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Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried Nijssen

Abstract In recent years, a large number of algorithms have been proposed
for finding set patterns in boolean data. This includes popular mining tasks
based on, for instance, frequent (closed) itemsets. In this chapter, we develop
a common framework in which these algorithms can be studied thanks to the
principles of constraint programming. We show how such principles can be
applied both in specialized and general solvers.

1 Introduction

Detecting local patterns has been studied extensively during the last decade
(see, e.g., [18] and [22] for dedicated volumes). Among others, many re-
searchers have considered the discovery of relevant set patterns (e.g., frequent
itemsets and association rules, maximal itemsets, closed sets) from transac-
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tional data (i.e., collections of transactions that are collections of items). Such
data sets are quite common in many different application domains like, e.g.,
basket data analysis, WWW usage mining, biomedical data analysis. In fact,
they correspond to binary relations that encode whether a given set of objects
satisfies a given set of Boolean properties or not.

In the last few years, it appears that such 0/1 data mining techniques
have reached a kind of ripeness from both an algorithmic and an applicative
perspective. It is now possible to process large amounts of data to reveal, for
instance, unexpected associations between subsets of objects and subsets of
properties which they tend to satisfy. An important breakthrough for the fre-
quent set mining technology and its multiple uses has been the understanding
of efficient mechanisms for computing the so-called condensed representations
on the one hand, and the huge research effort on safe pruning strategies when
considering user-defined constraints on the other hand.

Inspired by the pioneering contribution [23], frequent closed set mining
has been studied extensively by the data mining community (see, e.g., the
introduction to the FIMI Workshop [16]). A state-of-the-art algorithm like
LCM [27] appears to be extremely efficient and it is now possible, for relevant
frequency thresholds, to extract every frequent closed set from either sparse
or dense data. The analogy between Formal Concept Analysis (see, e.g., [15])
and frequent closed set mining is well understood and this has motivated
the design of new algorithms for computing closed sets and concept lattices.
Closed set mining has been also studied as a very nice example of a condensed
representation for frequency queries and this topic has motivated quite a large
number of contributions the last 5 years (see [10] for a survey). In the same
time, the active use of user-defined constraints has been studied a lot (see,
e.g., [8, 2, 5]). Most of the recent set pattern mining algorithms can exploit
constraints that are not limited to the simple cases of monotonic and/or anti-
monotonic ones as described in, for instance, [9]. New concepts have emerged
like “flexible constraints” [25], “witnesses” [19] or “soft constraints” [4]. Also,
the specific problems of noisy data sets has inspired a constraint-based mining
view on fault-tolerance (see, e.g., [24, 28, 3]).

While a few tens of important algorithms have been proposed, we lack
a clear abstraction of their principles and implementation mechanisms. We
think that a timely challenge is to address this problem. Our objective is
twofold. First, we want to elucidate the essence of the already published pat-
tern discovery algorithms which process binary relations. Next, we propose
a high-level abstraction of them. To this end, we adopt a constraint pro-
gramming approach which both suits well with the type of problems we are
interested in and can help to identify and to describe all basic steps of the
constraint-based mining algorithms. Algorithms are presented without any
concern about data structures and optimization issues. We would like to stay
along the same lines of [21] which introduced in 1997 the level-wise algorithm.
This was an abstraction of severals algorithms already published for frequent
itemset mining (typically Apriori) as well as several works around inclusion
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dependencies and functional dependencies. The generality of the levelwise al-
gorithm inspired a lot of work concerning the use of the border principle and
its relations with classical version spaces, or the identification of fundamental
mechanisms of enumeration and pruning strategies. Even though this appears
challenging, we consider this paper as a major step towards the definition of
a flexible, generic though efficient local pattern mining algorithm.

To illustrate the general approach, we will describe two instances of it:
one is a specialized, but sufficiently general pattern mining solver in which
pattern mining constraints are the main primitives; the other involves the use
of existing constraint programming systems, similar to [13]. Both approaches
will be illustrated on a problem of fault tolerant mining to make clear the
possible advantages and disadvantages.

The rest of this article is organized as follows. The next section introduces
some notations and the needed concepts. Section 3 discusses the principles
of several specialized algorithms that have been proposed to support set pat-
tern discovery from 0/1 data. Then, we propose in Section 4 an abstraction
of such algorithms. Given such a generalization, both the dedicated solver
(Section 5) and an implementation scheme within constraint programming
systems (Section 6) are given. Section 7 briefly concludes.

2 General Concepts

Let T = {t1, . . . , tm} and I = {i1, . . . , in} be two sets of respectively transac-
tions and items. Let r be a boolean matrix in which rti ∈ {0, 1}, for t ∈ T and
i ∈ I. An illustration is given in Figure 1 for the sets T = {t1, t2, t3, t4, t5}
and I = {i1, i2, i3, i4}.

i1 i2 i3 i4
t1 1 1 1 1
t2 0 1 0 1
t3 0 1 1 0
t4 0 0 1 0
t5 0 0 0 0

Fig. 1 Boolean matrix where T = {t1, t2, t3, t4, t5} and I = {i1, i2, i3, i4}

In such data sets, we are interested in finding local patterns. A local pattern
P is a pair of an itemset and a transaction set, (X,Y ), which satisfies user-
defined local constraints C(P ). We can consider two types of constraints.
First, we have constraints on the pattern types, which refers to how the pattern
is defined with respect to the input data set. Second, we have constraints
on the pattern form, which do not take into account the data. Hence the
constraint C can be expressed in the form of a conjunction of two constraints
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C(P ) = Ctype(P )∧Cform(P ); Ctype and Cform can themselves be conjunctions
of constraints, i.e., Ctype ≡ C1−type ∧ · · · ∧ Ck−type and Cform ≡ C1−form ∧
· · · ∧ Cl−form.

