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Summary. Knowledge Discovery in Databases (KDD) is a complex interactive process. The
promising theoretical framework of inductive databases considers this is essentially a query-
ing process. It is enabled by a query language which can deal either with raw data or patterns
which hold in the data. Mining patterns turns to be the so-called inductive query evaluation
process for which constraint-based Data Mining techniques have to be designed. An induc-
tive query specifies declaratively the desired constraints and algorithms are used to compute
the patterns satisfying the constraints in the data. We survey important results of this active
research domain. This chapter emphasizes a real breakthrough for hard problems concern-
ing local pattern mining under various constraints and it points out the current directions of
research as well.
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17.1 Motivations

Knowledge Discovery in Databases (KDD) is a complex interactive and iterative
process which involves many steps that must be done sequentially. Supporting the
whole KDD process has enjoyed great popularity in recent years, with advances in
both research and commercialization. We however still lack of a generally accepted
underlying framework and this hinders the further development of the field. We be-
lieve that the quest for such a framework is a major research priority and that the
inductive database approach (IDB) (Imielinski and Mannila, 1996, De Raedt, 2003)
is one of the best candidates in this direction. IDBs contain not only data, but also
patterns. Patterns can be either local patterns (e.g., itemsets, association rules, se-
quences) which are of descriptive nature, or global patterns/models (e.g., classifiers)
which are generally of predictive nature. In an IDB, ordinary queries can be used to
access and manipulate data, while inductive queries can be used to generate (mine),
manipulate, and apply patterns. KDD becomes an extended querying process where
the analyst can control the whole process since he/she specifies the data and/or pat-
terns of interests.
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The IDB framework is appealing because it employs declarative queries instead
of ad-hoc procedural constructs. As declarative inductive queries are often formu-
lated using constraints, inductive querying needs for constraint-based Data Mining
techniques and is concerned with defining the necessary constraints.

It is useful to abstract the meaning of inductive queries. A simple model has been
introduced in (Mannila and Toivonen, 1997). Given a language L of patterns (e.g.,
itemsets), the theory of a database D w.r.t. L and a selection predicate C is the set
Th(D ,L ,C ) = {ϕ ∈ L | C (ϕ,D) = true}. The predicate selection or constraint
C indicates whether a pattern ϕ is interesting or not (e.g., ϕ is “frequent” in D).
We say that computing Th(D ,L ,C ) is the evaluation for the inductive query C
defined as a boolean expression over primitive constraints. Some of them can refer
to the “behavior” of a pattern in the data (e.g., its “frequency” is above a threshold).
Frequency is indeed the most studied case of evaluation function. Some others define
syntactical restrictions (e.g., the “length” of the pattern is below a threshold) and
checking them does not need any access to the data. Preprocessing concerns the
definition of a mining context D , the mining phase is generally the computation
of a theory while post-processing is often considered as a querying activity on a
materialized theory. To support the whole KDD process, it is important to support
the specification and the computation of many different but correlated theories.

According to this formalization, solving an inductive query needs for the compu-
tation of every pattern which satisfies C . We emphasized that the model is however
quite general: beside the itemsets or sequences, L can denote, e.g., the language of
partitions over a collection of objects or the language of decision trees on a collection
of attributes. In these cases, classical constraints specify some function optimization.
If the completeness assumption can be satisfied for most of the local pattern discov-
ery tasks, it is generally impossible for optimization tasks like accuracy optimization
during predictive model mining. In this case, heuristics or incomplete techniques are
needed, which, e.g., compute sub-optimal decision trees. Very few techniques for
constraint-based mining of models have been considered (see (Garofalakis and Ras-
togi, 2000) for an exception) and we believe that studying constraint-based clustering
or constraint-based mining of classifiers will be a major topic for research in the near
future. Starting from now, we focus on local pattern mining tasks.

It is well known that a “generate and test” approach that would enumerate the
patterns of L and then test the constraint C is generally impossible. A huge effort
has been made by data mining researchers to make an active use of the primitive
constraints occurring in C (solver design) such that useful mining query evaluation
is tractable. On one hand, researchers have designed solvers for important primitive
constraints. A famous example is the one of frequent itemset mining (FIM) where
the data is a set of transactions, the patterns are itemsets and the primitive constraint
is a minimal frequency constraint. A second major line of research has been to con-
sider specific, say ad-hoc, techniques for conjunctions of some primitives constraints.
Examples of seminal work are (Srikant et al., 1997) for syntactic constraints on fre-
quent itemsets, (Pasquier et al., 1999) for frequent and closed set mining, or (Garo-
falakis et al., 1999) for mining sequences that are both frequent and satisfy a given
regular expression in a sequence database. Last but not the least, a major progress
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has concerned the design of generic algorithms for mining under conjunctions or
arbitrary boolean combination of primitive constraints. A pioneer contribution has
been (Ng et al., 1998) and this kind of work consists in a classification of constraint
properties and the design of solving strategies according to these properties (e.g.,
anti-monotonicity, monotonicity, succinctness).

