm type, alarming
element, element type, date, time, week, alarm severity, alarm text). We consider
items as equalities between attributes and values, while rule left-hand and right-
hand sides are sets of items. Notice also that we use in the selection conditions
expressions that concern subcomponents of the rules. Typically, one wants to
select rules with a given attribute on the left-hand side (LHS) or on its right-hand

299Modeling KDD Processes within the Inductive Database Framework

alarm alarming element date time week alarm alarm

type element type severity text

1111 E1.1 ABC 980119 233605 4 1 LINK FAILURE

2222 E2 CDE 980119 233611 4 3 HIGH ERROR RATE

3333 A EFG 980119 233627 4 1 CONNECTION NOT ESTABLISHED

4444 B2.1 GHI 980119 233628 4 2 LINK FAILURE

s0 e(r0).f e(r0).c

alarm type=1111) element type=ABC 0.25 1.00

alarm type=222) alarming element=E2, element type=CDE 0.25 1.00

alarm type=1111, element type=ABC) alarm text=LINK FAILURE 0.25 1.00

alarm type=5555) alarm severity=1 0.00 0.00

Table 3. Part of an inductive database consisting of data part r0 (upper table) and
rule part s0 (lower table).

side (RHS), or give bounds to the number of occurring items. Self-explanatory
notations are used for this purpose. A sample of an instance of this schema is
given in Table 3.

Scenario The network manager decides to look at association rules derived from
r0, the data set for the current month. Therefore, he/she \tunes" parameters for
the search by pruning out all rules that have con�dence under 5% or frequency
under 0.05% or more than 10 items (phase 1 in Table 4). The network manager
then considers that attributes \alarm text" and \time" are not interesting, and
projects them away (phase 2). The number of rules in the resulting rule set,
s2, is still quite large. The user decides to focus on the rules from week 30
and to restrict to 5 the maximum amount of items in the rule (phase 3). While
browsing the collection of rules s3, the network manager sees that a lot of rules
concern the network element E. That reminds him/her of maintenance operation
and he/she decides to remove all rules that contain \alarming element = E or its
subcomponent" (phase 4). We omit the explanation of dealing with the taxonomy
of components. The resulting set of rules seems not to show anything special.
So, the network manager decides to compare the behavior of the network to the
preceding similar period (week 29) and �nd out possible di�erences (phases 5{6).
The network manager then picks up one rule, s8, that looks interesting and is
very strong (con�dence is close to 1), and he wants to �nd all exceptions to this
rule; i.e. rows, where the rule does not hold (phases 7{8).

Except for the last phases, the operations are quite straightforward. In the
comparison operation, however, we must �rst replay the phases 3{4. This is
because we have to remove the �eld \week" from the schema we used in creating
rules for week 30, so that we can compare these rules with the rules from week
29. Then we create for week 29 the same query (except for the week information),
take the intersection from these two rulesets, and calculate the frequencies and
con�dences of the rules in the intersection. The search for exceptions is performed
using the apply operation introduced in Section 2.

This simple scenario illustrates a typical real-life data mining task. Due to
the closure property, KDD processes can be described by sequences of opera-
tions, i.e., queries over relevant inductive databases. In fact, such sequences of
queries are abstract and concise descriptions of data mining processes. An inter-

300 J.-F. Boulicaut, M. Klemettinen, and H. Mannila

Phase Operation Query and conditions

1 Selection �F1((r0; s0)) = (r0; s1)
F1 = e(r0):f � 0:005 ^ e(r0):c � 0:05 ^ jLHSj � 10

2 Projection �T ((r0; s1)) = (r1; s2)
T = R n falarm text; timeg

3 Selection �F2(�C1((r1; s2)))) = (r2; s3)
C1 = (week = 30) and F2 = jLHS [RHSj � 5

4 Selection �F3((r2; s3)) = (r2; s4)
F3 = (alarming element = E�) 62 fLHS [RHSg

5 Replay 3{4 (week 30) �F3(�F2(�U (�C1((r1; s2))))) = (r3; s5)
U = T n fweekg, other conditions as in 3{4

6 Replay 3{4 (week 29) �F3(�F2(�U (�C2((r1; s2))))) = (r4; s6)
C2 = (week = 29), other conditions as in 5

7 Intersection \((r3; s5); (;; s6)) = (r3; s7)

8 Apply �((r3; s8)) = (r5; s9)

Table 4. Summary of the phases of the experiment.

esting point here is that these descriptions can even be annotated by statistical
information about the size of selected dataset, the size of intermediate collection
of patterns etc., providing knowledge for further use of these sequences.

