
33

Data Mining Query Languages

Jean-Francois Boulicaut1 and Cyrille Masson1

INSA Lyon, LIRIS CNRS FRE 2672
69621 Villeurbanne cedex, France.
jean-francois.boulicaut,Cyrille.Masson@insa-lyon.fr

Summary. Many Data Mining algorithms enable to extract different types of patterns from
data (e.g., local patterns like itemsets and association rules, models like classifiers). To support
the whole knowledge discovery process, we need for integrated systems which can deal either
with patterns and data. The inductive database approach has emerged as an unifying frame-
work for such systems. Following this database perspective, knowledge discovery processes
become querying processes for which query languages have to be designed. In the prolific
field of association rule mining, different proposals of query languages have been made to
support the more or less declarative specification of both data and pattern manipulations. In
this chapter, we survey some of these proposals. It enables to identify nowadays shortcomings
and to point out some promising directions of research in this area.

Key words: Query languages, Association Rules, Inductive Databases.

33.1 The Need for Data Mining Query Languages

Since the first definition of the Knowledge Discovery in Databases (KDD) domain in
(Piatetsky-Shapiro and Frawley, 1991), many techniques have been proposed to support these
“From Data to Knowledge” complex interactive and iterative processes. In practice, knowl-
edge elicitation is based on some extracted and materialized (collections of) patterns which
can be global (e.g., decision trees) or local (e.g., itemsets, association rules). Real life KDD
processes imply complex pre-processing manipulations (e.g., to clean the data), several extrac-
tion steps with different parameters and types of patterns (e.g., feature construction by means
of constrained itemsets followed by a classifying phase, association rule mining for different
thresholds values and different objective measures of interestingness), and post-processing
manipulations (e.g., elimination of redundancy in extracted patterns, crossing-over operations
between patterns and data like the search of transactions which are exceptions to frequent and
valid association rules or the selection of misclassified examples with a decision tree). Look-
ing for a tighter integration between data and patterns which hold in the data, Imielinski and
Mannila have proposed in (Imielinski and Mannila, 1996) the concept of inductive database
(IDB). In an IDB, ordinary queries can be used to access and manipulate data, while induc-
tive queries can be used to generate (mine), manipulate, and apply patterns. KDD becomes

O. Maimon, L. Rokach (eds.), Data Mining and Knowledge Discovery Handbook, 2nd ed.,
DOI 10.1007/978-0-387-09823-4_33, © Springer Science+Business Media, LLC 2010

656 Jean-Francois Boulicaut and Cyrille Masson

an extended querying process where the analyst can control the whole process since he/she
specifies the data and/or patterns of interests. Therefore, the quest for query languages for
IDBs is an interesting goal. It is actually a long-term goal since we still do not know which
are the relevant primitives for Data Mining. In some sense, we still lack from a well-accepted
set of primitives. It might recall the context at the end of the 60’s before the Codd’s relational
algebra proposal.

In some limited contexts, researchers have, however, designed data mining query lan-
guages. Data Mining query languages can be used for specifying inductive queries on some
pattern domains. They can be more or less coupled to standard query languages for data ma-
nipulation or pattern postprocessing manipulations. More precisely, a Data Mining query lan-
guage, should provide primitives to (1) select the data to be mined and pre-process these data,
(2) specify the kind of patterns to be mined, (3) specify the needed background knowledge (as
item hierarchies when mining generalized association rules), (4) define the constraints on the
desired patterns, and (5) post-process extracted patterns.

Furthermore, it is important that Data Mining query languages satisfy the closure prop-
erty, i.e., the fact that the result of a query can be queried. Following a classical approach in
database theory, it is also needed that the language is based on a well-defined (operational or
even better declarative) semantics. It is the only way to make query languages that are not only
“syntactical sugar” on top of some algorithms but true query languages for which query op-
timization strategies can be designed. Again, if we consider the analogy with SQL, relational
algebra has paved the way towards query processing optimizers that are widely used today.
Ideally, we would like to study containment or equivalence between mining queries as well.

Last but not the least, the evaluation of Data Mining queries is in general very expensive.
It needs for efficient constraint-based data mining algorithms, the so-called solvers (De Raedt,
2003,Boulicaut and Jeudy, 2005). In other terms, data mining query languages are often based
on primitives for which some more or less ad-hoc solvers are available. It is again typical of a
situation where a consensus on the needed primitives is yet missing.

So far, no language proposal is generic enough to provide support for a broad kind ap-
plications during the whole KDD process. However, in the active field of association rule
mining, some interesting query languages have been proposed. In Section 33.2, we recall the
main steps of a KDD process based on association rule mining and thus the need for querying
support. In Section 33.3, we introduce several relevant proposals for association rule mining
query languages. It contains a short critical evaluation (see (Botta et al., 2004) for a detailed
one). Section 33.4 concludes.

33.2 Supporting Association Rule Mining Processes

We assume that the reader is familiar with association rule mining (see, e.g., (Agrawal et al.,
1996) for an introduction). In this context, data is considered as a multiset of transactions, i.e.,
sets of items. Frequent associations rules are built on frequent itemsets (itemsets which are
subsets of a certain percentage of the transactions). Many objective interestingness measures
can inform about the quality of the extracted rules, the confidence measure being one of the
most used. Importantly, many objective measures appear to be complementary: they enable to
rank the rules according to different points of view. Therefore, it seems important to provide
support for various measures, including the definition of new ones, e.g., application specific
ones.

When a KDD process is based on itemsets or association rules, many operations have to
be performed by means of queries. First, the language should allow to manipulate and extract

33 Data Mining Query Languages 657

source data. Typically, the raw data is not always available as transactional data. One of the
typical problems concerns the transformation of numerical attributes into items (or boolean
properties). More generally, deriving the transactional context to be mined from raw data can
be a quite tedious task (e.g., deriving a transactional data set about WWW resources loading
per session from raw WWW logs in a WWW Usage Mining application). Some of these
preprocessing are supported by SQL but a programming extension like PL/SQL is obviously
needed.

Then, the language should allow the user to specify a broad kind of constraints on the
desired patterns (e.g., thresholds for the objective measures of interestingness, syntactical
constraints on items which must appear or not in rule components). So far, the primitive
constraints and the way to combine them is tightly linked with the kinds of constraints the
underlying evaluation engine or solvers can process efficiently (typically anti-monotonic or
succinct constraints). One can expect that minimal frequency and minimal confidence con-
straints are available. However, many other primitive constraints can be useful, including the
ones based on aggregates (Ng et al., 1998) or closures (Jeudy and Boulicaut, 2002,Boulicaut,
2004).

Once rules have been extracted and materialized (e.g., in relational tables), it is important
that the query language provides techniques to manipulate them. We can wish, for instance, to
find a cover of a set of extracted rules (i.e., non redundant association rules based on closed
sets (Bastide et al., 2000)), which requires to have subset operators, primitives to access bodies
and heads of rules, and primitives to manipulate closed sets or other condensed representations
of frequent sets (Boulicaut, 2004) and (Calders and Goethals, 2002). Another important issue
is the need for crossing-over primitives. It means that, for instance, we need simple way to
select transactions that satisfy or do not satisfy a given rule.

The so-called closure property is important. It enables to combine queries,
to support the reuse of KDD scenarios, and it gives rise to opportunities for compiling
schemes over sequences of queries (Boulicaut et al., 1999). Finally, we could also ask for
a support to pattern uses. In other terms, once relevant patterns have been stored, they are
generally used by some software component. To the best of our knowledge, very few tools
have been designed for this purpose (see (Imielinski et al., 1999) for an exception).

We can distinguish two major approaches in the design of Data Mining query languages.
The first one assumes that all the required objects (data and pattern storage systems and
solvers) are already embedded into a common system. The motivation for the query language
is to provide more understandable primitives: the risk is that the query

language provides mainly “syntactic sugar” on top of solvers. In that framework, if data
are stored using a classical relational DBMS, it means that source tables are views or relations
and that extracted patterns are stored using the relational technology as well. MSQL, DMQL
and MINE RULE can be considered as representative of this approach. A second approach
assumes that we have no predefined integrated systems and that storage systems are loosely
coupled with solvers which can be available from different providers. In that case, the language
is not only an interface for the analyst but also a facilitator between the DBMS and the solvers.
It is the approach followed by OLE DB for DM (Microsoft). It is an API between different
components that also provides a language for creating and filling extraction contexts, and then
access them for manipulations and tests. It is primarily designed to work on top of SQL Server
and can be plugged with different solvers provided that they comply the API standard.