Along with constraint-based Data Mining, the concept of condensed representa-
tion has emerged as a key concept for inductive querying. The idea is to compute
C R ⊂ Th(D ,L ,C ) while deriving Th(D ,L ,C ) from C R can be performed effi-
ciently. In the context of huge database mining, efficiently means without any further
access to D . Starting from (Mannila and Toivonen, 1996) and its concrete applica-
tion to frequency queries in (Boulicaut and Bykowski, 2000), many useful condensed
representations have been designed the last 5 years. Interestingly, we can consider
condensed representation mining as a constraint-based Data Mining task (Jeudy and
Boulicaut, 2002). It provides not only nice examples of constraint-based mining
techniques but also important cross-fertilization possibilities (combining the both
concepts) for optimizing inductive queries in very hard contexts.

Section 17.2 provides the needed notations and concepts. It introduces the pat-
tern domains of itemsets and sequences for which most of the constraint-based Data
Mining techniques have been designed. Section 17.3 recalls the principal results for
solving anti-monotonic constraints. Section 17.4 concerns the introduction of non
anti-monotonic constraints and the various strategies which have been proposed. Sec-
tion 17.5 concludes and points out the actual directions of research.

17.2 Background and Notations

Given a database D , a pattern language L and a constraint C , let us first assume
that we have to compute Th(D ,L ,C ) = {ϕ ∈L | C (ϕ,D) = true}. Our examples
concern local pattern discovery tasks based on itemsets and sequences.

Itemsets have been studied a lot. Let I = {A,B, ...} be a set of items. A trans-
action is a subset of I and a database D is a multiset of transactions. An itemset
is a set of items and a transaction t is said to support an itemset S if S ⊆ t. The fre-
quency freq(S) of an itemset S is defined as the number of transactions that support
S. L is the collection of all itemsets, i.e., 2I . The most studied primitive constraint
is the minimum frequency constraint Cσ -freq which is satisfied by itemsets having a
frequency greater than the threshold σ . Many other constraints have been studied
such as syntactical constraints, e.g., B ∈ X whose testing does not need any access to
the data. (Ng et al., 1998) is a rather systematic study of many primitive constraints
on itemsets (see also Section 17.4). (Boulicaut, 2004) surveys some new primitive
constraints based on the closure evaluation function. The closure of an itemset S in
D , f (S,D), is the maximal superset of S which has the same frequency than S in D .
Furthermore, a set S is closed in D if S= f (S,D) in which case we say that it satisfies
Cclos. Freeness is one of the first proposals for constraint-based mining of closed set
generators: free itemsets (Boulicaut et al., 2000) (also called key patterns in (Bastide
et al., 2000B)) are itemsets whose frequencies are different from the frequencies of
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all their subsets. We say that they satisfy the Cfree constraint. An important result
is that { f (S,D) ∈ 2I | Cfree(S,D) = true} = {S ∈ 2I | Cclos(S,D) = true}. For
instance, in the toy data set of Figure 17.1, {A,C} is a free set and {A, C, D}, i.e., its
closure, is a closed set.

Sequential pattern mining from sequence databases (i.e., D is a multiset of se-
quences) has been studied as well. Many different types of sequential patterns have
been considered for which different subpattern relations can be defined. For instance,
we could say that bc is a subpattern (substring) of abca but aa is not. In other pro-
posals, aa would be considered as a subpattern of abca. Discussing this in details
is not relevant for this chapter. The key point is that, a frequency evaluation func-
tion can be defined for sequential patterns (number of sequences in D for which the
pattern is a subpattern). The pattern language L is then the infinite set of sequences
which can be built on some alphabet. Many primitive constraints can be defined, e.g.,
minimal frequency or syntactical constraints specified by regular expressions. Inter-
estingly, new constraints can exploit the spatial or temporal order, e.g., the min-gap
and max-gap constraints (see, e.g., (Zaki, 2000) and (Pei et al., 2002) for a recent
survey).

Naive approaches that would compute Th(D ,L ,C ) by enumerating every pat-
tern ϕ of the search space L and test the constraint C (ϕ,D) afterwards can not
work. Even though checking C (ϕ ,D) can be cheap, this strategy fails because of
the size of the search space. For instance, we have 2|I | itemsets and we often have
to cope with hundreds or thousands of items in practical applications. Moreover, for
sequential pattern mining, the search space is infinite.