The typical pattern type constraints are given below.

Definition 1 (Main Pattern Types). Let P = (X,Y ) ∈ 2T × 2I be a
pattern.

(a) P is an itemset with its support set, satisfying Citemset(P ), iff the con-
straint (X = {x ∈ T | ∀y ∈ Y, rxy = 1}) is satisfied.

(b) P is a maximal itemset, satisfying Cmax−itemset(P ), iff Citemset(P ) is
satisfied and there does not exist any itemset P ′ = (X ′, Y ′) satisfying
Citemset(P ′) such that X ′ ⊆ X and Y ⊂ Y ′. Note that Citemset is usually
substituted with a conjunction of more complex constraints1 with respect
to additional constraints on the patterns P ′.

(c) P is a formal concept, satisfying Cfc(P ), iff Citemset(P ) is satisfied and
there does not exist any itemset P ′ = (X ′, Y ′) such that X = X ′ and
Y ⊂ Y ′.

These constraints are related to each other:

Cmax−itemset(P ) =⇒ Cfc(P ) =⇒ Citemset(P )

Example 1. Referring to Figure 1, (t1t2, i4) and (t1, i2i3i4) are examples of
itemsets with their support sets in r1. (t1t2, i2i4) and (t1t3, i2i3) are two
examples of formal concepts in r1.

The most well-known form constraints are given in Figure 2. The first one
is usually called the minimum frequency constraint on itemsets. The second
one imposes that both sets of the pattern have a minimal size. The third
one is called the “minimal area constraint” and ensures that extracted pat-
terns cover a minimal number of “1” values of the boolean matrix. The next
constraint requires that the mean of positive real values associated to each
item of the itemset is greater than a given threshold. Constraint Cmembership
imposes that patterns contain certain elements, for instance a ∈ T and b ∈ I.
Emerging patterns satisfying Cemerging must be frequent with respect to a
transaction set and infrequent with respect to another one. Cdivision is another
example of a form constraint.

There is a wide variety of combinations of constraints that one could wish
to express. For instance, we may want to find itemsets with their support
sets (pattern type), for which the support set is greater than 10% (pattern
form); or we may wish to find the formal concepts (pattern type) containing
at least 3 items and 4 transactions (pattern form) or a fault-tolerant pattern
(pattern type) having an area of size at least 20 (pattern form). Fault-tolerant

1 Indeed, if we would only consider the Citemset constraint, the only maximal itemset
is the itemset containing all items.
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Cform(X,Y )
Csize ≡ |X| > α

Cmin rect ≡ |X| > α ∧ |Y | > β
Carea ≡ |X| × |Y | > α
Cmean ≡

∑
t∈X V al+(t)/|X| > α

Cmembership ≡ a ∈ X ∧ b ∈ Y
Cemerging ≡ |X ∩ E1| > α ∧ |X ∩ E2| < β
Cdivision ≡ |X|/|Y > α

Fig. 2 Examples of interesting pattern form constraints on patterns.

extensions of formal concepts were previously studied in [30, 12, 20, 3], and
will be discussed later in more detail.

As a further example, if the items represent the books of “Antoine De
Saint-Exupery” and the transactions people who have read some of these
books (a ‘1’ value in the boolean matrix), we may want the groups of at
least three people who have read at least three books in common including
“The little prince”. This extraction task can be declaratively defined by the
means of the constraint CEP = Ctype ∧ Cform where Ctype = Cfc and Cform =
Cmin rect ∧ Cmembership (|X| > 3, |Y | > 3 and “The little prince” ∈ Y ).

For the development of algorithms it is important to study the proper-
ties of the constraints. Especially monotonic, anti-monotonic and convertible
constraints play a key role in any combinatorial pattern mining algorithm to
achieve extraction tractability.

Definition 2 ((Anti)-monotonic Constraints). A constraint C(X,Y ) is
said to be anti-monotonic with respect to an argument X iff ∀X,X ′, Y such
that X ⊆ X ′: ¬C(X,Y ) =⇒ ¬C(X ′, Y ). A constraint is monotonic with
respect to an argument X iff ∀X,X ′, Y such that X ⊇ X ′: ¬C(X,Y ) =⇒
¬C(X ′, Y ) We will use the term “(anti)-monotonic” to refer to a constraint
which is either monotonic or anti-monotonic.

Example 2. The constraint Csize is monotonic. Indeed, if a set X does not
satisfy Csize then none of its subsets also satisfies it.

Some constraints are neither monotonic nor anti-monotonic, but still have
good properties that can be exploited in mining algorithms. One such class
is the class of “convertible constraints” that can be used to safely prune a
search-space while preserving completeness.

Definition 3 (Convertible Constraints). A constraint is said to be con-
vertible with respect to X iff it is not (anti)-monotonic and if there exists a
total order on the domain of X such that if a pattern satisfies the constraint,
then every prefix (when sorting the items along the chosen order) also sat-
isfies it. This definition implies that whenever a pattern does not satisfy the
constraint, then every other pattern with this pattern as a prefix does not
satisfy the constraint either.
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Example 3. Constraint Cmean of Figure 2 is a convertible constraint where
V al+ : T → R associates a positive real value to every transaction. Let the
relation order ≤conv such that ∀t1, t2 ∈ T , we have t1 ≤conv t2 ⇔ V al+(t1) ≤
V al+(t2). Thus when the transaction set {ti, tj , ..., tk} ordered by ≤conv does
not satisfy Cmean then all the ordered transaction sets {ti, tj , ..., tl} such that
tk ≤conv tl do not satisfy Cmean either.