658 Jean-Francois Boulicaut and Cyrille Masson

33.3 A Few Proposals for Association Rule Mining

33.3.1 MSQL

MSQL (Imielinski and Virmani, 1999) has been designed at the Rutgers University. It extracts
rules that are based on descriptors, each descriptor being an expression of the type (Ai = ai j),
where Ai is an attribute and ai j is a value or a range of values in the domain of Ai. We define
a conjunctset as the conjunction of an arbitrary number of descriptors such that there are no
couple of descriptors built on the same attribute. MSQL extracts propositional rules of the form
A ⇒B, where A is a conjunctset and B is a descriptor. As a consequence, only one attribute
can appear in the consequent of a rule. Notice that MSQL defines the support of an association
rule A ⇒ B as the number of tuples containing A in the original table and its confidence as
the ratio between the number of tuples containing A et B and the support of the rule.

From a practical point of view, MSQL can be seen as an extension of SQL with some
primitives tailored for association rule mining (given their semantics of association rules). Spe-
cific queries are used to mine rules (inductive queries starting with GetRules) while other
queries are post-processing queries over a materialized collection of rules (queries starting
with SelectRules). The global syntax of the language for rule extraction is the following
one:

GetRules(C) [INTO <rulebase name>]

[WHERE <rule constraints>]

[SQL-group-by clause]

[USING encoding-clause]

C is the source table and rule constraints are conditions on the desired rules, e.g.,
the kind of descriptors which must appear in rule components, the minimal frequency or con-
fidence of the rules or some mutual exclusion constraints on attributes which can appear in a
rule. The USING part enables to discretize numerical values. rulebase name is the name
of the object in which rules will be stored. Indeed, using MSQL, the analyst can explicitly
materialize a collection of rules and then query it with the following generic statement where
<conditions> can specify constraints on the body, the head, the support or the confidence
of the rule:

SelectRules(rulebase name)

[where <conditions>]

Finally, MSQL provides a few primitives for post-processing. Indeed, it is possible to use
Satisfy and Violate clauses to select rules which are supported (or not) in a given table.

33.3.2 MINE RULE

MINE RULE (Meo et al., 1998) has been designed at the University of Torino and the Po-
litecnico di Milano. It is an extension of SQL which is coupled with a relational DBMS. Data
can be selected using the full power of SQL. Mined association rules are materialized into
relational tables as well. MINE RULE extracts association rule between values of attributes
in a relational table. However, it is up to the user to specify the form of the rules to be ex-
tracted. More precisely, the user can specify the cardinality of body and head of the desired

33 Data Mining Query Languages 659

rules and the attributes on which rule components can be built. An interesting aspect of MINE
RULE is that it is possible to work on different levels on grouping during the extraction (in a
similar way as the GROUP BY clause of SQL). If there is one level of grouping, rule support
will be computed w.r.t. the number of groups in the table. Defining a second level of grouping
leads to the definition of clusters (sub-groups). In that case, rules components can be taken in
two different clusters, eventually ordered, inside a same group. It is thus possible to extract
some elementary sequential patterns (by clustering on a time-related attribute). For instance,
grouping purchases by customers and then clustering them by date, we can obtain rules like
Butter∧Milk ⇒Oil to say that customers who buy first Butter and Milk tend to buy Oil after.
Concerning interestingness measures, MINE RULE enables to specify minimal frequency and
confidence thresholds. The general syntax of a MINE RULE query for extracting rules is:

MINE RULE <TableName> AS

SELECT DISTINCT [<Cardinality>] <Attributes>

AS BODY,

[<Cardinality>] <Attributes>

AS HEAD

[,SUPPORT] [,CONFIDENCE]

FROM <Table> [WHERE <WhereClause>]

GROUP BY <Attributes> [HAVING <HavingClause>]

[CLUSTER BY <Attributes>

[HAVING <HavingClause>]]

EXTRACTING RULES WITH

SUPPORT:<real>, CONFIDENCE:<real>

33.3.3 DMQL

DMQL (Han et al., 1996) has been designed at the Simon Fraser University, Canada. It has
been designed to support various rule mining extractions (e.g., classification rules, compar-
ison rules, association rules). In this language, an association rule is a relation between the
values of two sets of predicates that are evaluated on the relations of a database. These predi-
cates are of the form P(X ,c) where P is a predicate taking the name of an attribute of a relation,
X is a variable and c is a value in the domain of the attribute. A typical example of association
rule that can be extracted by DMQL is buy(X ,milk)∧ town(X ,Berlin) ⇒ buy(X ,beer). An
important possibility in DMQL is the definition of meta-patterns, i.e., a powerful way to re-
strict the syntactic aspect of the extracted rules (expressive syntactic constraints). For instance,
the meta-pattern buy+(X ,Y)∧ town(X ,Berlin)⇒ buy(X ,Z) restricts the search to association
rules concerning implication between bought products for customers living in Berlin. Symbol
+ denotes that the predicate buy can appear several times in the left part of the rule. Moreover,
beside the classical frequency and confidence, DMQL also enables to define thresholds on the
noise or novelty of extracted rules. Finally, DMQL enables to define a hierarchy on attributes
such that generalized association rules can be extracted. The general syntax of DMQL for the
extraction of association rules is the following one:

660 Jean-Francois Boulicaut and Cyrille Masson

Use database 〈database name〉

{Use hierarchy 〈hierarchy name〉
For 〈attribute〉 }

Mine associations [as 〈pattern name〉]

[Matching 〈metapattern〉]

From 〈relation(s)〉 [Where 〈condition〉]

[Order by 〈order list〉]
[Group by 〈grouping list〉] [Having 〈condition〉]

With 〈interest measure〉
Threshold = value

33.3.4 OLE DB for DM

OLE DB for DM has been designed by Microsoft Corporation (Netz et al., 2000). It is an ex-
tension of the OLE DB API to access database systems. More precisely, it aims at supporting
the communication between the data sources and the solvers that are not necessarily imple-
mented inside the query evaluation system. It can thus work with many different solvers and
types of patterns. To support the manipulation of the objects of the API during a KDD process,
OLE DB for DM proposes a language as an extension to SQL. The concept of OLE DB for DM
relies on the definition of Data Mining Models (DMM), i.e. object that correspond to extrac-
tion contexts in KDD. Indeed, whereas the other language proposals made the assumption that
the data almost have a suitable format for the extraction, OLE DB for DM considers it is not
always the case and let the user defines a virtual object that will have a suitable format for the
extraction and that will be populated with the needed data. Once the extraction algorithm has
been applied on this DMM, the DMM will become an object containing patterns or models. It
will then be possible to query this DMM as a rule base or to use it as a classifier. The global
syntax for creating a DMM is the following:

CREATE MINING MODEL <DMM name>

(<columns definition>)

USING <algorithm>

[(<algorithm parameters>)]

For each column, it is possible to specify the data type and if it is the target attribute of
the model to be learnt in case of classification. Moreover, a column can correspond to a nested
table, which is useful when populating the mining model with data taken in tables linked by
a one-to-many relationship. For the moment, OLE DB for DM is implemented in the SQL

33 Data Mining Query Languages 661

Server 2000 software and it provides only two mining algorithms: one for decision trees and
one for clustering. However, the 2005 version of SQL server should provide neural network
and association rule extractors. This latter one will enable to define minimal and maximal rule
support, minimal confidence,and minimal and maximal sizes of itemsets on which the rules
are based.

33.3.5 A Critical Evaluation

Let us now emphasize the main advantages and drawbacks of the different proposals. A de-
tailed evaluation of these four languages has been performed on a simple but realistic as-
sociation rule mining scenario (Botta et al., 2004). We summarize the results of this study
and it enables to point some important problems that must be addressed on our way to query
languages for inductive databases.

The advantages of the proposed languages is that they are all designed as extensions of
SQL. It facilitates the work for database experts and it is useful for data manipulation (or
the needed standard queries). They all satisfy the closure property. Indeed, even if all the
languages do not systematically provide operators for manipulating extracted rules, it is al-
ways possible to access materialized collections of rules using SQL queries. Notice, however,
that most of the needed pre-processing or post-processing techniques will need not only SQL
queries but also PL/SQL statements. Some languages provide primitives to simplify some typ-
ical preprocessing, e.g., the discretization of numerical values. Even if is quite preliminary, it
is an important support for the practical use of the association rule mining technique. Finally,
the concept of OLE DB for DM is quite relevant as it enables external providers to plug-in new
solvers to the existing systems.