For a given constraint, the search space L is often structured by a specializa-
tion relation which provides a lattice structure. For important constraints, the spe-
cialization relation has an anti-monotonicity property. For instance, set inclusion for
itemsets or substring for strings are anti-monotonic specialization relations w.r.t. a
minimal frequency constraint. Anti-monotonicity means that when a pattern does not
satisfy C (e.g., an itemset is not frequent) then none of its specializations can satisfy
C (e.g., none of its supersets are frequent). It becomes possible to prune huge parts
of the search space which can not contain interesting patterns. This has been studied
within the “learning as search” framework (Mitchell, 1980) and the generic level-
wise algorithm from (Mannila and Toivonen, 1997) has inspired many algorithmic
developments (see Section 17.3). In this context where we say that the constraint C
is anti-monotonic, the most specific patterns constitute the positive border of the the-
ory (denoted Bd+(C )) (Mannila and Toivonen, 1997) and Bd+(C ) is a condensed
representation of Th(D ,L ,C ). It corresponds to the S set in the terminology of ver-
sions spaces (Mitchell, 1980). For instance, the collection of the maximal frequent
patterns Bd+(Cσ -freq) in D is generally several orders of magnitude smaller than the
complete collection of the frequent patterns in D . It is a condensed representation for
Th(D ,2I ,Cσ -freq): deriving subsets (i.e., generalizations) of each maximal frequent
set (i.e., each most specific pattern) enables to regenerate the whole collection of the
frequent sets (i.e., the whole theory of interesting patterns w.r.t. the constraint).

In many applications, however, the user wants not only the collection of the pat-
terns satisfying C but also the results of some evaluation functions for these patterns.
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This is quite typical for the frequent pattern discovery problem: these patterns are
generally exploited in a post-processing step to derive more useful statements about
the data, e.g., the popular frequent association rules which have a high enough con-
fidence (Agrawal et al., 1996). This can be done efficiently if we compute not only
the collection of frequent itemsets but also their frequencies. In fact, the semantics
of an inductive query is better captured by the concept of extended theories. An ex-
tended theory w.r.t. an evaluation function f on a domain V is Thx(D ,L ,C , f ) =
{(ϕ , f (ϕ)) ∈L ⊗V | C (ϕ,D) = true}. The classical FIM problem turns to be the
computation of Thx(D ,2I ,Cσ -freq, freq). Another example concerns the closure
evaluation function.

For instance,
{
(ϕ, f (ϕ)) ∈ 2I ⊗2I | Cσ -freq(ϕ,D) = true

}
is the collection of

the frequent sets and their closures, i.e., the frequent closed sets.
An alternative and useful specification for the frequent closed sets is{

(ϕ, f (ϕ)) ∈ 2I ⊗2I | Cσ -freq(ϕ,D)∧Cfree(ϕ ,D) = true
}

.
Condensed representations can be designed for extended theories as well. Now,

a condensed representation C R must enable to regenerate the patterns, but also the
values of the evaluation function f on each pattern without any further access to the
data. If the regenerated values for f are only approximated, the condensed represen-
tation is called approximate. Moreover, if the error on f can be bounded by ε , the
approximate condensed representation is called an ε-adequate representation of the
extended theory (Mannila and Toivonen, 1996). The idea is that we can trade off the
precision on the evaluation function values with computational feasibility.

Most of condensed representations studied so far are condensed representations
of the frequent itemsets. We have the maximal frequent itemsets (see, e.g., (Bayardo,
1998)), the frequent closed itemsets (see, e.g., (Pasquier et al., 1999, Boulicaut and
Bykowski, 2000)), the frequent free itemsets and the δ -free itemsets (Boulicaut et al.,
2000,Boulicaut et al., 2003), the disjunction-free sets (Bykowski and Rigotti, 2003),
the non-derivable itemsets (Calders and Goethals, 2002), the frequent pattern bases
(Pei et al., 2002), etc. Except for the maximal frequent itemsets from which it is not
possible to get a useful approximation of the needed frequencies, these are condensed
representations of the extended theory Thx(D ,2I ,Cσ -freq, freq) and δ -free itemsets
and pattern bases are approximate representations.

Condensed representations have three main advantages. First, they contain (al-
most) the same information than the whole theory but are significantly smaller (gen-
erally by several orders of magnitude), which means that they are more easily stored
or manipulated. Next, the computation of C R and the regeneration of the theory Th
from C R is often less expensive than the direct computation of Th. One can even
say that, as soon as a transactional data set is dense, mining condensed representa-
tions of the frequent itemsets is the only way to solve the FIM problem for practical
applications. Last, many proposals emphasize the use of condensed representations
for deriving directly useful patterns (i.e., skipping the regeneration phase). This is
obvious for feature construction (see, e.g., (Kramer et al., 2001)) but has been con-
sidered also for the generation of non redundant association rules (see, e.g., (Bastide
et al., 2000A)) or interesting classification rules (Crémilleux and Boulicaut, 2002)).
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17.3 Solving Anti-Monotonic Constraints

In this section, we consider efficient solutions to compute (extended) theories for
anti-monotonic constraints. We still focus on constraint-based mining of itemsets
when the constraint is anti-monotonic. It is however straightforwardly extended to
many other pattern domains.

