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Abstract. In many application domains, classification tasks have to
tackle multiclass imbalanced training sets. We have been looking for a
CBA approach (Classification Based on Association rules) in such dif-
ficult contexts. Actually, most of the CBA-like methods are one-vs-all
approaches (OVA), i.e., selected rules characterize a class with what is
relevant for this class and irrelevant for the union of the other classes.
Instead, our method considers that a rule has to be relevant for one class
and irrelevant for every other class taken separately. Furthermore, a con-
strained hill climbing strategy spares users tuning parameters and/or
spending time in tedious post-processing phases. Our approach is empir-
ically validated on various benchmark data sets.

Keywords: Classification, Association Rules, Parameter Tuning, Mul-
ticlass.

1 Introduction

Association rule mining [I] has been applied not only for descriptive tasks but
also for supervised classification based on labeled transactional data [2]3]4L[5]
[6L[7L[8]. An association rule is an implication of the form X = Y where X and
Y are different sets of Boolean attributes (also called items). When Y denotes
a single class value, it is possible to look at the predictive power of such a rule:
when the conjunction X is observed, it is sensible to predict that the class value
Y is true. Such a shift between descriptive and predictive tasks needs for careful
selection strategies [9]. [2] identified it as an associative classification approach
(also denoted CBA-like methods thanks to the name chosen in [2]). The pioneer-
ing proposal in [2] is based on the classical objective interestingness measures
for association rules — frequency and confidence — for selecting candidate classi-
fication rules. Since then, the selection procedure has been improved leading to
various CBA-like methods [21[46LRLT0]. Unfortunately, support-confidence-based
methods show their limits on imbalanced data sets. Indeed, rules with high con-
fidence can also be negatively correlated. [T1[12] propose new methods based
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on correlation measure to overcome this weakness. However, when considering
a n-class imbalanced context, even a correlation measure is not satisfactory: a
rule can be positively correlated with two different classes what leads to con-
flicting rules. The common problem of these approaches is that they are OVA
(one-vs-all) methods, i.e., they split the classification task into n two-class clas-
sification tasks (positives vs negatives) and, for each sub-task, look for rules that
are relevant in the positive class and irrelevant for the union of the other classes.
Notice also that the popular emerging patterns (EPs introduced in [I3]) and the
associated EPs-based classifiers (see e.g. [14] for a survey) are following the same
principle. Thus, they can lead to conflicting EPs.

In order to improve state-of-the-art approaches for associative classification
when considering multiclass imbalanced training sets, our contribution is twofold.
First, we propose an OVE (one-vs-each) method that avoids some of the prob-
lems observed with typical CBA-like methods. Indeed, we formally characterize
the association rules that can be used for classification purposes when consider-
ing that a rule has to be relevant for one class and irrelevant for every other class
(instead of being irrelevant for their union). Next, we designed a constrained hill
climbing technique that automatically tunes the many parameters (frequency
thresholds) that are needed. The paper is organized as follows: Section [2 pro-
vides the needed definitions. Section [ discusses the relevancy of the rules ex-
tracted thanks to the algorithm presented in Section [l Section Bl describes how
the needed parameters are automatically tuned. Section [@ provides our experi-
mental study on various benchmark data sets. Section [ briefly concludes.

2 Definitions

Let C be the set of classes and n its cardinality. Let A be the set of Boolean
attributes. An object o is defined by the subset of attributes that holds for it,
i.e., o C A. The data in Table [0 illustrate the various definitions. It provides
11 classified objects (og)ke1...11- Each of them is described with some of the 6
attributes (a;)ie1..6 and belongs to one class (¢;);e1..3. This is a toy labeled
transactional data set that can be used to learn an associative classifier that
may predict the class value among the three possible ones.

2.1 Class Association Rule

A Class Association Rule (CAR) is an ordered pair (X,c) € 24 x C. X is the
body of the CAR and c its target class.

Ezample 1. In Tab.[ ({a1,as5},c3) is a CAR. {a1,a5} is the body of this CAR
and cg its target class.

2.2 Per-class Frequency

Given a class d € C and a set Oy of objects belonging to this class, the frequency
of a CAR (X,c) in d is |[{o € O4|X C o}|. Since the frequency of (X,¢) in d
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Table 1. Eleven classified objects

A C
ai az a3z a4 G5 ag C1 C2 C3
01
02
Ocl 03
04
05
06
O, o7
08
09
053 010
o11

does not depend on ¢, it is denoted f4(X). Given d € C and a related frequency
threshold v € IN, (X, ¢) is frequent (resp. infrequent) in d iff f4(X) is at least
(resp. strictly below) ~.