The first major limitation of the proposed languages is the poor support to pre- and post-
postprocessing operations. Indeed, they are essentially designed around the extraction step and
mainly provide primitives for rule extractions, these primitives being generally fixed, e.g., the
possibilities to specify minimal thresholds for a few selected objective measures of interesting-
ness or to define syntactical constraints on the rules. Only MSQL and OLE DB for DM propose
restricted mechanisms for discretization. Typical preprocessing techniques for, e.g., sampling
or boosting, are not supported. It has been shown that pre-processing processes for KDD are
tedious phases for which the use of integrated tools and operators is needed (see, e.g., the
MINING MART “Enabling End-User Datawarehouse Mining” EU funded project IST-1999-
11993 (Morik and Scholz, 2004)). The lack of primitives for post-processing is also obvious.
Only MSQL provides a SelectRules operator which enables to query rule databases and
primitives for crossing-over operations between rules and data. The others rely on SQL and its
programming extensions for accessing and manipulating the rules. For instance, using MINE
RULE, extracted rules are stored in relational tables that have to be queried with SQL. In that
case, writing a query which simply returns tuples of a table which satisfy a given rule can
be very complex because of SQL mechanisms for handling subset relationships (see (Botta
et al., 2004) for examples). Not only the SQL post-processing queries are hard to write but
also difficult to optimize given the current state of the art for SQL optimization. A solution
can come from query languages dedicated to pattern database manipulations. It is the case
of RULE-QL (Tuzhilin and Liu, 2002) which extends SQL with operators allowing to ac-
cess rules components and to specify subset relationships. It is thus easier to write queries
that, for instance, select rules that have a left part contained in the consequent of another
rule. RULE-QL can be seen as a good complement to languages like MINE RULE. More
generally, some basic research is needed on pattern database querying where patterns can be
rules, clusters, classifiers, etc. An interesting work in this direction is done by the PANDA

662 Jean-Francois Boulicaut and Cyrille Masson

“Patterns for Next-Generation Database Systems” EU funded Working Group IST/FET-2001-
33058 (Theodoridis and Vassiliadis, 2004, Catania et al., 2004).

The second main drawback of the proposed languages is that they appear to be quite ad
hoc proposals. By this term, we mean that they have been proposed on top of some specific
algorithms or solvers. The available constraints or conjunction of constraints are the one for
which solvers were available at the time of design. When considering the evaluation architec-
ture (described, e.g., for MINE RULE), we can see that different solvers cope with specific
conjunctions of constraints on the association rules. This is also the case for DMQL and OLE
DB for DM proposals, i.e. languages that can extract several types of patterns. For instance,
with DMQL, each type of rule that

can be extracted is indeed related to a particular solver.
To summarize, primitives are missing and the integration of new primitives by the analyst

is not possible. This is obviously due to the lack of consensus on a good collection of primi-
tives. This is true for simple pattern domains like association rules but also for more complex
ones. It is interesting to note that the semantics of the association rules for the different query
language proposals is not the same. When looking at the details, we can see that even simple
evaluation functions like frequency can be defined differently. In other terms, we still lack
from a consensus on what is an association rule and what is the semantics of a constrained as-
sociation rule. The situation is the same for other kinds of patterns, e.g., see the many different
semantics for constrained sequential patterns which have been proposed the last 10 years.

We believe that looking for a formal semantics of Data Mining query languages is crucial
for the development of the field. Indeed, if we draw a parallel with the development of standard
database query languages, we know that (extended) relational algebra have played a major
role for their design but also the implementation of efficient query optimizers. The same goal
should be taken if we wish to develop Data Mining query languages that are not just “syntactic
sugar” on top of solvers. For instance, based on the MINE RULE formal semantics, it has been
possible to analyze how to optimize queries and also to exploit properties on the relationship
between queries. Thanks to data dependencies in the source tables, (Meo, 2003) shows that
containment and dominance relations between queries can be used to speed-up the evaluation
of new mining queries.

It was one of the main goals of the CINQ “consortium on knowledge discovery by
Inductive Queries” EU funded project IST/FET-2000-26469 to make a breakthrough in this
direction. Considering several pattern domains (e.g., association rules, sequences, molecular
fragments), they have been looking for useful primitives, new ways to combine them, and not
only ad-hoc but also generic solvers for complex inductive queries (e.g., arbitrary boolean ex-
pressions over monotonic and anti-monotonic constraints (De Raedt et al., 2002)). A simple
formal language is sketched in (De Raedt, 2003) to describe both data and pattern manipula-
tions via inductive queries. Some recent contributions to database support for Data Mining are
collected in (Meo et al., 2004). It contains, among others, extended contributions of the first
two workshops organized by the CINQ project.

33.4 Conclusion

In this chapter, we have considered Data Mining query languages issues. To support the whole
knowledge discovery process, we need for integrated systems which can deal either with pat-
terns and data. Designing such systems is the goal of the emerging inductive database ap-
proach. Following this database perspective, knowledge discovery processes become querying

33 Data Mining Query Languages 663

processes for which query languages have to be designed. On one hand, interesting concep-
tual, or say abstract, proposals have been made like (Giannotti and Manco, 1999, De Raedt,
2003, Catania et al., 2004). On another hand, concrete query languages have been designed
and implemented for specific pattern domains, mainly association rules (Han et al., 1996,Meo
et al., 1998, Imielinski and Virmani, 1999, Netz et al., 2000). The first approach emphasizes
the need for general-purpose primitives and is looking for generic approaches in combining
these primitives and designing generic solvers. The second approach is pragmatic: providing
an immediate support to practitioners by means of better Data Mining tools. Doing so, the
primitives are often tailored to some specific pattern domain, or even some application do-
main. Ad-hoc solvers are designed for an efficient evaluation of concrete queries. Standards
like PMML ((http://www.dmg.org) are also immediately useful for practitioners and software
companies. This XML-based language provides a standard format for representing various
patterns and this is important to support interoperability between various tools. Let us no-
tice however that it does not provide primitives for pattern manipulation. We strongly believe
that both directions are useful on our road towards inductive databases and inductive database
management systems.

Acknowledgments

The authors want to thank the colleagues of the cInQ IST-2000-26469 (consortium on knowl-
edge discovery by inductive queries) for interesting discussions on Data Mining query lan-
guages. A special thank goes to Rosa Meo for her contribution to this domain and the critical
evaluation (Botta et al., 2004).

References
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of

association rules. In Advances in Knowledge Discovery and Data Mining, pages 307–
328. AAAI Press, 1996.

Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and L. Lakhal. Mining minimal non-
redundant association rules using frequent closed itemsets. In Proc. CL 2000, volume
1861 of LNCS, pages 972–986. Springer-Verlag, 2000.

M. Botta, J.-F. Boulicaut, C. Masson, and R. Meo. Query languages supporting descrip-
tive rule mining: a comparative study. In Database Technologies for Data Mining -
Discovering Knowledge with Inductive Queries, volume 2682 of LNCS, pages 27–54.
Springer-Verlag, 2004.

J.-F. Boulicaut. Inductive databases and multiple uses of frequent itemsets: the cInQ ap-
proach. In Database Technologies for Data Mining - Discovering Knowledge with In-
ductive Queries, volume 2682 of LNCS, pages 3–26. Springer-Verlag, 2004.

J.-F. Boulicaut and B. Jeudy. Constraint-based Data Mining. In Data Mining and Knowledge
Discovery Handbook. Chapter 16.7, this volume, Kluwer, 2005.

J.-F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling KDD processes within the induc-
tive database framework. In Proc. DaWaK’99, volume 1676 of LNCS, pages 293–302.
Springer-Verlag, 1999.

T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In Proc. PKDD,
volume 2431 of LNCS, pages 74–85. Springer-Verlag, 2002.

B. Catania, A. Maddalena, M. Mazza, E. Bertino, and S. Rizzi. A framework for Data
Mining pattern management. In Proc. PKDD’04, volume 3202 of LNAI, pages 87–98.
Springer-Verlag, 2004.

664 Jean-Francois Boulicaut and Cyrille Masson

L. De Raedt. A perspective on inductive databases. SIGKDD Explorations, 4(2):69–77,
2003.

L. De Raedt, M. Jaeger, S. Lee, and H. Mannila. A theory of inductive query answering. In
Proc. IEEE ICDM’02, pages 123–130, 2002.

F. Giannotti and G. Manco. Querying inductive databases via logic-based user-defined ag-
gregates. In Proc. PKDD’99, volume 1704 of LNCS, pages 125–135. Springer-Verlag,
1999.

J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: a Data Mining query language
for relational databases. In R. Ng, editor, Proc. ACM SIGMOD Workshop DMKD’96,
Montreal, Canada, 1996.

T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Communi-
cations of the ACM, 39(11):58–64, November 1996.

T. Imielinski and A. Virmani. MSQL: A query langugage for database mining. Data Mining
and Knowledge Discovery, 3(4):373–408, 1999.

T. Imielinski, A. Virmani, and A. Abdulghani. DMajor-application programming interface
for database mining. Data Mining and Knowledge Discovery, 3(4):347–372, 1999.

B. Jeudy and J.-F. Boulicaut. Optimization of association rule mining queries. Intelligent
Data Analysis, 6(4):341–357, 2002.

