
17

Constraint-based Data Mining

Jean-Francois Boulicaut1 and Baptiste Jeudy2

1 INSA Lyon, LIRIS CNRS FRE 2672
69621 Villeurbanne cedex, France. jean-francois.boulicaut@insa-lyon.fr

2 University of Saint-Etienne, EURISE
42023 Saint-Etienne Cedex 2, France. baptiste.jeudy@univ-st-etienne.fr

Summary. Knowledge Discovery in Databases (KDD) is a complex interactive process. The
promising theoretical framework of inductive databases considers this is essentially a query-
ing process. It is enabled by a query language which can deal either with raw data or patterns
which hold in the data. Mining patterns turns to be the so-called inductive query evaluation
process for which constraint-based Data Mining techniques have to be designed. An induc-
tive query specifies declaratively the desired constraints and algorithms are used to compute
the patterns satisfying the constraints in the data. We survey important results of this active
research domain. This chapter emphasizes a real breakthrough for hard problems concern-
ing local pattern mining under various constraints and it points out the current directions of
research as well.

Key words: Inductive querying, constraints, local patterns

17.1 Motivations

Knowledge Discovery in Databases (KDD) is a complex interactive and iterative
process which involves many steps that must be done sequentially. Supporting the
whole KDD process has enjoyed great popularity in recent years, with advances in
both research and commercialization. We however still lack of a generally accepted
underlying framework and this hinders the further development of the field. We be-
lieve that the quest for such a framework is a major research priority and that the
inductive database approach (IDB) (Imielinski and Mannila, 1996, De Raedt, 2003)
is one of the best candidates in this direction. IDBs contain not only data, but also
patterns. Patterns can be either local patterns (e.g., itemsets, association rules, se-
quences) which are of descriptive nature, or global patterns/models (e.g., classifiers)
which are generally of predictive nature. In an IDB, ordinary queries can be used to
access and manipulate data, while inductive queries can be used to generate (mine),
manipulate, and apply patterns. KDD becomes an extended querying process where
the analyst can control the whole process since he/she specifies the data and/or pat-
terns of interests.

O. Maimon, L. Rokach (eds.), Data Mining and Knowledge Discovery Handbook, 2nd ed.,
DOI 10.1007/978-0-387-09823-4_17, © Springer Science+Business Media, LLC 2010

340 Jean-Francois Boulicaut and Baptiste Jeudy

The IDB framework is appealing because it employs declarative queries instead
of ad-hoc procedural constructs. As declarative inductive queries are often formu-
lated using constraints, inductive querying needs for constraint-based Data Mining
techniques and is concerned with defining the necessary constraints.

It is useful to abstract the meaning of inductive queries. A simple model has been
introduced in (Mannila and Toivonen, 1997). Given a language L of patterns (e.g.,
itemsets), the theory of a database D w.r.t. L and a selection predicate C is the set
Th(D ,L ,C) = {ϕ ∈ L | C (ϕ,D) = true}. The predicate selection or constraint
C indicates whether a pattern ϕ is interesting or not (e.g., ϕ is “frequent” in D).
We say that computing Th(D ,L ,C) is the evaluation for the inductive query C
defined as a boolean expression over primitive constraints. Some of them can refer
to the “behavior” of a pattern in the data (e.g., its “frequency” is above a threshold).
Frequency is indeed the most studied case of evaluation function. Some others define
syntactical restrictions (e.g., the “length” of the pattern is below a threshold) and
checking them does not need any access to the data. Preprocessing concerns the
definition of a mining context D , the mining phase is generally the computation
of a theory while post-processing is often considered as a querying activity on a
materialized theory. To support the whole KDD process, it is important to support
the specification and the computation of many different but correlated theories.

According to this formalization, solving an inductive query needs for the compu-
tation of every pattern which satisfies C . We emphasized that the model is however
quite general: beside the itemsets or sequences, L can denote, e.g., the language of
partitions over a collection of objects or the language of decision trees on a collection
of attributes. In these cases, classical constraints specify some function optimization.
If the completeness assumption can be satisfied for most of the local pattern discov-
ery tasks, it is generally impossible for optimization tasks like accuracy optimization
during predictive model mining. In this case, heuristics or incomplete techniques are
needed, which, e.g., compute sub-optimal decision trees. Very few techniques for
constraint-based mining of models have been considered (see (Garofalakis and Ras-
togi, 2000) for an exception) and we believe that studying constraint-based clustering
or constraint-based mining of classifiers will be a major topic for research in the near
future. Starting from now, we focus on local pattern mining tasks.

