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Summary. Many Data Mining algorithms enable to extract different types of patterns from
data (e.g., local patterns like itemsets and association rules, models like classifiers). To support
the whole knowledge discovery process, we need for integrated systems which can deal either
with patterns and data. The inductive database approach has emerged as an unifying frame-
work for such systems. Following this database perspective, knowledge discovery processes
become querying processes for which query languages have to be designed. In the prolific
field of association rule mining, different proposals of query languages have been made to
support the more or less declarative specification of both data and pattern manipulations. In
this chapter, we survey some of these proposals. It enables to identify nowadays shortcomings
and to point out some promising directions of research in this area.
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33.1 The Need for Data Mining Query Languages

Since the first definition of the Knowledge Discovery in Databases (KDD) domain in
(Piatetsky-Shapiro and Frawley, 1991), many techniques have been proposed to support these
“From Data to Knowledge” complex interactive and iterative processes. In practice, knowl-
edge elicitation is based on some extracted and materialized (collections of) patterns which
can be global (e.g., decision trees) or local (e.g., itemsets, association rules). Real life KDD
processes imply complex pre-processing manipulations (e.g., to clean the data), several extrac-
tion steps with different parameters and types of patterns (e.g., feature construction by means
of constrained itemsets followed by a classifying phase, association rule mining for different
thresholds values and different objective measures of interestingness), and post-processing
manipulations (e.g., elimination of redundancy in extracted patterns, crossing-over operations
between patterns and data like the search of transactions which are exceptions to frequent and
valid association rules or the selection of misclassified examples with a decision tree). Look-
ing for a tighter integration between data and patterns which hold in the data, Imielinski and
Mannila have proposed in (Imielinski and Mannila, 1996) the concept of inductive database
(IDB). In an IDB, ordinary queries can be used to access and manipulate data, while induc-
tive queries can be used to generate (mine), manipulate, and apply patterns. KDD becomes

O. Maimon, L. Rokach (eds.), Data Mining and Knowledge Discovery Handbook, 2nd ed., 
DOI 10.1007/978-0-387-09823-4_33, © Springer Science+Business Media, LLC 2010 



656 Jean-Francois Boulicaut and Cyrille Masson

an extended querying process where the analyst can control the whole process since he/she
specifies the data and/or patterns of interests. Therefore, the quest for query languages for
IDBs is an interesting goal. It is actually a long-term goal since we still do not know which
are the relevant primitives for Data Mining. In some sense, we still lack from a well-accepted
set of primitives. It might recall the context at the end of the 60’s before the Codd’s relational
algebra proposal.

In some limited contexts, researchers have, however, designed data mining query lan-
guages. Data Mining query languages can be used for specifying inductive queries on some
pattern domains. They can be more or less coupled to standard query languages for data ma-
nipulation or pattern postprocessing manipulations. More precisely, a Data Mining query lan-
guage, should provide primitives to (1) select the data to be mined and pre-process these data,
(2) specify the kind of patterns to be mined, (3) specify the needed background knowledge (as
item hierarchies when mining generalized association rules), (4) define the constraints on the
desired patterns, and (5) post-process extracted patterns.

Furthermore, it is important that Data Mining query languages satisfy the closure prop-
erty, i.e., the fact that the result of a query can be queried. Following a classical approach in
database theory, it is also needed that the language is based on a well-defined (operational or
even better declarative) semantics. It is the only way to make query languages that are not only
“syntactical sugar” on top of some algorithms but true query languages for which query op-
timization strategies can be designed. Again, if we consider the analogy with SQL, relational
algebra has paved the way towards query processing optimizers that are widely used today.
Ideally, we would like to study containment or equivalence between mining queries as well.

Last but not the least, the evaluation of Data Mining queries is in general very expensive.
It needs for efficient constraint-based data mining algorithms, the so-called solvers (De Raedt,
2003,Boulicaut and Jeudy, 2005). In other terms, data mining query languages are often based
on primitives for which some more or less ad-hoc solvers are available. It is again typical of a
situation where a consensus on the needed primitives is yet missing.

So far, no language proposal is generic enough to provide support for a broad kind ap-
plications during the whole KDD process. However, in the active field of association rule
mining, some interesting query languages have been proposed. In Section 33.2, we recall the
main steps of a KDD process based on association rule mining and thus the need for querying
support. In Section 33.3, we introduce several relevant proposals for association rule mining
query languages. It contains a short critical evaluation (see (Botta et al., 2004) for a detailed
one). Section 33.4 concludes.