R. Meo. Optimization of a language for Data Mining. In Proc. ACM SAC’03 - Data Mining
track, pages 437–444, 2003.

R. Meo, P. L. Lanzi, and M. Klemettinen, editors. Database Technologies for Data Mining -
Discovering Knowledge with Inductive Queries, volume 2682 of LNCS. Springer-Verlag,
2004.

R. Meo, G. Psaila, and S. Ceri. An extension to SQL for mining association rules. Data
Mining and Knowledge Discovery, 2(2):195–224, 1998.

K. Morik and M. Scholz. The Mining Mart approach to knowledge discovery in databases.
In Intelligent Technologies for Information Analysis. Springer-Verlag, 2004.

A. Netz, S. Chaudhuri, J. Bernhardt, and U. Fayyad. Integration of Data Mining and re-
lational databases. In Proc. VLDB’00, pages 719–722, Cairo, Egypt, 2000. Morgan
Kaufmann.

R. Ng, L. V. Lakshmanan, J. Han, and A. Pang. Exploratory mining
and pruning optimizations of constrained associations rules. In Proc.
ACM SIGMOD’98, pages 13–24, 1998.

G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases. AAAI/MIT
Press, 1991.

Y. Theodoridis and P. Vassiliadis, editors. Proc. of Pattern Representation and Management
PaRMa 2004 co-located with EDBT 2004. CEUR Workshop Proceedings 96 Technical
University of Aachen (RWTH), 2004.

A. Tuzhilin and B. Liu. Querying multiple sets of discovered rules. In Proc. ACM
SIGKDD’02, pages 52–60, 2002.

	Cover
	Data Mining and Knowledge Discovery Handbook (Second Edition)
	Copyright
	9780387098227

	Preface
	Contents
	List of Contributors
	1 Introduction to Knowledge Discovery and Data Mining
	1.1 The KDD Process
	1.2 Taxonomy of Data Mining Methods
	1.3 Data Mining within the Complete Decision Support System
	1.4 KDD and DM Research Opportunities and Challenges
	1.5 KDD & DM Trends
	1.6 The Organization of the Handbook
	1.7 New to This Edition
	1.7.1 Mining Rich Data Formats
	1.7.2 New Techniques
	1.7.3 New Application Domains
	1.7.4 New Consideration
	1.7.5 Software
	1.7.6 Major Updates

	References

	Part I Preprocessing Methods
	2 Data Cleansing: A Prelude to Knowledge Discovery
	2.1 INTRODUCTION
	2.2 DATA CLEANSING BACKGROUND
	2.3 GENERAL METHODS FOR DATA CLEANSING
	2.4 APPLYING DATA CLEANSING
	2.4.1 Statistical Outlier Detection
	2.4.2 Clustering
	2.4.3 Pattern-based detection
	2.4.4 Association Rules

	2.5 CONCLUSIONS
	References

	3 Handling Missing Attribute Values
	3.1 Introduction
	3.2 Sequential Methods
	3.2.1 Deleting Cases with Missing Attribute Values
	3.2.2 The Most Common Value of an Attribute
	3.2.3 The Most Common Value of an Attribute Restricted to a Concept
	3.2.4 Assigning All Possible Attribute Values to a Missing Attribute Value
	3.2.5 Assigning All Possible Attribute Values Restricted to a Concept
	3.2.6 Replacing Missing Attribute Values by the Attribute Mean
	3.2.7 Replacing Missing Attribute Values by the Attribute Mean Restricted to a Concept
	3.2.8 Global Closest Fit
	3.2.9 Concept Closest Fit
	3.2.10 Other Methods

	3.3 Parallel Methods
	3.3.1 Blocks of Attribute-Value Pairs and Characteristic Sets
	3.3.2 Lower and Upper Approximations
	3.3.3 Rule Induction—MLEM2
	3.3.4 Other Approaches to Missing Attribute Values

	3.4 Conclusions
	References

	4 Geometric Methods for Feature Extraction and Dimensional Reduction - A Guided Tour
	Introduction
	4.1 Projective Methods
	4.1.1 Principal Component Analysis (PCA)
	4.1.2 Probabilistic PCA (PPCA)
	4.1.3 Kernel PCA
	4.1.4 Oriented PCA and Distortion Discriminant Analysis

	4.2 Manifold Modeling
	4.2.1 The Nystr¨om method
	4.2.2 Multidimensional Scaling
	4.2.3 Isomap
	4.2.4 Locally Linear Embedding
	4.2.5 Graphical Methods

	4.3 Pulling the Threads Together
	Acknowledgments
	References

	5 Dimension Reduction and Feature Selection
	5.1 Introduction
	5.2 Feature Selection Techniques
	5.2.1 Feature Filters
	5.2.2 Feature Wrappers

	5.3 Variable Selection
	5.3.1 Mallows Cp (Mallows, 1973)
	5.3.2 AIC, BIC and F ratio
	5.3.3 Principal Component Analysis (PCA)
	5.3.4 Factor Analysis (FA)
	5.3.5 Projection Pursuit
	5.3.6 Advanced Methods for Variable Selection

	References

	6 Discretization Methods
	Introduction
	6.1 Terminology
	6.1.1 Qualitative vs. quantitative
	6.1.2 Levels of measurement scales
	6.1.3 Summary

	6.2 Taxonomy
	6.3 Typical methods
	6.3.1 Background and terminology
	6.3.2 Equal-width, equal-frequency and fixed-frequency discretization
	6.3.3 Multi-interval-entropy-minimization discretization ((MIEMD)
	6.3.4 ChiMerge, StatDisc and InfoMerge discretization
	6.3.5 Cluster-based discretization
	6.3.6 ID3 discretization
	6.3.7 Non-disjoint discretization
	6.3.8 Lazy discretization
	6.3.9 Dynamic-qualitative discretization
	6.3.10 Ordinal discretization
	6.3.11 Fuzzy discretization
	6.3.12 Iterative-improvement discretization
	6.3.13 Summary

	6.4 Discretization and the learning context
	6.4.1 Discretization for decision tree learning
	6.4.2 Discretization for naive-Bayes learning

	6.5 Summary
	References

	7 Outlier Detection
	7.1 Introduction: Motivation, Definitions and Applications
	7.2 Taxonomy of Outlier Detection Methods
	7.3 Univariate Statistical Methods
	7.3.1 Single-step vs. Sequential Procedures
	7.3.2 Inward and Outward Procedures
	7.3.3 Univariate Robust Measures
	7.3.4 Statistical Process Control (SPC)

	7.4 Multivariate Outlier Detection
	7.4.1 Statistical Methods for Multivariate Outlier Detection
	7.4.2 Multivariate Robust Measures
	7.4.3 Data-Mining Methods for Outlier Detection
	7.4.4 Preprocessing Procedures

	7.5 Comparison of Outlier Detection Methods
	References

	Part II Supervised Methods
	8 Supervised Learning
	8.1 Introduction
	8.2 Training Set
	8.3 Definition of the Classification Problem
	8.4 Induction Algorithms
	8.5 Performance Evaluation
	8.5.1 Generalization Error
	8.5.2 Theoretical Estimation of Generalization Error
	8.5.3 Empirical Estimation of Generalization Error
	8.5.4 Computational Complexity
	8.5.5 Comprehensibility

	8.6 Scalability to Large Datasets
	8.7 The “Curse of Dimensionality”
	8.8 Classification Problem Extensions
	References

	9 Classification Trees
	9.1 Decision Trees
	9.2 Algorithmic Framework for Decision Trees
	9.3 Univariate Splitting Criteria
	9.3.1 Overview
	9.3.2 Impurity-based Criteria
	9.3.3 Information Gain
	9.3.4 Gini Index
	9.3.5 Likelihood-Ratio Chi–Squared Statistics
	9.3.6 DKM Criterion
	9.3.7 Normalized Impurity Based Criteria
	9.3.8 Gain Ratio
	9.3.9 Distance Measure
	9.3.10 Binary Criteria
	9.3.11 Twoing Criterion
	9.3.12 Orthogonal (ORT) Criterion
	9.3.13 Kolmogorov–Smirnov Criterion
	9.3.14 AUC–Splitting Criteria
	9.3.15 Other Univariate Splitting Criteria
	9.3.16 Comparison of Univariate Splitting Criteria

	9.4 Multivariate Splitting Criteria
	9.5 Stopping Criteria
	9.6 Pruning Methods
	9.6.1 Overview
	9.6.2 Cost–Complexity Pruning
	9.6.3 Reduced Error Pruning
	9.6.4 Minimum Error Pruning (MEP)
	9.6.5 Pessimistic Pruning
	9.6.6 Error–based Pruning (EBP)
	9.6.7 Optimal Pruning
	9.6.8 Minimum Description Length (MDL) Pruning
	9.6.9 Other Pruning Methods
	9.6.10 Comparison of Pruning Methods