An anti-monotonic constraint on itemsets is a constraint denoted Cam such that
for all itemsets S,S′ ∈ 2I : (S′ ⊆ S∧ S satisfies Cam) ⇒ S′ satisfies Cam . Cσ -freq,
Cfree, A (∈ S, S ⊆ {A,B,C} and S∩{A,B,C}= /0 are examples of anti-monotonic con-
straints. Furthermore, it is clear that a disjunction or a conjunction of anti-monotonic
constraints is an anti-monotonic constraint.

Let us be more precise on the useful concept of border (Mannila and Toivonen,
1997). If Cam denotes an anti-monotonic constraint and the goal is to compute T =
Th(D ,2I ,Cam), then Bd+(Cam) is the collection of the maximal (w.r.t. the set
inclusion) itemsets of T that satisfy Cam and Bd−(Cam) is the collection of the
minimal (w.r.t. the set inclusion) itemsets that do not satisfy Cam .

Some algorithms have been designed for computing directly the positive borders,
i.e., looking for the complete collection of the most specific patterns. A famous one is
the Max-Miner algorithm which uses a clever enumeration technique for computing
depth-first the maximal frequent sets (Bayardo, 1998). Other algorithms for comput-
ing maximal frequent sets are described in (Lin and Kedem, 2002, Burdick et al.,
2001, Goethals and Zaki, 2003). The computation of positive borders with applica-
tions to not only itemset mining but also dependency discovery, the generic “dualize
and advance” framework, is studied in (Gunopulos et al., 2003).

The levelwise algorithm by Mannila and Toivonen (Mannila and Toivonen, 1997)
has influenced many research in data mining. It computes
Th(D ,2I ,Cam) levelwise in the lattice (L associated to its specialization rela-
tion) by considering first the most general patterns (e.g., the singleton in the FIM
problem). Then, it alternates candidate evaluation (e.g., frequency counting or other
checks for anti-monotonic constraints) and candidate generation (e.g., building larger
itemsets from discovered interesting itemsets) phases. Candidate generation can be
considered as the computation of the negative border of the previously computed
collection. Candidate pruning is a major issue and it can be performed partly during
the generation phase or just after: indeed, any candidate whose one generalization
does not satisfy Cam can be pruned safely (e.g., any itemset whose one of its subsets
is not frequent can be removed). The algorithm stops when it can not generate new
candidates or, in other terms, when the most specific patterns have been found (e.g.,
all the maximal frequent itemsets).

The Apriori algorithm (Agrawal et al., 1996) is clearly the most famous instance
of this levelwise algorithm. It computes Th(D ,2I ,Cσ -freq, freq) and it uses a clever
candidate generation technique. A lot of work has been done for efficient implemen-
tations of Apriori-like algorithms.

Pruning based on anti-monotonic constraints has been proved efficient on hard
problems, i.e., huge volume and high dimensional data sets. The many experimen-
tal results which are available nowadays prove that the minimal frequency is often
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an extremely selective constraint in real data sets. Interestingly, an algorithm like
AcMiner (Boulicaut et al., 2000,Boulicaut et al., 2003) which can compute frequent
closed sets (closeness is not an anti-monotonic constraint) via the frequent free sets
exploits these pruning possibilities. Indeed, the conjunction of freeness and mini-
mal frequency is an anti-monotonic constraint which enables an efficient pruning in
dense and/or highly correlated data sets.

The dual property of monotonicity is interesting as well. A monotonic constraint
on itemsets is a constraint denoted Cm such that for all itemsets S,S′ ∈ 2I : (S⊆ S′ ∧S
satisfies Cm ) ⇒ S′ satisfies Cm . A constraint is monotonic when its negation is anti-
monotonic (and vice-versa). In the itemset pattern domain, the maximal frequency
constraint or a syntactic constraint like A ∈ S are examples of monotonic constraints.

The concept of border can be adapted to monotonic constraints. The positive
border Bd+(Cm) of a monotonic constraint Cm is the collection of the most general
patterns that satisfy the constraint. The theory Th(D ,L ,Cm) is then the set of pat-
terns that are more specific than the patterns of the border Bd+(Cm). For instance,
we have Bd+(A ∈ S) = {A} and the positive border of the monotonic maximal fre-
quency constraint is the collection of the smallest itemsets which are not frequent in
the data. In other terms, a monotonic constraint defines also a border in the search
space which corresponds to the G set in the version space terminology (see Fig-
ure 17.1 for an example).