3 Specialized Approaches

Over the years, several algorithms have been proposed to find itemsets un-
der constraints. In this section, we review some important ones. In the next
section we will generalize these methods.

In all well-known itemset mining algorithms, it is assumed that the con-
straint Citemset must be satisfied. Hence, for any given set of items Y , it
is assumed we can unambiguously compute its support set X. Most were
developed with unbalanced market-basket data sets in mind, in which trans-
actions contain few items, but items can occur in many transactions. Hence,
they search over the space of itemsets Y and propose methods for deriving
support(Y ) for these itemsets.

The most famous algorithm for mining itemsets with high support is the
Apriori algorithm [1]. The Apriori algorithm lists patterns increasing in item-
set size. It operates by iteratively generating candidate itemsets and deter-
mining their support sets in the data. For an itemset Y candidates of size
|Y |+ 1 are generated by creating sets Y ∪{e} with e 6∈ Y . For example, from
the itemset Y = {i2, i3} the itemset candidate Y ′ = {i2, i3, i4} is generated.
All candidates of a certain size are collected; the support sets of these candi-
dates are computed by traversing the boolean matrix in one pass. Exploiting
the anti-monotonicity of the size constraint, only patterns whose support set
exceeds the required minimum size, are extended again, and so on.

While Apriori searches breadth-first, alternative methods, such as Eclat
[29] and FPGrowth [17], traverse the search space depth-first, turning the
search into an enumeration procedure which has an enumeration search
tree. Each node in the enumeration tree of a depth-first algorithm corre-
sponds to a pattern (support(Y ), Y ). For each node in the enumeration tree
we compute a triple 〈Y, support(Y ),CHILD ∪ Y 〉, where CHILD is the set
of items i such that support(Y ∪ {i}) ≥ size. Hence, CHILD contains all
items i that can be added to Y such that the resulting itemset is still fre-
quent. A child 〈support(Y ′), Y ′, IN ′ ∪ Y ′〉 in the enumeration tree is ob-
tained by (i) adding an item i ∈ CHILD to Y ; (ii) computing the set
X ′ = support(Y ′); and (iii) computing the set IN ′ of items i′ from the
items i ∈ IN for which support(Y ′ ∪ {i}) ≥ size. The main efficiency of the
depth-first algorithms derives from the fact that the sets support(Y ′) and
CHILD can be computed incrementally. In our example, the support set of
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itemset Y ′ = {i2, i3, i4} can be computed from the support set of Y = {i2, i3}
by support(Y ′) = {t1, t3}∩support(i4) = {t1, t3}∩{t1, t2} = {t1}, hence only
scanning support(i4) (instead of support(i2), support(i3) and support(i4)).
The CHILD ′ set is incrementally computed from the CHILD set, as the
monotonicity of the size constraint entails that elements in CHILD ′ must
also be in CHILD . Compared to the level-wise Apriori algorithm, depth-first
algorithms hence require less memory to store candidates.

The most well-known algorithm for finding formal concepts is Ganter’s
algorithm [14], which presents the first formal concept mining algorithm based
on a depth-first enumeration as well as an efficient way to handle the closure
constraint Cfc by enabling “jumps” between formal concepts. Each itemset is
represented in the form of a boolean vector. For instance if |I| = 4 then the
pattern (1, 0, 1, 0) stands for the pattern {i1, i3} (“1” for presence and “0” for
absence). Formal concepts are enumerated in the lexicographic order of the
boolean vectors. For example with three items I = {i1, i2, i3}, itemsets are
ordered in the following way: ∅, {i3} ,{i2}, {i2, i3}, {i1}, {i1, i3}, {i1, i2} and
{i1, i2, i3}. Assume that we have given two boolean vectors A = (a1, · · · , am),
B = (b1, · · · , bm), both representing itemsets, then Ganter defines (i) an
operator A+

i = (a1, · · · , ai−1, 1, 0, · · · , 0); (ii) a relation A <i B which holds
iff ai < bi and ∀j < i : aj = ai; and (iii) an operator A⊕ i = (A+

i )′′, where ′′

is the closure operator, which adds items included in all transactions covered
by (A+

i ). These operators allow us to enumerate the formal concepts in a
given order: the smallest formal concept after A is A⊕ i where i is the largest
integer satisfying A ≤i A⊕ i. This principle is called prefix preserving closure
(PPC) extension [26].

In the example of Figure 2, if we consider the pattern {i2, i3} corresponding
to the boolean vector A = (0, 1, 1, 0), i = 1 is the largest integer satisfying
A ≤i A ⊕ i. Thus from the itemset {i2, i3} we can “jump” to the formal
concept {i1, i2, i3, i4} = A⊕ 1.

A disadvantage with this method is that an itemset A and its successor B
in the lexicographic order may be completely different, i.e., A ∩B = ∅. This
means that there is no way to use information of a pattern (A in the example)
to compute its successor (B in the example). This may be a problem when
we are computing formal concepts in large boolean matrices.

This efficiency problem was addressed in algorithms that combine the fre-
quent itemset mining problem with formal concept analysis (usually called
frequent closed itemset miners). Most algorithms for mining closed itemsets
borrow ideas both from Ganter’s algorithm and depth-first itemset miners
like LCM [26]. Similar to depth-first itemset miners, they traverse the search-
space depth first, and incrementally compute both support and itemsets; to
restrict the search space to formal concepts, they apply Ganter’s enumeration
order; the main idea is to recursively consider only those candidate itemsets
which are PPC extensions.