	9.7 Other Issues
	9.7.1 Weighting Instances
	9.7.2 Misclassification costs
	9.7.3 Handling Missing Values

	9.8 Decision Trees Inducers
	9.8.1 ID3
	9.8.2 C4.5
	9.8.3 CART
	9.8.4 CHAID
	9.8.5 QUEST
	9.8.6 Reference to Other Algorithms

	9.9 Advantages and Disadvantages of Decision Trees
	9.10 Decision Tree Extensions
	9.10.1 Oblivious Decision Trees
	9.10.2 Fuzzy Decision Trees
	9.10.3 Decision Trees Inducers for Large Datasets
	9.10.4 Incremental Induction

	References

	10 Bayesian Networks
	10.1 Introduction
	10.2 Representation
	10.3 Reasoning
	10.4 Learning
	10.4.1 Scoring Metrics
	10.4.2 Model Search
	10.4.3 Validation

	10.5 Bayesian Networks in Data Mining
	10.5.1 Bayesian Networks and Classification
	10.5.2 Generalized Gamma Networks
	10.5.3 Bayesian Networks and Dynamic Data

	10.6 Data Mining Applications
	10.6.1 Survey Data
	10.6.2 Customer Profiling

	10.7 Conclusions and Future Research Directions
	Acknowledgments
	References

	11 Data Mining within a Regression Framework
	11.1 Introduction
	11.2 Some Definitions
	11.3 Regression Splines
	11.4 Smoothing Splines
	11.5 LocallyWeighted Regression as a Smoother
	11.6 Smoothers for Multiple Predictors
	11.6.1 The Generalized Additive Model

	11.7 Recursive Partitioning
	11.7.1 Classification and Regression Trees and Extensions
	11.7.2 Overfitting and Ensemble Methods

	11.8 Conclusions
	Acknowledgments
	References

	12 Support Vector Machines
	12.1 Introduction
	12.2 Hyperplane Classifiers
	12.2.1 The Linear Classifier
	12.2.2 The Kernel Trick
	12.2.3 The Optimal Margin Support Vector Machine

	12.3 Non-Separable SVM Models
	12.3.1 Soft Margin Support Vector Classifiers
	12.3.2 Support Vector Regression
	12.3.3 SVM-like Models

	12.4 Implementation Issues with SVM
	12.4.1 Optimization Techniques
	12.4.2 Model Selection
	12.4.3 Multi-Class SVM

	12.5 Extensions and Application
	12.6 Conclusion
	References

	13 Rule Induction
	13.1 Introduction
	13.2 Types of Rules
	13.3 Rule Induction Algorithms
	13.3.1 LEM1 Algorithm
	13.3.2 LEM2
	13.3.3 AQ

	13.4 Classification Systems
	13.5 Validation
	13.6 Advanced Methodology
	References

	Part III Unsupervised Methods
	14 A survey of Clustering Algorithms
	14.1 Introduction
	14.2 Distance Measures
	14.2.1 Minkowski: Distance Measures for Numeric Attributes
	14.2.2 Distance Measures for Binary Attributes
	14.2.3 Distance Measures for Nominal Attributes
	14.2.4 Distance Metrics for Ordinal Attributes
	14.2.5 Distance Metrics for Mixed-Type Attributes

	14.3 Similarity Functions
	14.3.1 Cosine Measure
	14.3.2 Pearson Correlation Measure
	14.3.3 Extended Jaccard Measure
	14.3.4 Dice Coefficient Measure

	14.4 Evaluation Criteria Measures
	14.4.1 Internal Quality Criteria
	14.4.2 External Quality Criteria

	14.5 Clustering Methods
	14.5.1 Hierarchical Methods
	14.5.2 Partitioning Methods
	14.5.3 Density-based Methods
	14.5.4 Model-based Clustering Methods
	14.5.5 Grid-based Methods
	14.5.6 Soft-computing Methods
	14.5.7 Which Technique To Use?

	14.6 Clustering Large Data Sets
	14.6.1 Decomposition Approach
	14.6.2 Incremental Clustering
	14.6.3 Parallel Implementation

	14.7 Determining the Number of Clusters
	14.7.1 Methods Based on Intra-Cluster Scatter
	14.7.2 Methods Based on both the Inter- and Intra-Cluster Scatter
	14.7.3 Criteria Based on Probabilistic

	References

	15 Association Rules
	15.1 Introduction
	15.1.1 Formal Problem Definition
	15.2 Association Rule Mining
	15.2.1 Association Mining Phase
	15.2.2 Rule Generation Phase

	15.3 Application to Other Types of Data
	15.4 Extensions of the Basic Framework
	15.4.1 Some other Rule Evaluation Measures
	15.4.2 Interactive or Knowledge-Based Filtering
	15.4.3 Compressed Representations
	15.4.4 Additional Constraints for Dense Databases
	15.4.5 Rules without Minimum Support

	15.5 Conclusions
	References

	16 Frequent Set Mining
	Introduction
	16.1 Problem Description
	16.2 Apriori
	16.3 Eclat
	16.4 Optimizations
	16.4.1 Item reordering
	16.4.2 Partition
	16.4.3 Sampling
	16.4.4 FP-tree

	16.5 Concise representations
	16.5.1 Maximal Frequent Sets
	16.5.2 Closed Frequent Sets
	16.5.3 Non Derivable Frequent Sets

	16.6 Theoretical Aspects
	16.7 Further Reading
	References

	17 Constraint-based Data Mining
	17.1 Motivations
	17.2 Background and Notations
	17.3 Solving Anti-Monotonic Constraints
	17.4 Introducing non Anti-Monotonic Constraints
	17.4.1 The Seminal Work
	17.4.2 Generic Algorithms
	17.4.3 Ad-hoc Strategies
	17.4.4 Other Directions of Research

	17.5 Conclusion
	References

	18 Link Analysis
	18.1 Introduction
	18.2 Social Network Analysis
	18.3 Search Engines
	18.4 Viral Marketing
	18.5 Law Enforcement & Fraud Detection
	18.6 Combining with Traditional Methods
	18.7 Summary
	References

	Part IV Soft Computing Methods
	19 A Review of Evolutionary Algorithms for Data Mining
	19.1 Introduction
	19.2 An Overview of Evolutionary Algorithms
	19.3 Evolutionary Algorithms for Discovering Classification Rules
	19.3.1 Individual Representation for Classification-Rule Discovery
	19.3.2 Searching for a Diverse Set of Rules
	19.3.3 Fitness Evaluation

	19.4 Evolutionary Algorithms for Clustering
	19.4.1 Individual Representation for Clustering
	19.4.2 Fitness Evaluation for Clustering

	19.5 Evolutionary Algorithms for Data Preprocessing
	19.5.1 Genetic Algorithms for Attribute Selection
	19.5.2 Genetic Programming for Attribute Construction

	19.6 Multi-Objective Optimization with Evolutionary Algorithms
	19.7 Conclusions
	References

	20 A Review of Reinforcement Learning Methods
	20.1 Introduction
	20.2 The Reinforcement-Learning Model
	20.3 Reinforcement-Learning Algorithms
	20.3.1 Dynamic-Programming
	20.3.2 Generalization of Dynamic-Programming to Reinforcement-Learning

	20.4 Extensions to Basic Model and Algorithms
	20.4.1 Multi-Agent RL
	20.4.2 Tackling Large Sets of States and Actions

	20.5 Applications of Reinforcement-Learning
	20.6 Reinforcement-Learning and Data-Mining
	20.7 An Instructive Example
	References

	21 Neural Networks For Data Mining
	21.1 Introduction
	21.2 A Brief History
	21.3 Neural Network Models
	21.3.1 Feedforward Neural Networks
	21.3.2 Hopfield Neural Networks
	21.3.3 Kohonen’s Self-organizing Maps

	21.4 Data Mining Applications
	21.5 Conclusions
	References

	22 Granular Computing and Rough Sets - An Incremental Development
	22.1 Introduction
	22.2 Naive Model for Problem Solving
	22.2.1 Information Granulations/Partitions
	22.2.2 Knowledge Level Processing and Computing with Words
	22.2.3 Information Integration and Approximation Theory

	22.3 A Geometric Models of Information Granulations
	22.4 Information Granulations/Partitions
	22.4.1 Equivalence Relations(Partitions)
	22.4.2 Binary Relation (Granulation) - Topological Partitions
	22.4.3 Fuzzy Binary Granulations (Fuzzy Binary Relations)