33.2 Supporting Association Rule Mining Processes

We assume that the reader is familiar with association rule mining (see, e.g., (Agrawal et al.,
1996) for an introduction). In this context, data is considered as a multiset of transactions, i.e.,
sets of items. Frequent associations rules are built on frequent itemsets (itemsets which are
subsets of a certain percentage of the transactions). Many objective interestingness measures
can inform about the quality of the extracted rules, the confidence measure being one of the
most used. Importantly, many objective measures appear to be complementary: they enable to
rank the rules according to different points of view. Therefore, it seems important to provide
support for various measures, including the definition of new ones, e.g., application specific
ones.

When a KDD process is based on itemsets or association rules, many operations have to
be performed by means of queries. First, the language should allow to manipulate and extract
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source data. Typically, the raw data is not always available as transactional data. One of the
typical problems concerns the transformation of numerical attributes into items (or boolean
properties). More generally, deriving the transactional context to be mined from raw data can
be a quite tedious task (e.g., deriving a transactional data set about WWW resources loading
per session from raw WWW logs in a WWW Usage Mining application). Some of these
preprocessing are supported by SQL but a programming extension like PL/SQL is obviously
needed.

Then, the language should allow the user to specify a broad kind of constraints on the
desired patterns (e.g., thresholds for the objective measures of interestingness, syntactical
constraints on items which must appear or not in rule components). So far, the primitive
constraints and the way to combine them is tightly linked with the kinds of constraints the
underlying evaluation engine or solvers can process efficiently (typically anti-monotonic or
succinct constraints). One can expect that minimal frequency and minimal confidence con-
straints are available. However, many other primitive constraints can be useful, including the
ones based on aggregates (Ng et al., 1998) or closures (Jeudy and Boulicaut, 2002,Boulicaut,
2004).

Once rules have been extracted and materialized (e.g., in relational tables), it is important
that the query language provides techniques to manipulate them. We can wish, for instance, to
find a cover of a set of extracted rules (i.e., non redundant association rules based on closed
sets (Bastide et al., 2000)), which requires to have subset operators, primitives to access bodies
and heads of rules, and primitives to manipulate closed sets or other condensed representations
of frequent sets (Boulicaut, 2004) and (Calders and Goethals, 2002). Another important issue
is the need for crossing-over primitives. It means that, for instance, we need simple way to
select transactions that satisfy or do not satisfy a given rule.

The so-called closure property is important. It enables to combine queries,
to support the reuse of KDD scenarios, and it gives rise to opportunities for compiling
schemes over sequences of queries (Boulicaut et al., 1999). Finally, we could also ask for
a support to pattern uses. In other terms, once relevant patterns have been stored, they are
generally used by some software component. To the best of our knowledge, very few tools
have been designed for this purpose (see (Imielinski et al., 1999) for an exception).

We can distinguish two major approaches in the design of Data Mining query languages.
The first one assumes that all the required objects (data and pattern storage systems and
solvers) are already embedded into a common system. The motivation for the query language
is to provide more understandable primitives: the risk is that the query

language provides mainly “syntactic sugar” on top of solvers. In that framework, if data
are stored using a classical relational DBMS, it means that source tables are views or relations
and that extracted patterns are stored using the relational technology as well. MSQL, DMQL
and MINE RULE can be considered as representative of this approach. A second approach
assumes that we have no predefined integrated systems and that storage systems are loosely
coupled with solvers which can be available from different providers. In that case, the language
is not only an interface for the analyst but also a facilitator between the DBMS and the solvers.
It is the approach followed by OLE DB for DM (Microsoft). It is an API between different
components that also provides a language for creating and filling extraction contexts, and then
access them for manipulations and tests. It is primarily designed to work on top of SQL Server
and can be plugged with different solvers provided that they comply the API standard.
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33.3 A Few Proposals for Association Rule Mining

33.3.1 MSQL

MSQL (Imielinski and Virmani, 1999) has been designed at the Rutgers University. It extracts
rules that are based on descriptors, each descriptor being an expression of the type (Ai = ai j),
where Ai is an attribute and ai j is a value or a range of values in the domain of Ai. We define
a conjunctset as the conjunction of an arbitrary number of descriptors such that there are no
couple of descriptors built on the same attribute. MSQL extracts propositional rules of the form
A ⇒B, where A is a conjunctset and B is a descriptor. As a consequence, only one attribute
can appear in the consequent of a rule. Notice that MSQL defines the support of an association
rule A ⇒ B as the number of tuples containing A in the original table and its confidence as
the ratio between the number of tuples containing A et B and the support of the rule.