Ezample 2. In Tab.[[ the CAR ({a1,as},c3) has a frequency of 3 in ¢q, 1 in ¢o
and 2 in c3. Hence, if a frequency threshold v = 2 is associated to cs, ({a1,as}, c3)
is frequent in c3.

With the same notations, the relative frequency of a CAR (X, ¢) in d is Y Idéfz{l)

2.3 Interesting Class Association Rule

Without any loss of generality, consider that C = {¢;|i € 1...n}. Giveni € 1...n
and (i j)je1..n € IN" (n per-class frequency thresholds pertaining to each of the
n classes), a CAR (X, ¢;) is said interesting iff:

1. it is frequent in ¢;, ie., fe,(X) > vii

2. it is infrequent in every other class, i.e., Vj # i, fo,(X) < i

3. any more general CAR is frequent in at least one class different from ¢;, i.e.,
VY C X,3j #i|fe;(Y) > 7i,; (minimal body constraint).

Ezample 3. In Tab. [[l assume that the frequency thresholds v31 =4, 732 = 2,
and 73 3 = 2 are respectively associated to c1, ¢z, and c3. Although it is frequent
in ¢3 and infrequent in both ¢; and ¢a, ({a1,as5},c3) is not an interesting CAR
since {as} C {a1,a5} and ({as},cs) is neither frequent in ¢; nor in cs.

3 Relevancy of the Interesting Class Association Rules

3.1 Selecting Better Rules

Constructing a CAR-based classifier means selecting relevant CARs for classifi-
cation purposes. Hence, the space of CARs is to be split into two: the relevant
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CARs and the irrelevant ones. Furthermore, if < denotes a relevancy (possibly
partial) order on the CARs, there should not be a rule r from the relevant CARs
and a rule s from the irrelevant CARs s.t. r < s. If this never happens, we say
that the frontier between relevant and irrelevant CARs is sound. Notice that [3]
uses the same kind of argument but conserves a one-vs-all perspective.

Using the “Global Frequency + Confidence” Order. The influential
work from [2] has been based on a frontier derived from the conjunction of
a global frequency (sum of the per-class frequencies for all classes) threshold
and a confidence (ratio between the per-class frequency in the target class and

the global frequency) threshold. Let us consider the following partial order <j:
Y(X,Y) € (242, Ve e C,

fe(X) < faY) ifc=d

(Xv C) =1 (Y7 C) e Vdel, {fC(X) > fd(Y) otherwise.

Obviously, =1 is a sensible relevancy order. However, as emphasized in the exam-
ple below, the frontier drawn by the conjunction of a global frequency threshold
and a confidence threshold is not sound w.r.t. <;.

Example 4. Assume a global frequency threshold of 5 and a confidence threshold
of 2. In Tab. [0 the CAR ({as},c1) is not (globally) frequent. Thus it is on the
irrelevant side of the frontier. At the same time, ({a4},c1) is both frequent and
with a high enough confidence. It is on the relevant side of the frontier. However,
({as},c1) correctly classifies more objects of Op than ({as},c1) and it applies
on less objects outside O1. So ({a4},c1) <1 ({as},c1).

Using the “Emergence” Order. Emerging patterns have been introduced
in [I3]. Here, the frontier between relevancy and irrelevancy relies on a growth
rate threshold (ratio between the relative frequency in the target class and the
relative frequency in the union of all other classes). As emphasized in the example
below, the low number of parameters (one growth rate threshold for each of the
n classes) does not support a fine tuning of this frontier.

Ezample 5. Assume a growth rate threshold of §. In Tab.[] the CAR ({a1},c1)
has a growth rate of g Thus it is on the irrelevant side on the frontier. At the
same time, ({az},c1) has a growth rate of §. It is on the relevant side of the
frontier. However ({a1}, ¢1) correctly classifies more objects of Oy than ({az},¢1)
and more clearly differentiates objects in 07 from those in O.

Using the “Interesting” Order. The frontier drawn by the growth rates is
sound w.r.t. <. So is the one related to the so-called interesting CARs. Never-
theless, the latter can be more finely tuned so that the differentiation between
two classes is better performed. Indeed, the set of interesting CARs whose target
class is ¢; is parametrized by n thresholds (Vi ;)je1..n: one frequency threshold
vi,i and n — 1 infrequency thresholds for each of the n — 1 other classes (instead
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of one for all of them). Hence, to define a set of interesting CARs targeting every
class, n? parameters enable to finely draw the frontier between relevancy and
irrelevancy.