	22.5 Non-partition Application - Chinese Wall Security Policy Model
	22.5.1 Simple Chinese Wall Security Policy

	22.6 Knowledge Representations
	22.6.1 Relational Tables and Partitions
	22.6.2 Table Representations of Binary Relations
	22.6.3 New representations of topological relations

	22.7 Topological Concept Hierarchy Lattices/Trees
	22.7.1 Granular Lattice
	22.7.2 Granulated/Quotient Sets
	22.7.3 Tree of centers
	22.7.4 Topological tree
	22.7.5 Table Representation of Fuzzy Binary Relations

	22.8 Knowledge Processing
	22.8.1 The Notion of Knowledge
	22.8.2 Strong,Weak and Knowledge Dependence
	22.8.3 Knowledge Views of Binary Granulations

	22.9 Information Integration
	22.9.1 Extensions
	22.9.2 Approximations in Rough Set Theory (RST)
	22.9.3 Binary Neighborhood System Spaces

	22.10 Conclusions
	References

	23 Pattern Clustering Using a Swarm Intelligence Approach
	23.1 Introduction
	23.2 An Introduction to Swarm Intelligence
	23.2.1 The Ant Colony Systems
	23.3 Data Clustering – An Overview
	23.3.1 Problem Definition
	23.3.2 The Classical Clustering Algorithms
	23.3.3 Relevance of SI Algorithms in Clustering
	23.4 Clustering with the SI Algorithms
	23.4.1 The Ant Colony Based Clustering Algorithms
	23.4.2 The PSO-based Clustering Algorithms

	23.5 Automatic Kernel-based Clustering with PSO
	23.5.1 The Kernel Based Similarity Measure
	23.5.2 Reformulation of CS Measure
	23.5.3 The Multi-Elitist PSO (MEPSO) Algorithm
	23.5.4 Particle Representation
	23.5.5 The Fitness Function
	23.5.6 Avoiding Erroneous particles with Empty Clusters or Unreasonable Fitness Evaluation
	23.5.7 Putting It All Together
	23.5.8 Experimental Results

	23.6 Conclusion and Future Directions
	References

	24 Using Fuzzy Logic in Data Mining
	24.1 Introduction
	24.2 Basic Concepts of Fuzzy Set Theory
	24.2.1 Membership function
	24.2.2 Fuzzy Set Operations

	24.3 Fuzzy Supervised Learning
	24.3.1 Growing Fuzzy Decision Tree
	24.3.2 Soft Regression
	24.3.3 Neuro-fuzzy

	24.4 Fuzzy Clustering
	24.5 Fuzzy Association Rules
	24.6 Conclusion
	References

	Part V Supporting Methods
	25 Statistical Methods for Data Mining
	25.1 Introduction
	25.2 Statistical Issues in DM
	25.2.1 Size of the Data and Statistical Theory
	25.2.2 The Curse of Dimensionality and Approaches to Address It
	25.2.3 Assessing Uncertainty
	25.2.4 Automated Analysis
	25.2.5 Algorithms for Data Analysis in Statistics
	25.2.6 Visualization
	25.2.7 Scalability
	25.2.8 Sampling

	25.3 Modeling Relationships using Regression Models
	25.3.1 Linear Regression Analysis
	25.3.2 Generalized Linear Models
	25.3.3 Logistic Regression
	25.3.4 Survival Analysis

	25.4 False Discovery Rate (FDR) Control in Hypotheses Testing
	25.5 Model (Variables or Features) Selection using FDR Penalization in GLM
	25.6 Concluding Remarks
	References

	26 Logics for Data Mining
	Introduction
	26.1 Generalized quantifiers
	26.2 Some important classes of quantifiers
	26.2.1 One-dimensional
	26.2.2 Two-dimensional

	26.3 Some comments and conclusion
	Acknowledgments
	References

	27 Wavelet Methods in Data Mining
	27.1 Introduction
	27.2 A Framework for Data Mining Process
	27.3 Wavelet Background
	27.3.1 Basics of Wavelet in L2(R)
	27.3.2 Dilation Equation
	27.3.3 Multiresolution Analysis (MRA) and Fast DWT Algorithm
	27.3.4 Illustrations of Harr Wavelet Transform
	27.3.5 Properties of Wavelets

	27.4 Data Management
	27.5 Preprocessing
	27.5.1 Denoising
	27.5.2 Data Transformation
	27.5.3 Dimensionality Reduction

	27.6 Core Mining Process
	27.6.1 Clustering
	27.6.2 Classification
	27.6.3 Regression
	27.6.4 Distributed Data Mining
	27.6.5 Similarity Search/Indexing
	27.6.6 Approximate Query Processing
	27.6.7 Traffic Modeling

	27.7 Conclusion
	References

	28 Fractal Mining - Self Similarity-based Clustering and its Applications
	28.1 Introduction
	28.2 Fractal Dimension
	28.3 Clustering Using the Fractal Dimension
	28.3.1 FC Initialization Step
	28.3.2 Incremental Step
	28.3.3 Reshaping Clusters in Mid-Flight
	28.3.4 Complexity of the Algorithm
	28.3.5 Confidence Bounds
	28.3.6 Memory Management
	28.3.7 Experimental Results

	28.4 Projected Fractal Clustering
	28.5 Tracking Clusters
	28.5.1 Experiment on a Real Dataset

	28.6 Conclusions
	References

	29 Visual Analysis of Sequences Using Fractal Geometry
	29.1 Introduction
	29.2 Iterated Function System (IFS)
	29.3 Algorithmic Framework
	29.3.1 Overview
	29.3.2 Sequence Representation
	29.3.3 Sequence Transformation
	29.3.4 Sequence Pattern Detection
	29.3.5 Sequence Pattern Detection Algorithm Description:
	29.3.6 Classifiers Selection

	29.4 Fault Sequence Detection Application
	29.5 Conclusions and Future Research
	References

	30 Interestingness Measures - On Determining What Is Interesting
	Introduction
	30.1 Definitions and Notations
	30.2 Subjective Interestingness
	30.2.1 The Expert-Driven Grammatical Approach
	30.2.2 The Rule-By-Rule Classification Approach
	30.2.3 Interestingness Via What Is Not Interesting Approach

	30.3 Objective Interestingness
	30.3.1 Ranking Patterns
	30.3.2 Pruning and Application of Constraints
	30.3.3 Summarization of Patterns

	30.4 Impartial Interestingness
	30.5 Concluding Remarks
	References

	31 Quality Assessment Approaches in Data Mining
	Introduction
	31.1 Data Pre-processing and Quality Assessment
	31.2 Evaluation of Classification Methods
	31.2.1 Classification Model Accuracy
	31.2.2 Evaluating the Accuracy of Classification Algorithms
	31.2.3 Interestingness Measures of Classification Rules

	31.3 Association Rules
	31.3.1 Association Rules Interestingness Measures
	31.3.2 Other approaches for evaluating association rules

	31.4 Cluster Validity
	31.4.1 Fundamental Concepts of Cluster Validity
	31.4.2 External Criteria
	31.4.3 Internal Criteria
	31.4.4 Relative Criteria
	31.4.5 Fuzzy Clustering
	31.4.6 Other Approaches for Cluster Validity

	References

	32 Data Mining Model Comparison
	32.1 Data Mining and Statistics
	32.2 Data Mining Model Comparison
	32.3 Application to Credit Risk Management
	32.4 Conclusions
	References

	33 Data Mining Query Languages
	33.1 The Need for Data Mining Query Languages
	33.2 Supporting Association Rule Mining Processes
	33.3 A Few Proposals for Association Rule Mining
	33.3.1 MSQL
	33.3.2 MINE RULE
	33.3.3 DMQL
	33.3.4 OLE DB for DM
	33.3.5 A Critical Evaluation

	33.4 Conclusion
	References

	Part VI Advanced Methods
	34 Mining Multi-label Data
	34.1 Introduction
	34.2 Learning
	34.2.1 Problem Transformation
	34.2.2 Algorithm Adaptation

	34.3 Dimensionality Reduction
	34.3.1 Feature Selection
	34.3.2 Feature Extraction

	34.4 Exploiting Label Structure
	34.5 Scaling Up
	34.6 Statistics and Datasets
	34.7 Evaluation Measures
	34.7.1 Bipartitions
	34.7.2 Ranking
	34.7.3 Hierarchical

	34.8 Related Tasks
	34.9 Multi-Label Data Mining Software
	References

	35 Privacy in Data Mining
	35.1 Introduction
	35.2 On the Classification of Protection Procedures
	35.2.1 Computation-Driven Protection Procedures: the Cryptographic Approach
	35.2.2 Data-driven Protection Procedures

	35.3 Disclosure Risk Measures
	35.3.1 An Scenario for Identity Disclosure
	35.3.2 Measures for Identity Disclosure

	35.4 Data Protection Procedures
	35.4.1 Perturbative Methods
	35.4.2 Non-perturbative Methods
	35.4.3 Synthetic Data Generators
	35.4.4 k-Anonymity