From a practical point of view, MSQL can be seen as an extension of SQL with some
primitives tailored for association rule mining (given their semantics of association rules). Spe-
cific queries are used to mine rules (inductive queries starting with GetRules) while other
queries are post-processing queries over a materialized collection of rules (queries starting
with SelectRules). The global syntax of the language for rule extraction is the following
one:

GetRules(C) [INTO <rulebase name>]

[WHERE <rule constraints>]

[SQL-group-by clause]

[USING encoding-clause]

C is the source table and rule constraints are conditions on the desired rules, e.g.,
the kind of descriptors which must appear in rule components, the minimal frequency or con-
fidence of the rules or some mutual exclusion constraints on attributes which can appear in a
rule. The USING part enables to discretize numerical values. rulebase name is the name
of the object in which rules will be stored. Indeed, using MSQL, the analyst can explicitly
materialize a collection of rules and then query it with the following generic statement where
<conditions> can specify constraints on the body, the head, the support or the confidence
of the rule:

SelectRules(rulebase name)

[where <conditions>]

Finally, MSQL provides a few primitives for post-processing. Indeed, it is possible to use
Satisfy and Violate clauses to select rules which are supported (or not) in a given table.

33.3.2 MINE RULE

MINE RULE (Meo et al., 1998) has been designed at the University of Torino and the Po-
litecnico di Milano. It is an extension of SQL which is coupled with a relational DBMS. Data
can be selected using the full power of SQL. Mined association rules are materialized into
relational tables as well. MINE RULE extracts association rule between values of attributes
in a relational table. However, it is up to the user to specify the form of the rules to be ex-
tracted. More precisely, the user can specify the cardinality of body and head of the desired
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rules and the attributes on which rule components can be built. An interesting aspect of MINE
RULE is that it is possible to work on different levels on grouping during the extraction (in a
similar way as the GROUP BY clause of SQL). If there is one level of grouping, rule support
will be computed w.r.t. the number of groups in the table. Defining a second level of grouping
leads to the definition of clusters (sub-groups). In that case, rules components can be taken in
two different clusters, eventually ordered, inside a same group. It is thus possible to extract
some elementary sequential patterns (by clustering on a time-related attribute). For instance,
grouping purchases by customers and then clustering them by date, we can obtain rules like
Butter∧Milk ⇒Oil to say that customers who buy first Butter and Milk tend to buy Oil after.
Concerning interestingness measures, MINE RULE enables to specify minimal frequency and
confidence thresholds. The general syntax of a MINE RULE query for extracting rules is:

MINE RULE <TableName> AS

SELECT DISTINCT [<Cardinality>] <Attributes>

AS BODY,

[<Cardinality>] <Attributes>

AS HEAD

[,SUPPORT] [,CONFIDENCE]

FROM <Table> [ WHERE <WhereClause> ]

GROUP BY <Attributes> [ HAVING <HavingClause> ]

[ CLUSTER BY <Attributes>

[ HAVING <HavingClause> ]]

EXTRACTING RULES WITH

SUPPORT:<real>, CONFIDENCE:<real>

33.3.3 DMQL

DMQL (Han et al., 1996) has been designed at the Simon Fraser University, Canada. It has
been designed to support various rule mining extractions (e.g., classification rules, compar-
ison rules, association rules). In this language, an association rule is a relation between the
values of two sets of predicates that are evaluated on the relations of a database. These predi-
cates are of the form P(X ,c) where P is a predicate taking the name of an attribute of a relation,
X is a variable and c is a value in the domain of the attribute. A typical example of association
rule that can be extracted by DMQL is buy(X ,milk)∧ town(X ,Berlin) ⇒ buy(X ,beer). An
important possibility in DMQL is the definition of meta-patterns, i.e., a powerful way to re-
strict the syntactic aspect of the extracted rules (expressive syntactic constraints). For instance,
the meta-pattern buy+(X ,Y )∧ town(X ,Berlin)⇒ buy(X ,Z) restricts the search to association
rules concerning implication between bought products for customers living in Berlin. Symbol
+ denotes that the predicate buy can appear several times in the left part of the rule. Moreover,
beside the classical frequency and confidence, DMQL also enables to define thresholds on the
noise or novelty of extracted rules. Finally, DMQL enables to define a hierarchy on attributes
such that generalized association rules can be extracted. The general syntax of DMQL for the
extraction of association rules is the following one:
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Use database 〈database name〉

{Use hierarchy 〈hierarchy name〉
For 〈attribute〉 }

Mine associations [as 〈pattern name〉]

[ Matching 〈metapattern〉]