In practice, this quadratic growth of the number of parameters can be seen as
a drawback for the experimenter. Indeed, in the classical approaches presented
above, this growth is linear and finding the proper parameters already appears
as a dark art. This issue will be solved in Section [l thanks to an automatic
tuning of the frequency thresholds.

3.2 Preferring General Class Association Rules

The minimal body constraint avoids redundancy in the set of interesting CARs.
Indeed, it can easily be shown that, for every CAR (X, ¢), frequent in ¢ and
infrequent in every other class, it exists a body Y C X s.t. (Y] ¢) is interesting and
VZ CY,(Z,c) is not. Preferring shorter bodies means focusing on more general
CARs. Hence, the interesting CARs are more prone to be applicable to new
unclassified objects. Notice that the added-value of the minimal body constraint
has been well studied in previous approaches for associative classification (see,

e.g., BLIA).

4 Computing and Using the Interesting Class Association
Rules

Let us consider n classes (¢;)ie1..n and let us assume that I' denotes a n x
n matrix of frequency thresholds. The it line of I pertains to the subset of
interesting CARs whose target class is ¢;. The jth column of I' pertains to the
frequency thresholds in ¢;. Given I' and a set of classified objects, we discuss
how to efficiently compute the complete set of interesting CARs.

4.1 Enumeration

The complete extraction of the interesting CARs is performed one target class
after another. Given a class ¢; € C, the enumeration strategy of the candidate
CARs targetting ¢; is critical for performance issues. The search space of the
CAR bodies, partially ordered by C, has a lattice structure. It is traversed in a
breadth-first way. The two following properties enable to explore only a small
part of it without missing any interesting CAR:

1. If (Y, ¢;) is not frequent in ¢;, neither is any (X, ¢;) with Y C X.
2. If (Y,¢;) is an interesting CAR, any (X, ¢;) with Y C X does not have a
minimal body.

Such CAR bodies Y are collected into a prefix tree. When constructing the
next level of the lattice, every CAR body in the current level is enlarged s.t.
it does not become a superset of a body in the prefix tree. In this way, entire
sublattices, which cannot contain bodies of interesting CARs, are ignored.
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4.2 Algorithm

Algorithm [ details how the extraction is performed. parents denotes the cur-
rent level of the lattice (i.e., a list of CAR bodies). futureParents is the next
level. forbiddenPrefixes is the prefix tree of forbidden subsets from which is
computed forbiddenAtts, the list of attributes that are not allowed to enlarge
parent (a CAR body in the current level) to give birth to its children (bodies
in the next level).

forbiddenPrefixes « ()
parents «— [0]
while parents # [] do
futureParents «— ()
for all parent € parents do
forbiddenAtts < FORBIDDENATTS(forbiddenPrefixes, parent)
for all attribute > LASTATTRIBUTE (parent) do
if attribute ¢ forbiddenAtts then
child < CONSTRUCTCHILD(parent, attribute)
if f.,(child) > ~:: then
if INTERESTING (child) then
output (child, ¢;)
INSERT(child, forbiddenPrefixes)
else
futureParents « futureParents U {child}

else
INSERT(child, forbiddenPrefixes)

parents « parents \ {parent}
parents < futureParents

Algorithm 1. EXTRACT(¢;: target class)

4.3 Simultaneously Enforcing Frequency Thresholds in All Classes

Notice that, along the extraction of the interesting CARs targeting c¢;, all fre-
quency thresholds (i j)je1...n are simultaneously enforced. To do so, every CAR
body in the lattice is bound to n bitsets related to the (O, )ic1...n. Thus, every
bit stands for the match (’1’) or the mismatch (’0’) of an object and bitwise
ANDs enables an incremental and efficient computation of children’s bitsets.
Alternatively, the interesting CARs targeting ¢; could be obtained by comput-

ing the n — 1 sets of emerging patterns between ¢; and every other class ¢; (with
7i,i| 05
Vi,i 10|
complexity of n? —n extractions of loosely constrained CARs is far worse than
ours (n extractions of tightly constrained CARs). When n is large, it prevents

from automatically tuning the parameters with a hill climbing technique.