The recent work has indeed exploited this duality for solving conjunctions of
monotonic and anti-monotonic constraints (see Section 17.4.2).

17.4 Introducing non Anti-Monotonic Constraints

Pushing anti-monotonic constraints in the levelwise algorithm always leads to less
constraint checking. Of course, anti-monotonic constraints are exploited into alter-
native frameworks, like depth-first algorithms.

However, this is no longer the case when pushing non anti-monotonic constraints.
For instance, if an itemset does not satisfy an anti-monotonic constraint Cam , then its
supersets can be pruned. But if this itemset does not satisfy the non anti-monotonic
constraint, then its supersets are not pruned since the algorithm does not test Cam on
it. Pushing non anti-monotonic constraint can therefore lead to less efficient prun-
ing (Boulicaut and Jeudy, 2000, Garofalakis et al., 1999). Clearly, we have here a
trade-off between anti-monotonic pruning and monotonic pruning which can be de-
cided if the selectivity of the various constraints is known in advance, which is ob-
viously not the case in most of the applications. Nice contributions have considered
boolean expressions over monotonic and anti-monotonic constraints. The problem is
still quite open for optimization constraints.
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17.4.1 The Seminal Work

MultipleJoins, Reorder and Direct

Srikant et al. (Srikant et al., 1997) have been the first to address constraint-based
mining of itemsets when the constraint C is not reduced to the minimum frequency
constraint Cσ -freq. They consider syntactical constraints built on two kinds of primi-
tive constraints: Ci(S) = (i ∈ S), and C¬i(S) = (i (∈ S) where i ∈I . They also intro-
duce new constraints if a taxonomy on items is available. A taxonomy (also called
a is-a relation) is an acyclic relation r on I . For instance, if the items are prod-
ucts like Milk, Jackets. . . the relation can state that Milk is-a Beverages, Jackets
is-a Outer-wear, . . . The primitive constraints related to a taxonomy are: Ca(i)(S) =
(S∩ ancestor(i) (= /0), Cd(i)(S) = (S∩descendant(i) (= /0) , and their negations. Func-
tions ancestor and descendant are defined using the transitive closure r∗ of r: we have
ancestor(i) = {i′ ∈I | r∗(i′, i)} and descendant(i) = {i′ ∈ I | r∗(i, i′)}. These new
constraints can be rewritten using the two primitive constraints Ci and C¬i, e.g.,
Cdesc(i)(S) =

∨
j∈descendant(i)C j(S).

It is now possible to specify syntactical constraints Csynt as a boolean combi-
nation of the primitive constraints which is written in disjunctive normal form, i.e.,
Csynt = D1 ∨D2 ∨ . . .∨Dm where each Dk is Ck1 ∧Ck2 ∧ . . .∧Cknk and Ck j is either
Ci or C¬i with i ∈ I .

Srikant et al. (1997) provide three algorithms to compute Thx(D ,2I ,C , freq)
where C = Cσ -freq ∧ Csynt. The first two algorithms
(MultipleJoins and Reorder) use a relaxation of the syntactical constraint. They
show how to compute from Csynt an itemset T such that every itemset S satisfy-
ing the Csynt also satisfies the constraint S∩T (= /0. This constraint is pushed in an
Apriori-like levelwise algorithm to obtain MultipleJoins and Reorder (Reorder is
a simplification of MultipleJoins). The third algorithm, Direct, does not use a re-
laxation and pushes the whole syntactical constraint at the extended cost of a more
complex candidate generation phase. Experimental results confirm that the behavior
of the algorithms depends clearly of the selectivity of the constraints on the consid-
ered data sets.

CAP

The CAP algorithm (Ng et al., 1998) computes the extended theory Thx(D ,2I ,C , freq)
for C = Cσ -freq ∧ Cam ∧ Csucc where Cam is an anti-monotonic syntactical con-
straint and Csucc is a succinct constraint. A constraint C is succinct (Ng et al.,
1998) if it is a syntactical constraint and if we have itemsets I1, I2, . . . Ik such that
C (S) = S ⊆ I1 ∧ S (⊆ I2 ∧ . . .∧ S (⊆ Ik. Efficient candidate generation techniques can
be performed for such constraints which can be considered as special cases of con-
junctions of anti-monotonic and monotonic syntactical constraints.

In (Ng et al., 1998), the syntactical constraints are conjunctions of primitive con-
straints which are Ci, C¬i and constraints based on aggregates. They indeed assume
that a value v is associated with each item i and denoted i.v such that several aggre-
gate functions can be used:
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MAX(S) = max{i.v | i ∈ S} , MIN(S) = min{i.v | i ∈ S} ,

SUM(S) =∑
i∈S

i.v, AVG(S) =
SUM(S)

|S| .