To address the problem of extracting maximal itemset mining under con-
straints, the DualMiner algorithm was proposed in [9]. It extends the depth-
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first frequent itemset mining approach to deal with maximality and mono-
tonic constraints on the itemsets. When we need to satisfy monotonic itemset
constraints, no longer every node in the enumeration tree corresponds to a
pattern; for instance, if we have the constraint |Y | ≥ 3, all itemsets of size
< 3 are no longer patterns, although we might need to traverse these nodes to
reach patterns that do satisfy the constraints. The first modification proposed
in DualMiner is to test for each node in the enumeration tree if Y ∪ CHILD
satisfies the monotonic constraint on the itemset: in our example, assume
that |Y ∪ CHILD | < 3 for a certain node in the enumeration tree, then we
no longer need to search further below this node, as none of the itemsets we
will be creating can satisfy the monotonic constraint, as they are subsets of
Y ∪CHILD . To speed-up the search for maximal itemsets a similar observa-
tion is used: assume that we find that Y ∪CHILD satisfies the anti-monotonic
constraint on the itemsets, then we can skip the enumeration of all itemsets
Y ′ for which Y ⊆ Y ′ ⊂ Y ∪ CHILD , as they cannot be maximal.

One way to think of this algorithm is that every node in its enumer-
ation tree corresponds to a tuple 〈support(>I),⊥I , support(⊥I),>I〉 such
that all patterns (X,Y ) found below that node will have ⊥I ⊆ Y ⊆ >I
and support(>I) ⊆ X ⊆ support(⊥I). The pair 〈⊥I ,>I〉 represents a search
space (also called a subalgebra, or a sublattice). The set >I is defined to be
the set {i | C(support(⊥I∪{i}),⊥I∪{i})}, for constraints that are monotonic
in X or anti-monotonic in Y . The sets >I and ⊥I are used as witnesses: we
use them to either prune an entire search tree, or to jump to a maximal
solution.

This idea was generalized in [19, 25, 6]. In [19] it was shown how to com-
pute witnesses for the more difficult “variance” constraint, a problem that
remained opened for several years in the data mining community. Soulet et
al. [25] extend the idea to deal with more difficult constraints such as the
area constraint, which take into account both support sets and itemsets. For
example, if we want to compute all the patterns (X,Y ) satisfying Citemset

with an area greater than 3 (Carea where α = 3), knowing that ⊥I ⊆ Y ⊆ >I
and hence support(>I) ⊆ X ⊆ support(⊥I), then we can bound the area
of (X,Y ) by |support(>I)| × |⊥I | ≤ |X| × |Y | ≤ |support(⊥I)| × |>I |. If
|support(⊥I)| × |>I | < 4, any pattern of the current search space has an
area lower than 4, and one can safely stop considering itemsets below (X,Y ).
A more sophisticated extension was proposed by Bonchi et al. based on the
ExAnte property [6, 7]. The ExAnte property states that if a transaction
does not satisfy an easily computable monotonic itemset constraint (such as
that the itemset has at least size 3), then this transaction can never be in
support(X) (as the transaction can only be in the support set of itemsets with
less than 3 items). Hence, we can remove this transaction from consideration.
The consequence of this removal is that we are reducing the support counts
of all items included in the transaction, which may turn some of them in-
frequent. Removing infrequent items from consideration, some transactions
may no longer satisfy the constraint on the itemsets, and can be removed



Generalizing Itemset Mining in a Constraint Programming Setting 9

again; this procedure can be repeated till we reach a fixed point in which
both support sets and itemsets do not change any more.

Originally, this was proposed as a pre-processing procedure that can be
applied on any dataset to obtain a smaller dataset [6]. However, later it was
observed that we can perform such pruning in every node of the enumera-
tion tree of a depth-first itemset miner [7]. Essentially, in every node of the
enumeration tree, we have a tuple

〈support(>I),⊥I ,>T ,>I , 〉

where >T denotes the set of transactions that can still be covered by a
pattern. Compared to the DualMiner and other itemset miners, the key ob-
servation is that we also evaluate constraints on the transactions, and allow
these evaluations to change the set >I ; no longer do we implicitly assume
the set >T to equal support(⊥I).

4 A Generalized Algorithm

We propose to generalize the various approaches that have been sketched in
the previous section. It is based on a depth-first search in which every node
of the enumeration tree has a tuple

SP = 〈⊥,>〉 = 〈⊥T ∪ ⊥I ,>T ∪ >I〉,

such that below this node we will only find patterns P = (X,Y ) in which
⊥T ⊆ X ⊆ >T and ⊥I ⊆ Y ⊆ >I . We will abbreviate this to P ∈ SP ; one
can say that sets ⊥T and >T define the domain of X, and sets ⊥I and >I
the domain of Y .

Constraints express properties that should hold between X and Y . During
the search, this means that if we change the domain for X, this can have an
effect on the possible domain for Y , and the other way around. This idea of
propagating changes in the domain of one set to the domain of another set,
is essential in constraint programming. The general outline of the search that
we wish to perform for itemset mining is given in Figure 3.