as a growth rate), one by one, and intersecting them. However, the time

4.4 Classification

When an interesting CAR is output, we can output its vector of relative fre-
quencies in all classes at no computational cost. Then, for a given unclassified
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object o C A, its likeliness to be in the class ¢; is quantifiable by (o, ¢;) which is
the sum of the relative frequencies in ¢; of all interesting CARs applicable to o:

o) = Z) <fc7:(X)>
s.t. XCo

O,
ceC \interesting (X,c ‘ Cl|

Notice that the target class of an interesting CAR does not hide the exceptions

it may have in the other classes. The class cpax related to the greatest likeliness
l(lo(;“(‘a)")) quantifies the certainty
of the classification of o in the class ¢max rather than ¢; (the other class with
which the confusion is the greatest). This “certainty measure” may be very

valuable in cost-sensitive applications.

value [(0, tmax) is where to classify 0. min;max(

5 Automatic Parameter Tuning

It is often considered that manually tuning the parameters of an associative
classification method, like our CAR-based algorithm, borders the dark arts. In-
deed, our algorithm from Sec. @ requires a n-by-n matrix I" of input parameters.
Fortunately, analyzing the way the interesting CARs apply to the learning set,
directly indicates what frequency threshold in I" should be modified to probably
improve the classification. We now describe how to algorithmically tune I" to
obtain a set of interesting CARs that is well adapted to classification purposes.
Due to space limitations, the pseudo-code of this algorithm, called fitcareEl, is
only available in an associated technical report [15].

5.1 Hill Climbing

The fitcare algorithm tunes I" following a hill climbing strategy.

Maximizing the Minimal Global Growth Rate. Section E4] mentioned
the advantages of not restricting the output of a CAR to its target class (its
frequencies in every class are valuable as well). With the same argument applied
to the global set of CARs, the hill climbing technique, embedded within fitcare,
maximizes global growth rates instead of other measures (e.g., the number of
correctly classified objects) where the loss of information is greater.

Given two classes (¢;,c;) € C? s.t. i # j, the global growth rate g(c;,c;)
quantifies, when classifying the objects from O,,, the confusion with the class
¢;j. The greater it is, the less confusion made. We define it as follows:

( Zoeoci l(Oa Ci)

g\Ci, C5) =

v Zoeoci l(Oﬂ Cj)

From a set of interesting CARs, fitcare computes all n? — n global growth

rates. The maximization of the minimal global growth rate drives the hill climb-
ing, i.e., fitcare tunes I so that this rate increases. When no improvement can

! fitcare is the recursive acronym for fitcare is the class association rule extractor.
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be achieved on the smallest global growth rate, fitcare attempts to increase
the second smallest (while not decreasing the smallest), etc. fitcare terminates
when a maximum is reached.

Choosing One ~; ; to Lower. Instead of a random initialization of the param-
eters (a common practice in hill climbing techniques), I" is initialized with high
frequency thresholds. The hill climbing procedure only lowers these parameters,
one at a time, and by decrements of 1. However, we will see, in Sec. (.2 that
such a modification leads to lowering other frequency thresholds if I" enters an
undesirable state.

The choice of the parameter v; ; to lower depends on the global growth rate
g(ci,cj) to increase. Indeed, when classifying the objects from O, different
causes lead to a confusion with ¢;. To discern the primary cause, every class at
the denominator of g(c;, ¢;) is evaluated separately:

fe; (X) )
1O,
(X

fe;
ZOEO Zlntere%tlng (X,c2) s.t. XCo |O rJ|

ZOEO theres‘cmg (X,c1) s.t. XCo

ZOEO Zlntere%tlng (X,cp) s.t. XCo |Or | )

The greatest term is taken as the primary cause for g(c;, ¢;) to be small. Usually
it is either the " term (the interesting CARs targeting ¢; are too frequent in
cj) or the j*® one (the interesting CARs targeting c¢; are too frequent in ¢;).
This term directly indicates what frequency threshold in I" should be preferably
lowered. Thus, if the i*® (resp. j'1') term is the greatest, v; j (resp. v;;) is lowered.
Once I' modified and the new interesting CARs extracted, if g(c;, ¢;) increased,
the new I is committed. If not, I is rolled-back to its previous value and the
second most promising +; ; is decremented, etc.

5.2 Avoiding Undesirable Parts of the Parameter Space

Some values for I" are obviously bad. Furthermore, the hill climbing technique
cannot properly work if too few or too many CARs are interesting. Hence,
fitcare avoids these parts of the parameter space.