These aggregate functions enable to define new primitive constraints
AGG(S)θn where AGG is an aggregation function, θ is in {=,<,>} and n is a
number. In a market basket analysis application, v can be the price of each item and
we can define aggregate constraints to extract, e.g., itemsets whose average price of
items is above a given threshold (AVG(S)> 10). Among these constraints, some are
anti-monotonic (e.g., SUM(S) < 100 if all the values are positive, MIN(S) > 10),
some are succinct (e.g., MAX(S) > 10, |S| > 3) and others have no special prop-
erties and must be relaxed to be used in the CAP algorithm (e.g., SUM(S) < 10,
AVG(S)< 10).

The candidate generation function of CAP algorithm is an improvement over
Direct algorithm. However, it can not use all syntactical constraints like Direct (only
conjunction of anti-monotonic and succinct constraints can be used by CAP). The
CAP algorithm can also use aggregate constraints. These constraints could also be
used in Direct but they would need to be rewritten in disjunctive normal form us-
ing Ci and C¬i. This rewriting stage can be computationally expensive such that, in
practice, we can not push aggregate constraints into Direct.

SPIRIT

In (Garofalakis et al., 1999), the authors present several version of the SPIRIT algo-
rithm to extract frequent sequences satisfying a regular expression (such sequences
are called valid w.r.t. the regular expression). For instance, if the sequences consist
of letters, the valid sequences with respect to the regular expression a*(bb|cc)e
are the sequences that start with several a followed by either bbe or cce. In the
general case, such a syntactical constraint is not anti-monotonic. The different ver-
sions of SPIRIT use more and more selective relaxations of this regular expression
constraint. The first algorithm, SPIRIT(N), uses an anti-monotonic relaxation of the
syntactical constraint. This constraint CN is satisfied by sequences s such that all
the items appearing in s also appear in the regular expression. With our running
example, CN(s) is true if s is built on letters a, b, c, and e only. A constraint CL
is used by the second algorithm, SPIRIT(L). It is satisfied by a sequence s if s is
a legal sequence w.r.t. the regular expression. A sequence s is legal if we can find
a valid sequence s′ such that s is a suffix of s′. For instance, cce is a legal se-
quence w.r.t. our running example. The SPIRIT(V) algorithm uses the constraint CV
which is satisfied by all contiguous sub-sequences of a valid sequence. Finally, the
SPIRIT(R) algorithm uses the full constraint CR which is satisfied only by valid se-
quences. For the three first algorithms, a final post-processing step is necessary to fil-
ter out non-valid sequences. There is a subset relationship between the theories com-
puted by these four algorithms: Th(D ,L ,CR∧Cσ -freq)⊆ Th(D ,L ,CV ∧Cσ -freq)⊆
Th(D ,L ,CL ∧Cσ -freq)⊆ Th(D ,L ,CN ∧Cσ -freq). Clearly, the first two algorithms
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are based mostly on minimal frequency pruning while the two last ones exploit fur-
ther regular expression pruning. Here again, only a prior knowledge on constraint
selectivity enables to inform the choice of one of the algorithms, i.e., one of the
pruning strategies.

17.4.2 Generic Algorithms

We now sketch some important results for the evaluation of quite general forms of
inductive queries.

Conjunction of Monotonic and Anti-Monotonic Constraints

Let us assume that we use constraints that are conjunctions of a monotonic constraint
and an anti-monotonic one denoted Cam ∧Cm . The structure of Th(D ,L ,Cam ∧
Cm) is well known. Given the positive borders Bd+(Cam) and Bd+(Cm), the pat-
terns belonging to Th(D ,L ,Cam ∧Cm) are exactly the patterns that are more spe-
cific than a pattern of Bd+(Cm) and more general than a pattern of Bd+(Cam).
This kind of convex pattern collection is called a Version Space and is illustrated on
Fig. 17.1.
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Fig. 17.1. This figure shows the itemset lattice associated to D (the subscript number is
the frequency of each itemset in D). The itemsets above the black line satisfy the mono-
tonic constraint Cm(S) = (B ∈ S)∨ (CD ⊆ S) and the itemsets below the dashed line sat-
isfy the anti-monotonic constraint Cam = C2-freq. The black itemsets belong to the the-
ory Th(D ,2I ,Cam ∧Cm). They are exactly the itemsets that are subsets of an element of
Bd+(Cam) = {ABCD,ABE,CE} and supersets of an element of Bd+(Cm) = {A,CD}.

Several algorithms have been developed to deal with Cam ∧Cm . The generic al-
gorithm presented in (Boulicaut and Jeudy, 2000) computes the extended theory for
a conjunction Cam ∧Cm . It is a levelwise algorithm, but instead of starting the explo-
ration with the most general patterns (as it is done for anti-monotonic constraints), it
starts with the minimal itemsets (most general patterns) satisfying Cm , i.e., the item-
sets of the border Bd+(Cm). This is a generalization of MultipleJoins, Reorder
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and CAP: the constraint T ∩ S (= /0 used in MultipleJoins and Reorder is indeed
monotonic and succinct constraints used in CAP can be rewritten as the conjunction
of a monotonic and an anti-monotonic constraints.