4 Conclusions and Future Work

We presented a framework for inductive databases considering that the whole
process of data mining can be viewed as a querying activity. Our simple form-
alization of operations enables the de�nition of mining processes as sequence of
queries, thanks to a closure property. The description of a non-trivial mining
process using these operations has been given and even if no concrete query lan-
guage or query evaluation strategy is available yet, it is a mandatory step towards
general purpose query languages for KDD applications.

Query languages like M-SQL [9] or MINE RULE [13] are good candidates for
inductive database querying though they are dedicated to boolean and association
rule mining, respectively. A simple Pattern Discovery Algebra has been proposed
in [18]. It supports pattern generation, pattern �ltering and pattern combining
operations. This algebra allows the user to specify discovery strategies, e.g., using
di�erent criteria of interestingness but at a macroscopic level; implementation
issues or add-value for supporting the mining step are not considered.

We introduced, as an example, an inductive database for association rules,
and gave a realistic scenario using simple operations. It appears that without
introducing any additional concepts, standard database terminology enable to
carry out inductive database querying and that recent contributions to query
optimization techniques can be used for inductive database implementation. A
signi�cant question is whether the inductive database framework is interesting
for a reasonable collection of data mining problems. We currently study KDD
processes that need di�erent classes of patterns.

301Modeling KDD Processes within the Inductive Database Framework

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases. In SIGMOD'93, pages 207 { 216, May 1993. ACM.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discov-

ery of association rules. In Advances in Knowledge Discovery and Data Mining,
pages 307 { 328. AAAI Press, 1996.

3. J.-F. Boulicaut. A KDD framework to support database audit. In WITS'98,

volume TR 19, pages 257 { 266, December 1998. University of Jyv�askyl�a.
4. J.-F. Boulicaut, M. Klemettinen, and H. Mannila. Querying inductive databases:

A case study on the MINE RULE operator. In PKDD'98, volume 1510 of LNAI,

pages 194 { 202, September 1998. Springer-Verlag.
5. S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and

implication rules for market basket data. In SIGMOD'97, pages 255 { 264, 1997.
ACM Press.

6. L. Dehaspe and L. De Raedt. Mining association rules in multiple relations. In

Proceedings 7th Int'l Workshop on Inductive Logic Programming, volume 1297 of
LNAI, pages 125{132. Springer-Verlag, 1997.

7. J. M. Hellerstein. Optimization techniques for queries with expensive

methods. ACM Transaction on Database Systems, 1998. Available at
http://www.cs.berkeley.edu/�jmh/miscpapers/todsxfunc.ps.

8. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.

Communications of the ACM, 39(11):58 { 64, November 1996.
9. T. Imielinski, A. Virmani, and A. Abdulghani. DataMine: Application program-

ming interface and query language for database mining. In KDD'96, pages 256 {

261, August 1996. AAAI Press.
10. M. Klemettinen, H. Mannila, and H. Toivonen. Rule discovery in telecommunica-

tion alarm data. Journal of Network and Systems Management, 1999. To appear.

11. H. Mannila. Inductive databases and condensed representations for data min-
ing. In Proceedings of the International Logic Programming Symposium (ILPS'97),

pages 21 { 30, October 1997. MIT Press.

12. H. Mannila. Methods and problems in data mining. In ICDT'97, volume 1186 of
LNCS, pages 41{55. Springer-Verlag, 1997.

13. R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association

rules. In VLDB'96, pages 122 { 133, September 1996. Morgan Kaufmann.
14. R. Ng, L. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning

optimizations of constrained associations rules. In SIGMOD'98, pages 13 { 24,

1998. ACM Press.
15. P. Smyth and R. M. Goodman. An information theoretic approach to rule in-

duction from databases. IEEE Transactions on Knowledge and Data Engineering,

4(4):301 { 316, August 1992.
16. R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints.

In KDD'97, pages 67 { 73, 1997. AAAI Press.

17. D. Tsur, J. D. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and
A. Rosenthal. Query
ocks: A generalization of association-rule mining. In SIG-

MOD'98, pages 1 { 12, 1998. ACM Press.

18. A. Tuzhilin. A pattern discovery algebra. In SIGMOD Workshop on Research Is-
sues on Data Mining and Knowledge Discovery, Technical Report 97-07 University

of British Columbia, pages 71 { 76, 1997.

302 J.-F. Boulicaut, M. Klemettinen, and H. Mannila

	1 Introduction
	2 Inductive Databases
	2.1 Association Rules
	2.2 Generalization to Other Pattern Types

	3 Inductive Databases and KDD Processes
	4 Conclusions and Future Work
	References