Sensible Constraints on I'. The relative frequency of an interesting CAR
targeting ¢; should obviously be strictly greater in ¢; than in any other class:

Vi.j < Viji

Viel...nVj#i,
|0c;| 1O,

Furthermore, the set of interesting CARs should be conflictless, i.e., if it con-
tains (X, ¢;), it must not contain (Y,¢;) if ¥ C X. Thus, an interesting CAR
targeting ¢; must be strictly more frequent in ¢; than any interesting CAR whose
target class is not ¢;:

Viel...n,Vj#1i,7; <5
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Whenever a modification of I' violates one of these two constraints, every
vi; (i # j) in cause is lowered s.t. I" reaches another sensible state. Then, the
extraction of the interesting CARs is performed.

Minimal Positive Cover Rate Constraint. Given a class ¢ € C, the positive
cover rate of ¢ is the proportion of objects in O, that are covered by at least one
interesting CAR targeting c, i.e., |19€9¢I3 interesﬁionfl(x’c) st XCoH  Obviously, the
smaller the positive cover rate of ¢, the worse the classification in c.

By default, fitcare forces the positive cover rates of every class to be 1
(every object is positively covered). Thus, whenever interesting CARs, with ¢;
as a target class, are extracted, the positive cover rate of ¢; is returned. If it is
not 1, v;; is lowered by 1 and the interesting CARs are extracted again.

Notice that fitcare lowers v;; until O, is entirely covered but not more.
Indeed, this could bring a disequilibrium between the average number of inter-
esting CARs applying to the objects in the different classes. If this average in O,
is much higher than that of O, g(c;, c;) would be artificially high and g(c;, ¢;)
artificially low. Hence, the hill climbing strategy would be biased.

On some difficult data sets (e.g., containing misclassified objects), it may
be impossible to entirely cover some class ¢; while verifying Vi € 1...n,Vj #
i IZ;; | < %LF:' . That is why, while initializing I, a looser minimal positive cover
rate constraint may be decided.

Here is how the frequency thresholds in the 7" line of I" are initialized (every
line being independently initialized):

Vjel...n,%',jz{'Ocj|lfl_j .

|O,,| — 1 otherwise

The interesting CARs targeting ¢; are collected with EXTRACT(¢;). Most of
the time, the frequency constraint in ¢; is too high for the interesting CARs
to entirely cover O,,. Hence fitcare lowers 7;; (and the (vi;)je1..n s.t. Vi €
1...n,Vj #1, |g;?| < I’écl) until O, is entirely covered. If v; ; reaches 0 but the
positive cover rate of ¢; never was 1, the minimal positive cover rate constraint
is loosened to the greatest rate encountered so far. The frequency thresholds
related to this greatest rate constitute the i*" line of I" when the hill climbing
procedure starts.

6 Experimental Results

The fitcare algorithm has been implemented in C++. We performed an empiri-
cal validation of its added-value on various benchmark data sets. The LUCS-KDD
software library [I6] provided the discretized versions of the UCI data sets [17]
and a Java implementation of CPAR. Notice that we name the data sets accord-
ing to Coenen’s notation, e.g., the data set “breast.D20.N699.C2” gathers 699
objects described by 20 Boolean attributes and organized in 2 classes. To put
the focus on imbalanced data sets, the repartition of the objects into the classes



302 L. Cerf et al.

is mentioned as well. Bold faced numbers of objects indicate minor classes, i.e.,
classes having, at most, half the cardinality of the largest class.

The global and the per-class accuracies of fitcare are compared to that of
CPAR, one of the best CBA-like methods designed so far. The results, reported
in Tab. 2] were obtained after 10-fold stratified cross validations.

Table 2. Experimental results of fitcare and comparison with CPAR

Data Sets Global Per-class (True Positive rates)