From 〈relation(s)〉 [ Where 〈condition〉]

[ Order by 〈order list〉]
[ Group by 〈grouping list〉] [ Having 〈condition〉]

With 〈interest measure〉
Threshold = value

33.3.4 OLE DB for DM

OLE DB for DM has been designed by Microsoft Corporation (Netz et al., 2000). It is an ex-
tension of the OLE DB API to access database systems. More precisely, it aims at supporting
the communication between the data sources and the solvers that are not necessarily imple-
mented inside the query evaluation system. It can thus work with many different solvers and
types of patterns. To support the manipulation of the objects of the API during a KDD process,
OLE DB for DM proposes a language as an extension to SQL. The concept of OLE DB for DM
relies on the definition of Data Mining Models (DMM), i.e. object that correspond to extrac-
tion contexts in KDD. Indeed, whereas the other language proposals made the assumption that
the data almost have a suitable format for the extraction, OLE DB for DM considers it is not
always the case and let the user defines a virtual object that will have a suitable format for the
extraction and that will be populated with the needed data. Once the extraction algorithm has
been applied on this DMM, the DMM will become an object containing patterns or models. It
will then be possible to query this DMM as a rule base or to use it as a classifier. The global
syntax for creating a DMM is the following:

CREATE MINING MODEL <DMM name>

(<columns definition>)

USING <algorithm>

[(<algorithm parameters>)]

For each column, it is possible to specify the data type and if it is the target attribute of
the model to be learnt in case of classification. Moreover, a column can correspond to a nested
table, which is useful when populating the mining model with data taken in tables linked by
a one-to-many relationship. For the moment, OLE DB for DM is implemented in the SQL
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Server 2000 software and it provides only two mining algorithms: one for decision trees and
one for clustering. However, the 2005 version of SQL server should provide neural network
and association rule extractors. This latter one will enable to define minimal and maximal rule
support, minimal confidence,and minimal and maximal sizes of itemsets on which the rules
are based.

33.3.5 A Critical Evaluation

Let us now emphasize the main advantages and drawbacks of the different proposals. A de-
tailed evaluation of these four languages has been performed on a simple but realistic as-
sociation rule mining scenario (Botta et al., 2004). We summarize the results of this study
and it enables to point some important problems that must be addressed on our way to query
languages for inductive databases.

The advantages of the proposed languages is that they are all designed as extensions of
SQL. It facilitates the work for database experts and it is useful for data manipulation (or
the needed standard queries). They all satisfy the closure property. Indeed, even if all the
languages do not systematically provide operators for manipulating extracted rules, it is al-
ways possible to access materialized collections of rules using SQL queries. Notice, however,
that most of the needed pre-processing or post-processing techniques will need not only SQL
queries but also PL/SQL statements. Some languages provide primitives to simplify some typ-
ical preprocessing, e.g., the discretization of numerical values. Even if is quite preliminary, it
is an important support for the practical use of the association rule mining technique. Finally,
the concept of OLE DB for DM is quite relevant as it enables external providers to plug-in new
solvers to the existing systems.

The first major limitation of the proposed languages is the poor support to pre- and post-
postprocessing operations. Indeed, they are essentially designed around the extraction step and
mainly provide primitives for rule extractions, these primitives being generally fixed, e.g., the
possibilities to specify minimal thresholds for a few selected objective measures of interesting-
ness or to define syntactical constraints on the rules. Only MSQL and OLE DB for DM propose
restricted mechanisms for discretization. Typical preprocessing techniques for, e.g., sampling
or boosting, are not supported. It has been shown that pre-processing processes for KDD are
tedious phases for which the use of integrated tools and operators is needed (see, e.g., the
MINING MART “Enabling End-User Datawarehouse Mining” EU funded project IST-1999-
11993 (Morik and Scholz, 2004)). The lack of primitives for post-processing is also obvious.
Only MSQL provides a SelectRules operator which enables to query rule databases and
primitives for crossing-over operations between rules and data. The others rely on SQL and its
programming extensions for accessing and manipulating the rules. For instance, using MINE
RULE, extracted rules are stored in relational tables that have to be queried with SQL. In that
case, writing a query which simply returns tuples of a table which satisfy a given rule can
be very complex because of SQL mechanisms for handling subset relationships (see (Botta
et al., 2004) for examples). Not only the SQL post-processing queries are hard to write but
also difficult to optimize given the current state of the art for SQL optimization. A solution
can come from query languages dedicated to pattern database manipulations. It is the case
of RULE-QL (Tuzhilin and Liu, 2002) which extends SQL with operators allowing to ac-
cess rules components and to specify subset relationships. It is thus easier to write queries
that, for instance, select rules that have a left part contained in the consequent of another
rule. RULE-QL can be seen as a good complement to languages like MINE RULE. More
generally, some basic research is needed on pattern database querying where patterns can be
rules, clusters, classifiers, etc. An interesting work in this direction is done by the PANDA
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“Patterns for Next-Generation Database Systems” EU funded Working Group IST/FET-2001-
33058 (Theodoridis and Vassiliadis, 2004, Catania et al., 2004).