Figure 3 presents a skeleton of a binary depth-first search algorithm. Ac-
cording to the data set and the constraint C, the domains are first of all
reduced through propagation. If the domain is still consistent then the enu-
meration process keeps going. If a solution is found, it is printed. Otherwise
the algorithm selects an element to be enumerated and generates two new
nodes (with the function Search). Finally, the algorithm is recursively called
on the two newly generated nodes. Let us now study in more details what we
mean by propagation and consistency.
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Search(A search-space 〈⊥,>〉, a data set r and a constraint C on 2T × 2I)
repeat for variables e ∈ I ∪ T with e 6∈ ⊥ and e ∈ > till fixpoint: (Propagation)

if ¬UpperC(〈⊥ ∪ {e},>〉) then 〈⊥,>〉 ← 〈⊥,> \ {e}〉
if ¬UpperC(〈⊥,> \ {e}〉) then 〈⊥,>〉 ← 〈⊥ ∪ {e},>〉

if UpperC(〈⊥,>〉) then (Consistency check)
if ⊥ = > then

Print〈⊥,>〉 (Solution found)
else

Let e ∈ I ∪ T with e 6∈ ⊥ and e ∈ >
Search(〈⊥,> \ {e}〉,r,C)
Search(〈⊥ ∪ {e},>〉,r,C)

Fig. 3 Skeleton of a binary backtracking algorithm

Definition 4 (Constraint Upper bounds). Let SP be the search-space
and C a constraint over 2T × 2I . Then an upper-bound of C on SP is a
predicate UpperC(SP ) such that if there exists P ∈ SP for which C(P ) is
true, then predicate UpperC(SP ) is true; furthermore, if ⊥ = >, it should
hold that UpperC(SP ) = C(⊥). Informally, if SP violates an upper-bound of
C then SP is not consistent, i.e., no valid pattern can be generated from this
search-space.

From constraint upper-bounds UpperC and search-space lower- and upper-
bounds SP = 〈⊥,>〉, propagation can be applied thanks to the following
observation:

• if an element e ∈ (>\⊥), once added to the lower-bound of its set, violates
the predicate UpperC(〈⊥ ∪ {e},>〉), then C can never be satisfied if e is
included in the solution and e should be remove from the upper-bound of
the set.

• if an element e ∈ (> \ ⊥), once removed from the upper-bound of its set,
violates the predicate UpperC(〈⊥,>\{e}〉), then C can never be satisfied if
e is not included in the solution, and e should be added to the lower-bound
of the set.

Our algorithm generalizes methods such as Eclat, DualMiner and ExAnte.
It maintains all bounds that are also maintained in such algorithms; if a
constraint Citemset is enforced, its propagation ensures that the bounds for
the transaction set correspond to the appropriate support set, as in these
algorithms. The iterative application of propagation is borrowed from the
ExAnte algorithm if monotonic constraints on the itemsets are used.

Even though the algorithm in Figure 3 shows how we would like to perform
the search, there are multiple ways of formalizing itemset mining problems
and implementing propagation, pruning and search. We present two ways to
deal with such issues in the next two sections.
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5 A Dedicated Solver

5.1 Principles

Our first option is to build a dedicated, but still generic enough algorithm for
itemset mining. In such a system, the key idea is that the system provides for
the search, as indicated before, but the user has the ability to plug in algo-
rithms for evaluating the constraints. These algorithms can be implemented
in arbitrary programming languages, and our main problem here is to decide
how the search procedure may exploit such plug in algorithms.

Let us first consider the simple case, in which we assume that we have an
algorithm for evaluating a constraint C(X,Y ) which is (anti-)monotonic in
each of its parameters.

Definition 5 (Upperbound for (Anti-)Monotonic Constraints). Let
C be an (anti)-monotonic constraint both on itemsets and transaction sets,
i.e., the so-called bisets. The following is a valid upper bound:

UpperC(SP ) = C(M1(SP ),M2(SP )),

where M1(SP ) equals >T (resp. ⊥T ) if C is monotonic (resp. anti-monotonic)
on the transaction set. M2(SP ) is defined similarly for itemsets.

Example 4. The constraint Cdivision(X,Y ) ≡ |X|/|Y | > α is monotonic on
X and anti-monotonic on Y with respect to the inclusion order. Indeed let
X1 ⊆ X2 ∈ T and Y1 ⊆ Y2 ∈ I, we have Cdivision(X1, Y ) ⇒ Cdivision(X2, Y )
and Cdivision(X,Y2) ⇒ Cdivision(X,Y1). Finally, the upperbound of Cdivision
is UpperCdivision (SP ) = |>T |/|⊥I | > α.

It is possible to exploit such an observation to call the constraint evaluation
algorithm when needed. We can generalize this to constraints which are not
monotonic or anti-monotonic in each of its parameters. Let us start with the
definition of a function PC which is a simple rewriting of C.

Definition 6 (PC). Let C(X,Y ) be a constraint on 2T × 2I . We denote by
PC the constraint obtained from C by substituting each instance of X (resp.
Y ) in C with an other parameter Xi (resp. Yi) in the constraint PC .

For example, if we want to compute bisets satisfying Cmean, i.e., a mean
above a threshold α on a criterion V al+ : T → R+:

Cmean(X) ≡
∑
x∈X V al

+(x)
|X|

> α.

The argument X appears twice in the expression of Cmean. To introduce the
notion of piecewise monotonic constraint, we have to rewrite such constraints
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using a different argument for each occurrence of the same argument. For
example, the previous constraint is rewritten as:

PCmean
(X1, X2) ≡

∑
x∈X1

V al+(x)
|X2|

> α.

Another example is the constraint specifying that bisets must contain a
proportion of a given biset (E,F ) larger than a threshold α:

Cintersection(X,Y ) ≡ |X ∩ E| × |Y ∩ F |
|X| × |Y |

> α.