	35.5 Information Loss Measures
	35.5.1 Generic Information Loss Measures
	35.5.2 Specific Information Loss Measures

	35.6 Trade-off and Visualization
	35.6.1 The Score
	35.6.2 R-U Maps

	35.7 Conclusions
	Acknowledgements
	References

	36 Meta-Learning - Concepts and Techniques
	36.1 Introduction
	36.2 A Meta-Learning Architecture
	36.2.1 Knowledge-Acquisition Mode
	36.2.2 Advisory Mode

	36.3 Techniques in Meta-Learning
	36.3.1 Dataset Characterization
	36.3.2 Mapping Datasets to Predictive Models
	36.3.3 Learning from Base-Learners
	36.3.4 Inductive Transfer and Learning to Learn
	36.3.5 Dynamic-Bias Selection

	36.4 Tools and Applications
	36.4.1 METAL DM Assistant

	36.5 Future Directions and Conclusions
	References

	37 Bias vs Variance Decomposition For Regression and Classification
	37.1 Introduction
	37.2 Bias/Variance Decompositions
	37.2.1 Bias/Variance Decomposition of the Squared Loss
	37.2.2 Bias/variance decompositions of the 0-1 loss

	37.3 Estimation of Bias and Variance
	37.4 Experiments and Applications
	37.4.1 Bias/variance tradeoff
	37.4.2 Comparison of some learning algorithms
	37.4.3 Ensemble methods: bagging

	37.5 Discussion
	References

	38 Mining with Rare Cases
	38.1 Introduction
	38.2 Why Rare Cases are Problematic
	38.3 Techniques for Handling Rare Cases
	38.3.1 Obtain Additional Training Data
	38.3.2 Use a More Appropriate Inductive Bias
	38.3.3 Using More Appropriate Metrics
	38.3.4 Employ Non-Greedy Search Techniques
	38.3.5 Utilize Knowledge/Human Interaction
	38.3.6 Employ Boosting
	38.3.7 Place Rare Cases Into Separate Classes

	38.4 Conclusion
	References

	39 Data Stream Mining
	39.1 Introduction
	39.2 Clustering Techniques
	39.3 Classification Techniques
	39.4 Frequent Pattern Mining Techniques
	39.5 Time Series Analysis
	39.6 Systems and Applications
	39.7 Taxonomy of Data Stream Mining Approaches
	39.7.1 Data-based Techniques
	39.7.2 Task-based Techniques

	39.8 RelatedWork
	39.9 Future Directions
	39.10 Summary
	References

	40 Mining Concept-Drifting Data Streams
	40.1 Introduction
	40.2 The Data Expiration Problem
	40.3 Classifier Ensemble for Drifting Concepts
	40.3.1 Accuracy-Weighted Ensembles
	40.4 Experiments
	40.4.1 Algorithms used in Comparison
	40.4.2 Streaming Data
	40.4.3 Experimental Results
	40.5 Discussion and RelatedWork
	References

	41 Mining High-Dimensional Data
	41.1 Introduction
	41.2 Chanllenges
	41.3 Frequent Pa
	41.4 Clustering
	41.5 Classification
	References

	42 Text Mining and Information Extraction
	42.1 Introduction
	42.2 Text Mining vs. Text Retrieval
	42.3 Task-Oriented Approaches vs. Formal Frameworks
	42.4 Task-Oriented Approaches
	42.4.1 Problem Dependant Task - Information Extraction in Text Mining

	42.5 Formal Frameworks And Algorithm-Based Techniques
	42.5.1 Text Categorization
	42.5.2 Probabilistic models for Information Extraction

	42.6 Hybrid Approaches - TEG
	42.7 Text Mining – Visualization and Analytics
	42.7.1 Clear Research
	42.7.2 Other Visualization and Analytical Approaches

	References

	43 Spatial Data Mining
	43.1 Introduction
	43.2 Spatial Data
	43.3 Spatial Outliers
	43.4 Spatial Co-location Rules
	43.5 Predictive Models
	43.6 Spatial Clusters
	43.7 Summary
	Acknowledgments
	References

	44 Spatio-temporal clustering
	44.1 Introduction
	44.2 Spatio-temporal clustering
	44.2.1 A classification of spatio-temporal data types
	44.2.2 Clustering Methods for Trajectory D

	44.3 Applications
	44.3.1 Movement data
	44.3.2 Cellular networks
	44.3.3 Environmental data

	44.4 Open Issues
	44.5 Conclusions
	References

	45 Data Mining for Imbalanced Datasets: An Overview
	45.1 Introduction
	45.2 Performance Measure
	45.2.1 ROC Curves
	45.2.2 Precision and Recall
	45.2.3 Cost-sensitive Measures

	45.3 Sampling Strategies
	45.3.1 Synthetic Minority Oversampling TEchnique: SMOTE

	45.4 Ensemble-based Methods
	45.4.1 SMOTEBoost

	45.5 Discussion
	Acknowledgements
	References

	46 Relational Data Mining
	46.1 In a Nutshell
	46.1.1 Relational Data
	46.1.2 Relational Patterns
	46.1.3 Relational to propositional
	46.1.4 Algorithms for relational Data Mining
	46.1.5 Applications of relational Data Mining
	46.1.6 What’s in this chapter

	46.2 Inductive logic programming
	46.2.1 Logic programs and databases
	46.2.2 The ILP task of relational rule induction
	46.2.3 Structuring the space of clauses
	46.2.4 Searching the space of clauses
	46.2.5 Transforming ILP problems to propositional form
	46.2.6 Upgrading propositional approaches

	46.3 Relational Association Rules
	46.3.1 Frequent Datalog queries and query extensions
	46.3.2 Discovering frequent queries: WARMR

	46.4 Relational Decision Trees
	46.4.1 Relational Classification, Regression, and Model Trees
	46.4.2 Induction of Relational Decision Trees

	46.5 RDM Literature and Internet Resources
	References

	47 Web Mining
	47.1 Introduction
	47.2 Graph Properties of theWeb
	47.3 Web Search
	47.4 Text Classification
	47.5 Hypertext Classification
	47.6 Information Extraction and Wrapper Induction
	47.7 The SemanticWeb
	47.8 Web Usage Mining
	47.9 Collaborative Filtering
	47.10 Conclusion
	References

	48 A Review of Web Document Clustering Approaches
	48.1 Introduction
	48.2 Motivation for Document Clustering
	48.3 Web Document Clustering Approaches
	48.3.1 Text-based Clustering
	48.3.2 Link-based Clustering
	48.3.3 Hybrid Approaches

	48.4 Comparison
	48.5 Conclusions and Open Issues
	References

	49 Causal Discovery
	49.1 Introduction
	49.2 Background Knowledge
	49.3 Theoretical Foundation
	49.4 Learning a DAG of CN by FDs
	49.4.1 Learning an Ordering of Variables from FDs
	49.4.2 Learning the Markov Boundaries of Undecided Variables

	49.5 Experimental Results
	49.6 Conclusion
	References

	50 Ensemble Methods in Supervised Learning
	50.1 Introduction
	50.2 Sequential Methodology
	50.2.1 Model-guided Instance Selection
	50.2.2 Incremental Batch Learning

	50.3 Concurrent Methodology
	50.4 Combining Classifiers
	50.4.1 Simple Combining Methods
	50.4.2 Meta-combining Methods

	50.5 Ensemble Diversity
	50.5.1 Manipulating the Inducer
	50.5.2 Manipulating the Training Set
	50.5.3 Measuring the Diversity

	50.6 Ensemble Size
	50.6.1 Selecting the Ensemble Size
	50.6.2 Pruning Ensembles

	50.7 Cluster Ensemble
	References

	51 Data Mining using Decomposition Methods
	51.1 Introduction
	51.2 Decomposition Advantages
	51.2.1 Increasing Classification Performance (Classification Accuracy)
	51.2.2 Scalability to Large Databases
	51.2.3 Increasing Comprehensibility
	51.2.4 Modularity
	51.2.5 Suitability for Parallel Computation
	51.2.6 Flexibility in Techniques Selection

	51.3 The Elementary Decomposition Methodology
	51.4 The Decomposer’s Characteristics
	51.4.1 Overview
	51.4.2 The Structure Acquiring Method
	51.4.3 The Mutually Exclusive Property
	51.4.4 The Inducer Usage
	51.4.5 Exhaustiveness
	51.4.6 Combiner Usage
	51.4.7 Sequentially or Concurrently

	51.5 The Relation to Other Methodologies
	51.6 Summary
	References

	52 Information Fusion - Methods and Aggregation Operators
	52.1 Introduction
	52.2 Preprocessing Data
	52.2.1 Re-identification Algorithms
	52.2.2 Fusion to Improve the Quality of Data