The second main drawback of the proposed languages is that they appear to be quite ad
hoc proposals. By this term, we mean that they have been proposed on top of some specific
algorithms or solvers. The available constraints or conjunction of constraints are the one for
which solvers were available at the time of design. When considering the evaluation architec-
ture (described, e.g., for MINE RULE), we can see that different solvers cope with specific
conjunctions of constraints on the association rules. This is also the case for DMQL and OLE
DB for DM proposals, i.e. languages that can extract several types of patterns. For instance,
with DMQL, each type of rule that

can be extracted is indeed related to a particular solver.
To summarize, primitives are missing and the integration of new primitives by the analyst

is not possible. This is obviously due to the lack of consensus on a good collection of primi-
tives. This is true for simple pattern domains like association rules but also for more complex
ones. It is interesting to note that the semantics of the association rules for the different query
language proposals is not the same. When looking at the details, we can see that even simple
evaluation functions like frequency can be defined differently. In other terms, we still lack
from a consensus on what is an association rule and what is the semantics of a constrained as-
sociation rule. The situation is the same for other kinds of patterns, e.g., see the many different
semantics for constrained sequential patterns which have been proposed the last 10 years.

We believe that looking for a formal semantics of Data Mining query languages is crucial
for the development of the field. Indeed, if we draw a parallel with the development of standard
database query languages, we know that (extended) relational algebra have played a major
role for their design but also the implementation of efficient query optimizers. The same goal
should be taken if we wish to develop Data Mining query languages that are not just “syntactic
sugar” on top of solvers. For instance, based on the MINE RULE formal semantics, it has been
possible to analyze how to optimize queries and also to exploit properties on the relationship
between queries. Thanks to data dependencies in the source tables, (Meo, 2003) shows that
containment and dominance relations between queries can be used to speed-up the evaluation
of new mining queries.

It was one of the main goals of the CINQ “consortium on knowledge discovery by
Inductive Queries” EU funded project IST/FET-2000-26469 to make a breakthrough in this
direction. Considering several pattern domains (e.g., association rules, sequences, molecular
fragments), they have been looking for useful primitives, new ways to combine them, and not
only ad-hoc but also generic solvers for complex inductive queries (e.g., arbitrary boolean ex-
pressions over monotonic and anti-monotonic constraints (De Raedt et al., 2002)). A simple
formal language is sketched in (De Raedt, 2003) to describe both data and pattern manipula-
tions via inductive queries. Some recent contributions to database support for Data Mining are
collected in (Meo et al., 2004). It contains, among others, extended contributions of the first
two workshops organized by the CINQ project.

33.4 Conclusion

In this chapter, we have considered Data Mining query languages issues. To support the whole
knowledge discovery process, we need for integrated systems which can deal either with pat-
terns and data. Designing such systems is the goal of the emerging inductive database ap-
proach. Following this database perspective, knowledge discovery processes become querying
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processes for which query languages have to be designed. On one hand, interesting concep-
tual, or say abstract, proposals have been made like (Giannotti and Manco, 1999, De Raedt,
2003, Catania et al., 2004). On another hand, concrete query languages have been designed
and implemented for specific pattern domains, mainly association rules (Han et al., 1996,Meo
et al., 1998, Imielinski and Virmani, 1999, Netz et al., 2000). The first approach emphasizes
the need for general-purpose primitives and is looking for generic approaches in combining
these primitives and designing generic solvers. The second approach is pragmatic: providing
an immediate support to practitioners by means of better Data Mining tools. Doing so, the
primitives are often tailored to some specific pattern domain, or even some application do-
main. Ad-hoc solvers are designed for an efficient evaluation of concrete queries. Standards
like PMML ((http://www.dmg.org) are also immediately useful for practitioners and software
companies. This XML-based language provides a standard format for representing various
patterns and this is important to support interoperability between various tools. Let us no-
tice however that it does not provide primitives for pattern manipulation. We strongly believe
that both directions are useful on our road towards inductive databases and inductive database
management systems.
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