This constraint is rewritten as

PCintersection
(X1, X2, Y1, Y2) ≡ |X1 ∩ E| × |Y1 ∩ F |

|X2| × |Y2|
> α

We can now define the class of piecewise (anti)-monotonic constraints for
which we can define an UpperC predicate, which allows us to push the con-
straint in the generic algorithm:

Definition 7 (Piecewise (Anti)-Monotonic Constraint). A constraint
C is piecewise (anti)-monotonic if its associated constraint PC is either mono-
tonic or anti-monotonic on each of its arguments. We denote by Xm (respec-
tively Ym) the set of arguments Xi (resp. Yi) of PC for which PC is mono-
tonic. In the same way Xam (respectively Yam) denotes the set of arguments
Xi (resp. Yi) of PC for which PC is anti-monotonic.

Example 5. The constraint Cmean(X) ≡
∑
i∈X V al

+(i)/|X| > α, which is not
(anti)-monotonic, is piecewise (anti)-monotonic. We can check that PCmean

≡∑
i∈X1

V al+(i)/|X2| > α is (anti)-monotonic for each of its arguments, i.e.,
X1 and X2.

We can now define upper-bounds of piece-wise (anti)-monotonic con-
straints. An upper-bound of a piecewise (anti)-monotonic constraint C is:

UpperC(SP ) = PC(P1, · · · , Pm),

where

Pi = >T if Pi ∈ Xm
Pi = ⊥T if Pi ∈ Xam
Pi = >I if Pi ∈ Ym
Pi = ⊥I if Pi ∈ Yam

Example 6. We have PC1(X1, X2) ≡
∑
i∈X1

V al+(i)/|X2| > α where Xm =
{X1} and Xam = {X2}. Thus we obtain Upper(C1) ≡
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i∈>T

V al+(i)
|⊥T |

> α.

For PC2(X1, X2, Y1) ≡ |X1 ∪ E| ∗ |Y1|/|X2| > α, we have Xm = {X1},
Ym = {Y1} and Xam = {X2}. Thus an upper-bound of C2 is Upper(C2) ≡

|>T ∪ E| ∗ |>I |
|⊥T |

> α.

In [25], the authors present a method to compute the same upper-bounds
of constraints, but built from a fixed set of primitives. Notice also that [11]
provides an in-depth study of piecewise (anti-)monotonicity impact when
considering the more general setting of arbitrary n−ary relation mining.

Overall, in this system, a user would implement a predicate PC , and specify
for each parameter of this predicate if it is monotone or anti-monotone.

5.2 Case study on formal concepts and fault-tolerant
patterns

Let us now illustrate the specialized approach on concrete tasks like formal
concept analysis and fault-tolerant pattern mining. In the next section, the
same problems will be addressed using an alternative approach.

We first show that Cfc, the constraint which defines formal concepts, is
a piece-wise (anti)-monotonic constraint. Then, we introduce a new fault-
tolerant pattern type that can be efficiently mined thanks to the proposed
framework.

We can rewrite Cfc (see Section 2) to get PCfc
:

PCfc
(X1, X2, X3, Y1, Y2, Y3) =∧

t∈X1

∧
i∈Y1

rti∧
t∈T \X2

∨
i∈Y2

¬rti∧
i∈I\Y3

∨
t∈X3

¬rti

Analysing the monotonicity of PCCF
we can check that Cfc is a piecewise

(anti)-monotonic constraint where Xm = {X2}, Xam = {X1, X3}, Ym = {Y3}
and Yam = {Y1, Y2}. Finally we can compute an upper-bound of Cfc:
UpperCfc

(SP ) = PCCF
(⊥T ,>T ,⊥T ,⊥I ,⊥I ,>I) =∧

t∈⊥T
∧
i∈⊥I rti∧

t∈T \>T
∨
i∈⊥I ¬rti∧

i∈I\>I
∨
t∈⊥T ¬rti
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Besides the well-known and well-studied formal concepts, there is an
important challenge which concerns the extraction of combinatorial fault-
tolerant patterns (see, e.g., [24, 3]). The idea is to extend previous patterns
to enable some false values (seen as exceptions) in patterns. We present here
the pattern type introduced in [3].

Definition 8 (Fault-tolerant pattern). A biset (X,Y ) is a fault-tolerant
pattern iff it satisfies the following constraint CDRBS :
ZT (t, Y ) = |{i ∈ Y | ¬rti}|
ZI(i,X) = |{t ∈ X | ¬rti}|

CDRBS(X,Y ) ≡


∧
t∈X ZT (t, Y ) ≤ α∧
i∈Y ZI(i,X) ≤ α∧
t∈T \X

∧
t′∈X ZT (t′, Y ) ≤ ZT (t, Y )∧

i∈I\Y
∧
i′∈Y ZI(i′, X) ≤ ZI(i,X)

α stands for the maximal number of tolerated false values per row and per
column in the pattern. The two last constraints ensure that elements not
included in the patterns contain more false values than those included.

Example 7. (t1t2t3, i2i3i4) and (t1t2t3t4, i2i3) are examples of fault-tolerant
patterns in r1 with α = 1.

We now need to check whether CDRBS can be exploited within our generic
algorithm, i.e., whether it is a piece-wise anti-monotonic constraint. Applying
the same principles as described before, we can compute the predicate PCDRBS

as following:
PCDRBS

(X1, · · · , X6, Y1, · · · , Y6) =∧
t∈X1

ZT (t, Y1) ≤ α∧
i∈Y2
ZI(i,X2) ≤ α∧

t∈T \X3

∧
t′∈X4

ZT (t′, Y3) ≤ ZT (t, Y4)∧
i∈I\Y5

∧
i′∈Y6

ZI(i′, X5) ≤ ZI(i,X6)

According to Definition 7, CDRBS is a piecewise (anti)-monotonic constraint
where Xm = {X3, X6}, Xam = {X1, X2, X4, X5}, Ym = {Y4, Y5} and
Yam = {Y1, Y2, Y3, Y6}.