fitcare CPAR fitcare CPAR
2?3332547/361/\1683?4?)6 92.09 94.99  87.5/46.46/98.09/-/100/90 17/90.24/99.44/-/100/96.25
E;e;jzt4]132o.N699.Cz 82.11 92.95 73.36/98.75 98.58/84.68
233.5235;2/1(3792/86(;4 91.03 80.79 98.67/73.43/66.66/78.46 92.25/58.74/46.03/23.67
gzl;i;rleésS.D34.N435.CQ 88.96 95.19 89.13/88.69 97.36/92.31
;gé}?gt{is.DlZ&NEAO.Cz 68.7 68.33 30.7/92.94 61.99/79.99
3;;‘;“;;75’?‘;;;‘%72336'06 77.86 80.8 80.55/82.14/62.29/78.84/79.59/85 80.65/88.86/67.71/77.94/96.67 /46
%3/575(-5]714;‘)1;?;3'/%;29 72.80 64.1 80/68.42/23.52/-/76.92/100/86.2 54.49/65.71/0/-/45/30/90
T§Z§25/55é173333'1035 55.44 55.03 §1.7/21.81/19.44/34.28/23.07 78.68/14.86/23.26/23.79/10
g;l;?;igi&m’ﬁ'mc’&cz 85.16 74.34 50/95.93 45.05/94.37
];g;jelcsoéic.D85.N368.C2 81.25 81.57 81.46/80.88 85.69/76.74
;%%%}gbmw‘m 95.33 95.33 100/94/92 100/91.57/96.57
2;;;??}?23-/11;(?2?2622 98.07 78.59 100/-/81.7/96.78/99.45 77.64/-/21.24/73.53/98.74
gé)rgfz.gglz.NmB.Cz 72.78 75.65 84.2/51.49 78.52/69.03
;i;g‘/%c:;goe.D29.N958.C2 65.76 71.43 63.73/69.57 76.33/63
Y;g;fig‘:%?llgglél\”’om'm 77.94 70.66 59.56/88.4/85.73 72.87/69.13/71.67
;";7;-1]?2:-1\’178'03 95.5 88.03 96.61,/94.36/95.83 85.38/87.26,/94.67
Arithmetic Means 81.3 79.24 76.57 69.08

6.1 2-Class vs. Multiclass Problem

2-class Problem. Five of the seven data sets where CPAR outperforms fitcare
correspond to well-balanced 2-class problems, where the minimal positive cover
constraint has to be loosened for one of the classes (see Sec. £.2]). On the two re-
maining 2-class data sets, which do not raise this issue (cylBands and hepatitis),
fitcare has a better accuracy than CPAR.

Multiclass Problem. fitcare significantly outperforms CPAR on all the nine
multiclass data sets but two — anneal and dermatology — on which fitcare lies
slightly behind CPAR. On the nursery data, the improvement in terms of global
accuracy even reaches 25% w.r.t. CPAR.

6.2 True Positive Rates in Minor Classes

When considering imbalanced data sets, True Positive rates (TPr) are known
to better evaluate classification performances. When focusing on the TPr in the
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minor classes, fitcare clearly outperforms CPAR in 14 minor classes out of the
20 (bold values). Observe also that the 2-class data sets with a partial positive
cover of the largest class have a poor global accuracy but the TPr of the smallest
classes often are greater than CPAR’s (see breast, horsecolic, ticTacToe).

Compared to CPAR, fitcare presents better arithmetic means in both the
global and the per-class accuracies. However, the difference is much greater with
the latter measure. Indeed, as detailed in Sec. Bl fitcare is driven by the
minimization of the confusion between every pair of classes (whatever their sizes).
As a consequence, fitcare optimizes the True Positive rates. In the opposite,
CPAR (and all one-vs-all approaches), focusing only on the global accuracy, tends
to over-classify in the major classes.

7 Conclusion

Association rules have been extensively studied along the past decade. The
CBA proposal has been the first associative classification technique based on
a “support-confidence” ranking criterion [2]. Since then, many other CBA-like
approaches have been designed. Even if suitable for typical two-class problems,
it appears that support and confidence constraints are inadequate for select-
ing rules in multiclass imbalanced training data sets. Other approaches (see,
e.g., [11114,[12]) address the problem of imbalanced data sets but show their
limits when considering more than 2 classes. We analyzed the limits of all these
approaches, suggesting that a common weakness relies on their one-vs-all prin-
ciple. We proposed a solution to these problems: our associative classification
method extracts the so-called interesting class association rules w.r.t. a one-
vs-each principle. It computes class association rules that are frequent in the
positive class and infrequent in every other class taken separately (instead of
their union). Tuning the large number of parameters required by this approach
may appear as a bottleneck. Therefore, we designed an automatic tuning method
that relies on a hill-climbing strategy. Empirical results have confirmed that our
proposal is quite promising for multiclass imbalanced data sets.

Acknowledgments. This work is partly funded by EU contract IST-FET 1Q
FP6-516169 and by the French contract ANR ANR-07-MDCO-014 Bingo2. We
would like to thank an anonymous reviewer for its useful concerns regarding the
relevancy of our approach. Unfortunately, because of space restrictions, we could
not address them all in this article.
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