Since Bd+(Cam) et Bd+(Cm) characterize the theory of Cam ∧Cm , these bor-
ders are a condensed representation of this theory. The Molfea algorithm and the
Dualminer algorithms extract these two borders. They are interesting algorithms for
feature extraction.

The Molfea algorithm presented in (Kramer et al., 2001, De Raedt and Kramer,
2001) extract linear molecular fragments (i.e., strings) in a a partitioned database
of molecules (say, active vs. inactive molecules). They consider conjunctions of a
minimum frequency constraint (say in the active molecules), a maximum frequency
constraint (say in the inactive ones) and syntactical constraints. The two borders
are constructed in an incremental fashion, considering the constraints one after the
other, using a level-wise algorithm for the frequency constraints and Mellish algo-
rithm (Mellish, 1992) for the syntactical constraints. The Dualminer algorithm (Bu-
cila et al., 2003) uses a depth-first exploration similar to the one of Max-Miner
whereas Dualminer deals with Cam ∧Cm instead of just Cam .

In (Bonchi et al., 2003C), the authors consider the computation of not only bor-
ders but also the extended theory for Cam ∧Cm . In this context, they show that the
most efficient approach is not to reason on the search space only but both the search
space and the transactions from the input data. They have a clever approach to data
reduction based on the monotonic part. Not only it does not affect anti-monotonic
pruning but also they demonstrate that the two pruning opportunities are mutually
enhanced.

Arbitrary Expression over Monotonic and Anti Monotonic Constraints

The algorithms presented so far cannot deal with an arbitrary boolean expression
consisting of monotonic and anti-monotonic constraints. These more general con-
straints are studied in (De Raedt et al., 2002). Using the basic properties of mono-
tonic and anti-monotonic constraints, the authors show that such a constraint can be
rewritten as (Cam1 ∧Cm1)∨ (Cam2 ∧Cm2)∨ . . .∨ (Camn ∧Cmn). The theory of each
conjunction (Cami ∧Cmi) is a version space and the theory w.r.t. the whole constraint
is a union of version spaces. The theory of each conjunction can be computed using
any algorithm described in the previous sections. Since there are several ways to ex-
press the constraint as a disjunction of conjunctions, it is therefore desirable to find
an expression in which the number of conjunction is minimal.

Conjunction of Arbitrary Constraints

When constraints are neither anti-monotonic nor monotonic, finding an efficient al-
gorithm is difficult. The common approach is to design a specific strategy to deal with
a particular class of constraints. Such algorithms are presented in the next section. A
promising generic approach has been however presented recently. It is the concept
of witness presented in (Kifer et al., 2003) for itemset mining. This paper does not



350 Jean-Francois Boulicaut and Baptiste Jeudy

describe a mining algorithm but rather a pruning technique for non anti-monotonic
and non monotonic constraints. Considering a sub-lattice Å of 2I , the problem is to
decide whether this sub-lattice can be pruned. A sub-lattice is characterized by its
maximal element M and its minimal element m, i.e., the sub-lattice is the collection
of all itemsets S such that m ⊆ S ⊆ M. To prune this sub-lattice, one must prove that
none of its elements can satisfy the constraint C . To check this, the authors introduce
the concept of negative witness: a negative witness for C in the sub-lattice Å is an
itemset W such that ¬C (W )⇒ ∀X ∈ Å, ¬C (X). Therefore, if the constraint is not
satisfied by the negative witness, then the whole sub-lattice can be pruned. Finding
witnesses for anti-monotonic or monotonic constraints is easy : m is the witness for
all anti-monotonic constraints and M for all monotonic ones. The authors then show
how to compute efficiently witnesses for various tough constraints. For instance, for
AVG(S) > σ , a witness is the set m∪ {i ∈ M | i.v > σ}. The authors also gives an
algorithm (linear in the size of I ) to compute a witness for the difficult constraint
(VAR(S)> σ) where VAR denotes the variance.

17.4.3 Ad-hoc Strategies

Apart from generic algorithms, many algorithms have been designed to cope with
specific classes of constraints. We select only two examples.

The FIC algorithm (Pei et al., 2001) does a depth-first exploration of the item-
set lattice. It is very efficient due to its clever data structure, a prefix-tree used to
store the database. This algorithm can compute the extended theory for a conjunction
Cam ∧Cm ∧C ′ where C ′ is convertible anti-monotonic or monotonic. A constraint
C ′ is convertible anti-monotonic if there exists an order on the items such that, if
itemsets are written using this order, every prefix of an itemset satisfying C ′ satisfies
C ′. For instance, AVG(S) > σ is convertible anti-monotonic if the items i are or-
dered by decreasing value i.v. The main problem with convertible constraints is that
a conjunction of convertible constraints is generally not convertible.