Finally we can compute an upper-bound of CDRBS :
UpperCfc

(SP ) = ∧
i∈⊥T ZT (i,⊥I) ≤ α∧
i∈⊥I ZI(i,⊥T ) ≤ α∧
t∈T \>T

∧
t′∈⊥T ZT (t′,⊥I) ≤ ZT (t,>I)∧

i∈I\>I
∧
i′∈⊥I ZT (i′,⊥T ) ≤ ZI(i,>T )
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6 Using Constraint Programming Systems

6.1 Principles

An alternative approach is to require that the user specifies constraints in
a constraint programming language. The constraint programming system is
responsible for deriving bounds for the specified constraints. This approach
was taken in [13], where it was shown that many itemset mining tasks can
be specified using primitives that are available in off-the-shelf constraint pro-
gramming systems. The essential constraints that were used are the so-called
reified summation constraints:

(V ′ = 1)⇐
∑
k

αkVk ≥ θ (1)

and
(V ′ = 1)⇒

∑
k

αkVk ≥ θ, (2)

where V ′, V1 . . . Vn are variables with domains {0, 1} and αk is a constant for
each variable Vk within this constraint.

The essential observation in this approach is that an itemset Y can be
represented by a set of boolean variables Ii where Ii = 1 iff item i ∈ Y .
Similarly, we can represent a transaction setX using a set of boolean variables
Tt where Tt = 1 iff t ∈ X.

For instance, the Citemset constraint can be specified using the conjunction
of the following constraints:

Tt = 1⇔
∑
i∈I

Ii(1− rti) = 0, for all t ∈ T

This constraint states that a transaction t is in the support set of an itemset if
and only if all items in the itemset (Ii = 1) are not missing in the transaction
((1− rti) = 0).

As it turns out, many constraint programming systems by default provide
propagators for these reified summation constraints, by maintaining domains
for boolean variables instead of domains for itemsets and transactions. Let
⊥V denote the lowest element in the domain of a variable, and >V denote the
highest element. Then for the reified summation constraint of equation (2) a
propagor computes whether the following condition is true:∑

αk<0

αk⊥Vk
+
∑
αk>0

αk>Vk
< θ;
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if this condition holds, the sum cannot reach the desired value even in the
most optimistic case, and hence the precondition V ′ = 1 cannot be true.
Consequently value 1 is removed from the domain of variable V ′.

In our running example, if we have transaction 3 with items {i2, i3}, this
transaction is represented by the constraint

T3 = 1⇔ I1 + I4 = 0.

If we set the domain of item I1 to 1 (or, equivalently, include item i1 in ⊥I),
this constraint will be false for T3 = 1. Hence, the evaluation of UpperCitemset

when t3 ∈ ⊥T is false, and transaction t3 will be removed from the domain
of >T .

Consequently, by formalizing the Citemset constraint using reified implica-
tions, we achieve the propagation that we desired in our generalized approach.
The search, the propagators and the evaluation of constraints are provided
by the constraint programming system; however, the constraints should be
specified in the constraint programming language of the system, such as the
reified summation constraint.

6.2 Case study on formal concepts and fault-tolerant
patterns

Let us reconsider the constraints proposed in Section 5.2, starting with the
constraints that define the formal concepts. Below we show that each of these
constraints can be rewritten to an equivalent reified summation constraint:∧

i∈I\I

∨
t∈T
¬rti ⇔ (∀i ∈ I : (¬Ii)⇒ (∃t : Tt ∧ ¬rti))

⇔

(
∀i ∈ I : (Ii = 0)⇒

(∑
t

Tt(1− rti) > 0

))

⇔

(
∀i ∈ I : (Ii = 1)⇐

(∑
t

Tt(1− rti) = 0

))

∧
t∈T \T

∨
i∈I
¬rti ⇔

(
∀t ∈ T : (Tt = 1)⇐

(∑
i

Ii(1− rti) = 0

))
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t∈T \T

∧
i∈I

rti ⇔ (∀t ∈ T , i ∈ I : ¬Tt ∨ ¬Ii ∨ rti)

⇔ (∀t ∈ T : ¬Tt ∨ (∀i ∈ I : ¬Ii ∨ rti))
⇔ (∀t ∈ T : Tt ⇒ (∀i ∈ I : ¬(Ii ∧ ¬rti)))

⇔

(
∀t ∈ T : (Tt = 1)⇒

(∑
i

Ii(1− rti) = 0

))

This rewrite makes clear that we can also formulate the formal concept anal-
ysis problem in constraint programming systems. The bounds computed by
the CP system correspond to those computed by the specialized approach,
and the propagation is hence equivalent.

The second problem that we consider is that of mining fault-tolerant formal
concepts. We can observe that

ZT (t, Y ) =
∑
i

Ii(1− rti)

and
ZI(i,X) =

∑
t

Tt(1− rti).

Hence,

∧
t∈X
ZT (t, Y ) ≤ α⇔

(
∀t ∈ T : Tt = 1⇒

∑
i

Ii(1− rti) ≤ α

)

and

∧
i∈Y
ZI(i,X) ≤ α⇔

(
∀i ∈ I : Ii = 1⇒

∑
t

Tt(1− rti) ≤ α

)
.

Note that these formulas are generalizations of the formulas that we devel-
oped for the traditional formal concept analysis, the traditional case being
α = 0.

We can also reformulate the other formulas of fault-tolerant itemset min-
ing.