	52.3 Building Data Models
	52.3.1 Data Models Using Aggregation Operators
	52.3.2 Aggregation Operators to Fuse Data Models

	52.4 Information Extraction
	52.4.1 Summarization
	52.4.2 Knowledge from Aggregation Operators

	52.5 Conclusions
	References

	53 Parallel And Grid-Based Data Mining – Algorithms, Models and Systems for High-Performance KDD
	53.1 Introduction
	53.2 Parallel Data Mining
	53.2.1 Parallelism in Data Mining Techniques
	53.2.2 Architectural and Research Issues

	53.3 Grid-Based Data Mining
	53.3.1 Grid-Based Data Mining Systems

	53.4 The Knowledge Grid
	53.4.1 Knowledge Grid Components and Tools

	53.5 Summary
	References

	54 Collaborative Data Mining
	54.1 Introduction
	54.2 Remote Collaboration
	54.2.1 E-Collaboration:Motivations and Forms
	54.2.2 E-Collaboration Space
	54.2.3 Collaborative Data Mining in E-Collaboration Space

	54.3 The Data Mining Process
	54.4 Collaborative Data Mining Guidelines
	54.4.1 Collaboration Principles
	54.4.2 Data Mining model evaluation and combination

	54.5 Discussion
	54.6 Conclusions
	References

	55 Organizational Data Mining
	55.1 Introduction
	55.2 Organizational Data Mining
	55.3 ODM versus Data Mining
	55.3.1 Organizational Theory and ODM

	55.4 Ongoing ODM Research
	55.5 ODM Advantages
	55.6 ODM Evolution
	55.6.1 Past
	55.6.2 Present
	55.6.3 Future
	55.7 Summary
	References

	56 Mining Time Series Data
	56.1 Introduction
	56.2 Time Series Similarity Measures
	56.2.1 Euclidean Distances and Lp Norms
	56.2.2 Dynamic TimeWarping
	56.2.3 Longest Common Subsequence Similarity
	56.2.4 Probabilistic methods
	56.2.5 General Transformations

	56.3 Time Series Data Mining
	56.3.1 Classification
	56.3.2 Indexing (Query by Content)
	56.3.3 Clustering
	56.3.4 Prediction (Forecasting)
	56.3.5 Summarization
	56.3.6 Anomaly Detection
	56.3.7 Segmentation

	56.4 Time Series Representations
	56.4.1 Discrete Fourier Transform
	56.4.2 DiscreteWavelet Transform
	56.4.3 Singular Value Decomposition
	56.4.4 Piecewise Linear Approximation
	56.4.5 Piecewise Aggregate Approximation
	56.4.6 Adaptive Piecewise Constant Approximation
	56.4.7 Symbolic Aggregate Approximation (SAX)

	56.5 Summary
	References

	Part VII Applications
	57 Multimedia Data Mining
	57.1 Introduction
	57.2 A Typical Architecture of a Multimedia Data Mining System
	57.3 An Example— Concept Discovery in Imagery Data
	57.3.1 Background and Related Work
	57.3.2 Region Based Image Representation
	57.3.3 Probabilistic Hidden Semantic Model
	57.3.4 Posterior Probability Based Image Mining and Retrieval
	57.3.5 Approach Analysis
	57.3.6 Experimental Results
	57.4 Summary
	Ackonwledgments
	References

	58 Data Mining in Medicine
	58.1 Introduction
	58.2 Symbolic Classification Methods
	58.2.1 Rule Induction
	58.2.2 Learning of Classification and Regression Trees
	58.2.3 Inductive Logic Programming
	58.2.4 Discovery of Concept Hierarchies and Constructive Induction
	58.2.5 Case-Based Reasoning

	58.3 Subsymbolic Classification Methods
	58.3.1 Instance-Based Learning
	58.3.2 Neural Networks
	58.3.3 Bayesian Classifier

	58.4 Other Methods Supporting Medical Knowledge Discovery
	58.5 Conclusions
	Acknowledgments
	References

	59 Learning Information Patterns in Biological Databases - Stochastic Data Mining
	59.1 Background
	59.2 Learning Stochastic Pattern Models
	59.2.1 Assimilating the Pattern Sets
	59.2.2 Clustering Biological Patterns
	59.2.3 Learning Cluster Models

	59.3 Searching for Meta-Patterns
	59.3.1 Level I Search: Locating High Pattern Density Region
	59.3.2 Level II Search: Meta-Pattern Hypotheses

	59.4 Conclusions
	References

	60 Data Mining for Financial Applications
	60.1 Introduction: Financial Tasks
	60.2 Specifics of Data Mining in Finance
	60.2.1 Time series analysis
	60.2.2 Data selection and forecast horizon
	60.2.3 Measures of success
	60.2.4 QUALITY OF PATTERNS AND HYPOTHESIS EVALUATION

	60.3 Aspects of Data Mining Methodology in Finance
	60.3.1 Attribute-based and relational methodologies
	60.3.2 Attribute-based relational methodologies
	60.3.3 Problem ID and method profile
	60.3.4 Relational Data Mining in finance
	60.5 Conclusion
	References

	60.4 Data Mining Models and Practice in Finance
	60.4.1 Portfolio management and neural networks
	60.4.2 Interpretable trading rules and relational Data Mining
	60.4.3 Discovering money laundering and attribute-based relational Data Mining

	60.5 Conclusion
	References

	61 Data Mining for Intrusion Detection
	61.1 Introduction
	61.2 Data Mining Basics
	61.3 Data Mining Meets Intrusion Detection
	61.3.1 ADAM
	61.3.2 MADAM ID
	61.3.3 MINDS
	61.3.4 Clustering of Unlabeled ID
	61.3.5 Alert Correlation

	61.4 Conclusions and Future Research Directions
	References

	62 Data Mining for CRM
	62.1 What is CRM?
	62.2 Data Mining and Campaign Management
	62.3 An Example: Customer Acquisition
	62.3.1 How Data Mining and Statistical Modeling Changes Things
	62.3.2 Defining Some Key Acquisition Concepts
	62.3.3 It All Begins with the Data
	62.3.4 Test Campaigns
	62.3.5 Building Data Mining Models Using Response Behaviors

	63 Data Mining for Target Marketing
	63.1 Introduction
	63.2 Modeling Process
	63.3 Evaluation Metrics
	63.3.1 Gains Charts
	63.3.2 Prediction Accuracy
	63.3.3 Profitability/ROI
	63.3.4 Gains Table

	63.4 Segmentation Methods
	63.4.1 Judgmentally-based RFM/FRAT methods
	63.4.2 Clustering
	63.4.3 Classification Methods
	63.4.4 Decision Making

	63.5 Predictive Modeling
	63.5.1 Linear Regression
	63.5.2 Logistic Regression
	63.5.3 Neural Networks
	63.5.4 Decision Making

	63.6 In-Market Timing
	63.6.1 Logistic Regression
	63.6.2 Survival Analysis

	63.7 Pitfalls of Targeting
	63.7.1 Modeling Pitfalls
	63.7.2 Data Pitfalls
	63.7.3 Implementation Pitfalls

	63.8 Conclusions
	63.8.1 Multiple Offers
	63.8.2 Multiple Products/Services

	References

	64 NHECD - Nano Health and Environmental Commented Database
	64.1 Introduction
	64.2 The NHECD Model
	64.3 NHECD implementation
	64.3.1 Taxonomies
	64.3.2 Crawling
	64.3.3 Information extraction
	64.3.4 NHECD products
	64.3.5 Scientific paper rating
	64.3.6 NHECD Frontend

	64.4 Conclusions
	64.5 Further research
	References

	Part VIII Software
	65 Commercial Data Mining Software
	65.1 Introduction
	65.2 Literature Review
	65.3 Data Mining Software
	65.3.1 BioDiscovery GeneSight
	65.3.2 Megaputer PolyAnalyst 5.0
	65.3.3 SAS Enterprise Miner
	65.3.4 PASW Modeler/ Formerly SPSS Clementine
	65.3.5 IBM DB2 Intelligent Miner

	65.4 Supercomputing Data Mining Software
	65.4.1 Data Visualization using Avizo
	65.4.2 Data Visualization using JMP Genomics

	65.5 Text Mining Software
	65.5.1 SAS Text Miner
	65.5.2 Megaputer PolyAnalyst

	65.6 Web Mining Software
	65.6.1 Megaputer PolyAnalyst
	65.6.2 SPSS Clementine

	65.7 Conclusion and Future Research
	References

	66 Weka-A Machine LearningWorkbench for Data Mining
	66.1 Introduction
	Acknowledgments
	References

	Index