Another example of an ad-hoc strategy is used in the c-Spade algorithm (Zaki,
2000). This algorithm is used to extract constrained sequences where each event
in the sequences is dated. One of the constraints, the max− gap constraint, states
that two consecutive events occurring in a pattern must not be further apart than a
given maximum gap. This constraint is neither anti-monotonic nor monotonic and a
specific algorithm has been designed for it.

17.4.4 Other Directions of Research

Among others, let us introduce here three important directions of research.

Adaptive Pruning Strategies

We mentioned the trade-off between anti-monotonic pruning which is known to be
quite efficient and pruning based on non anti-monotonic constraints. Since the se-
lectivity of the various constraints is generally unknown, a quite exciting challenge
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is to look for adaptive strategies which can decide of the pruning strategy dynam-
ically. (Bonchi et al., 2003A, Bonchi et al., 2003B) propose algorithms for fre-
quent itemsets under syntactical monotonic constraints. (Albert-Lorincz and Bouli-
caut, 2003) considers frequent sequence mining under regular expression constraints.
These are promising approaches to widen the applicability of constraint-based min-
ing techniques in real contexts.

Combining Constraints and Condensed Representations

A few papers, e.g., (Boulicaut and Jeudy, 2000, Bonchi and Lucchese, 2004), deal
with the problem of extracting constrained condensed representation. In these works,
the aim is to compute a condensed representation of the extended theory
Thx(D ,2I ,Cam ∧Cm , freq). In (Boulicaut and Jeudy, 2000), the authors use free
itemsets, i.e., their algorithm computes the extended theory Thx(D ,2I ,Cam ∧Cm ∧
Cfree, freq). In (Bonchi and Lucchese, 2004), the authors use closed itemsets, i.e.,
their algorithm computes the extended theory Thx(D ,2I ,Cam ∧Cm ∧Cclos, freq).
However, in these two works, the definition of free sets and closed sets have been
modified to be able to regenerate the extended theory Thx(D ,2I ,Cam ∧Cm , freq)
from the extracted theories. This kind of research combines the advantages of both
condensed representations and constrained mining which result in very efficient al-
gorithms.

Constraint-based Mining of more Complex Pattern
Domains

Most of the recent results have concerned simple local pattern discovery tasks like
the ones based on itemsets or sequences. We believe that inductive querying is much
more general. Many open problems are however to be addressed. For instance, even
constraint-based mining of association rules is already much harder than constraint-
based mining of itemsets (Lakshmanan et al., 1999,Jeudy and Boulicaut, 2002). The
recent work on the MINE RULE query language (Meo et al., 1998) is also typical
of the difficulty to optimize constraint-based association rule mining (Meo, 2003).
When considering model mining under constraints (e.g., classifier design or clus-
tering), only very preliminary approaches are available (see, e.g., (Garofalakis and
Rastogi, 2000)). We think that this will be a major issue for research in the next few
years. For instance, for clustering, it seems important to go further than the classical
similarity optimization constraints and enable to specify other constraints on clusters
(e.g., enforcing that some objects are or are not within the same clusters).

17.5 Conclusion

In this chapter, we have considered constraint-based mining approaches, i.e., the core
techniques for inductive querying.
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This domain has been studied a lot for simple pattern domains like itemsets or
sequences. Rather general forms of inductive queries on these domains (e.g., ar-
bitrary boolean expressions over monotonic and anti-monotonic constraints) have
been considered. Beside the many ad-hoc algorithms, an interesting effort has con-
cerned generic algorithms. Many open problems are still there: how to solve tough
constraints?, how to design relevant approximation or relaxation schemes? how to
combine constraint-based mining with condensed representations, not only for sim-
ple pattern domains but also more complex ones?

Moreover, within the inductive database framework, the problem is to optimize
sequences of queries and typically sequences of correlated inductive queries. It is
crucial to consider that the optimization of a query and thus constraint-based mining
must also take into account the previously solved queries. Looking for the formal
properties between inductive queries, especially containment, is thus a major priority.
Here again, we believe that condensed representations might play a major role.

Last but not the least, a quite challenging problem is to consider from where
the constraints come. The analysts can think in terms of constraints or declarative
specifications which are not supported by the available solvers: an obvious example
could be unexpectedness or novelty w.r.t. some explicit background knowledge. To
be able to derive appropriate inductive queries based on a limited number of primi-
tives (and some associated solvers) from the constraints expressed by the analysts is
challenging.
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