∧
t∈T \X

∧
t′∈X
ZT (t′, Y ) ≤ ZT (t, Y )⇔

(
∀t, t′ ∈ T : (Tt = 0 ∧ Tt′ = 1)⇔

∑
i

Ii(1− rt′i) ≤
∑
i

Ii(1− rti)

)
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However, this formulation yields a number of constraints that is quadratic in
the number of transactions. Additionally, it is not in the desired form with
one variable on the left-hand side.

A formulation with a linear number of constraints can be obtained by
rewriting the problem further.

Let us define an additional constraint over an additional variable βT , as
follows:

βT = max
t

∑
i

Ii(1− rti)Tt,

which corresponds to the maximum number of 1s missing within one row of
the formal concept. Then the following linear set of constraints is equivalent
to the previous quadratic set:

∀t ∈ T : Tt = 1⇐
∑
i

Ii(1− rti) ≤ βT ;

as we can see, this constraint is very similar to the constraint for usual formal
concepts, the main difference being that βT is not a constant, but a variable
whose domain needs to be computed. Most constraint programming systems
provide the primitives that are required to compute the domain of βT .

Observe that adding the reverse implication would be redundant, given
how βT is defined.

To enforce sufficient propagation, it may be useful to pose additional,
redundant constraints:

β′T = min
t

∑
i

Ii(1− rti(1− Tt))

in conjunction with

∀t ∈ T : Tt = 1⇒
∑
i

Ii(1− rti) ≤ β′T .

This constraint considers the number of 1s missing in rows which are (cer-
tainly) not part of the formal concept. Its propagators ensure that we can
also determine that certain transactions should not be covered in order to
satisfy the constraints.

Similarly, we can express the constraints over items. Our overall set of
constraints becomes:



Generalizing Itemset Mining in a Constraint Programming Setting 19

∀t ∈ T : Tt = 1⇐
∑
i

II(1− rti) ≤ βT

∀t ∈ T : Tt = 1⇒
∑
i

Ii(1− rti) ≤ min(α, β′T )

∀i ∈ I : Ii = 1⇐
∑
t

Tt(1− rti) ≤ βI

∀i ∈ I : Ii = 1⇒
∑
t

Tt(1− rti) ≤ min(α, β′I)

βT = max
t

∑
i

Ii(1− rti)Tt

β′T = min
t

∑
i

Ii(1− rti(1− Tt))

βI = max
i

∑
t

Tt(1− rti)Ii

β′I = min
i

∑
t

Tt(1− rti(1− Ii))

Clearly, implementing these fault tolerance constraints using CP systems re-
quires the use of a large number of lower-level constraints, such as reified
sum constraints, summation constraints, minimization constraints and max-
imization constraints, which need to be provided by the CP system. To add
these constraints in a specialized system, they need to be implemented in the
lower-level language in which the system is implemented itself.

7 Conclusions

Over the years many specialized constraint-based mining algorithms have
been proposed, but a more general perspective is overall missing. In this
work we studied the formalization of fundamental mechanisms that have
been used in various itemset mining algorithms and aimed to describe high-
level algorithms without any details about data structures and optimization
issues.

Our guiding principles in this study were derived from the area constraint
programming. Key ideas in constraint programming are declarative problem
specification and constraint propagation. To allow for declarative problem
specification, constraint programming systems provide users a modeling lan-
guage with basic primitives such as inequalities, sums, and logic operators.
For each of these primitives, the system implements propagators; propaga-
tors can be thought of as algorithms for computing how the variables in a
constraint interact with each other.

Within this general framework, there are still many choices that can
be made. We investigated two options. In the first option, we developed a
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methodology in which data mining constraints are added as basic primitives
to a specialized CP system. Advantages of this approach are that users do
not need to study lower level modeling primitives (such as summation con-
straints), that users are provided with a clear path for adding primitives
to the system, and that it is possible to optimize the propagation better.
To simplify the propagation for new constraints, we introduced the class of
piecewise (anti-)monotonic constraints. For constraints within this class it is
not needed that a new propagator is introduced in the system; it is sufficient
to implement an algorithm for evaluating the constraint. This simplifies the
extension of the specialized system with new constraints significantly and
makes it possible to add constraints within this class in an almost declarative
fashion. However, extending the system with other types of constraints is a
harder task that requires further study.

The second option is to implement data mining constraints using lower
level modeling primitives provided by existing CP systems. The advantage
of this approach is that it is often not necessary to add new primitives to
the CP system itself; it is sufficient to formalize a problem using a set of
lower level modeling primitives already present in the system. It is also clear
how different types of constraints can be combined and how certain non
piecewise monotonic constraints can be added. The disadvantage is that it
is less clear how to optimize the constraint evaluation, if needed, or how to
add constraints that cannot be modeled using the existing primitives in the
CP system. This means that the user may still have to implement certain
constraints in a lower level programming language. Furthermore, the user
needs to have a good understanding of lower level primitives available in
CP systems and needs to have a good understanding of the principles of
propagation, as principles such as piecewise monotonicity are not used.

Comparing these two approaches, we can conclude that both have advan-
tages and disadvantages; it is likely to depend on the requirements of the user
which one is to be preferred.

As indicated, there are several further possibilities for extending this work.
On the systems side, one could be interested in bridging the gap between
these two approaches and build a hybrid approach that incorporates the
specialized approach in a general system. This may allow to optimize the
search procedure better, where needed.

On the problem specification side, we discussed here only how to apply
both approaches to pattern mining. It may be of future interest to study
alternative problems, ranging from pattern mining problems such as graph
mining, to more general problems such as clustering. Also in these problem
settings, it is likely that a hybrid approach will be needed that combines the
general approach of constraint programming with more efficient algorithms
developed in recent years for specialized tasks. We hope that this work pro-
vides inspiration for the development of these future approaches.
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