It is well known that a “generate and test” approach that would enumerate the
patterns of L and then test the constraint C is generally impossible. A huge effort
has been made by data mining researchers to make an active use of the primitive
constraints occurring in C (solver design) such that useful mining query evaluation
is tractable. On one hand, researchers have designed solvers for important primitive
constraints. A famous example is the one of frequent itemset mining (FIM) where
the data is a set of transactions, the patterns are itemsets and the primitive constraint
is a minimal frequency constraint. A second major line of research has been to con-
sider specific, say ad-hoc, techniques for conjunctions of some primitives constraints.
Examples of seminal work are (Srikant et al., 1997) for syntactic constraints on fre-
quent itemsets, (Pasquier et al., 1999) for frequent and closed set mining, or (Garo-
falakis et al., 1999) for mining sequences that are both frequent and satisfy a given
regular expression in a sequence database. Last but not the least, a major progress

17 Constraint-based Data Mining 341

has concerned the design of generic algorithms for mining under conjunctions or
arbitrary boolean combination of primitive constraints. A pioneer contribution has
been (Ng et al., 1998) and this kind of work consists in a classification of constraint
properties and the design of solving strategies according to these properties (e.g.,
anti-monotonicity, monotonicity, succinctness).

Along with constraint-based Data Mining, the concept of condensed representa-
tion has emerged as a key concept for inductive querying. The idea is to compute
C R ⊂ Th(D ,L ,C) while deriving Th(D ,L ,C) from C R can be performed effi-
ciently. In the context of huge database mining, efficiently means without any further
access to D . Starting from (Mannila and Toivonen, 1996) and its concrete applica-
tion to frequency queries in (Boulicaut and Bykowski, 2000), many useful condensed
representations have been designed the last 5 years. Interestingly, we can consider
condensed representation mining as a constraint-based Data Mining task (Jeudy and
Boulicaut, 2002). It provides not only nice examples of constraint-based mining
techniques but also important cross-fertilization possibilities (combining the both
concepts) for optimizing inductive queries in very hard contexts.

Section 17.2 provides the needed notations and concepts. It introduces the pat-
tern domains of itemsets and sequences for which most of the constraint-based Data
Mining techniques have been designed. Section 17.3 recalls the principal results for
solving anti-monotonic constraints. Section 17.4 concerns the introduction of non
anti-monotonic constraints and the various strategies which have been proposed. Sec-
tion 17.5 concludes and points out the actual directions of research.

17.2 Background and Notations

Given a database D , a pattern language L and a constraint C , let us first assume
that we have to compute Th(D ,L ,C) = {ϕ ∈L | C (ϕ,D) = true}. Our examples
concern local pattern discovery tasks based on itemsets and sequences.

Itemsets have been studied a lot. Let I = {A,B, ...} be a set of items. A trans-
action is a subset of I and a database D is a multiset of transactions. An itemset
is a set of items and a transaction t is said to support an itemset S if S ⊆ t. The fre-
quency freq(S) of an itemset S is defined as the number of transactions that support
S. L is the collection of all itemsets, i.e., 2I . The most studied primitive constraint
is the minimum frequency constraint Cσ -freq which is satisfied by itemsets having a
frequency greater than the threshold σ . Many other constraints have been studied
such as syntactical constraints, e.g., B ∈ X whose testing does not need any access to
the data. (Ng et al., 1998) is a rather systematic study of many primitive constraints
on itemsets (see also Section 17.4). (Boulicaut, 2004) surveys some new primitive
constraints based on the closure evaluation function. The closure of an itemset S in
D , f (S,D), is the maximal superset of S which has the same frequency than S in D .
Furthermore, a set S is closed in D if S= f (S,D) in which case we say that it satisfies
Cclos. Freeness is one of the first proposals for constraint-based mining of closed set
generators: free itemsets (Boulicaut et al., 2000) (also called key patterns in (Bastide
et al., 2000B)) are itemsets whose frequencies are different from the frequencies of

342 Jean-Francois Boulicaut and Baptiste Jeudy

all their subsets. We say that they satisfy the Cfree constraint. An important result
is that { f (S,D) ∈ 2I | Cfree(S,D) = true} = {S ∈ 2I | Cclos(S,D) = true}. For
instance, in the toy data set of Figure 17.1, {A,C} is a free set and {A, C, D}, i.e., its
closure, is a closed set.

Sequential pattern mining from sequence databases (i.e., D is a multiset of se-
quences) has been studied as well. Many different types of sequential patterns have
been considered for which different subpattern relations can be defined. For instance,
we could say that bc is a subpattern (substring) of abca but aa is not. In other pro-
posals, aa would be considered as a subpattern of abca. Discussing this in details
is not relevant for this chapter. The key point is that, a frequency evaluation func-
tion can be defined for sequential patterns (number of sequences in D for which the
pattern is a subpattern). The pattern language L is then the infinite set of sequences
which can be built on some alphabet. Many primitive constraints can be defined, e.g.,
minimal frequency or syntactical constraints specified by regular expressions. Inter-
estingly, new constraints can exploit the spatial or temporal order, e.g., the min-gap
and max-gap constraints (see, e.g., (Zaki, 2000) and (Pei et al., 2002) for a recent
survey).

Naive approaches that would compute Th(D ,L ,C) by enumerating every pat-
tern ϕ of the search space L and test the constraint C (ϕ,D) afterwards can not
work. Even though checking C (ϕ ,D) can be cheap, this strategy fails because of
the size of the search space. For instance, we have 2|I | itemsets and we often have
to cope with hundreds or thousands of items in practical applications. Moreover, for
sequential pattern mining, the search space is infinite.

For a given constraint, the search space L is often structured by a specializa-
tion relation which provides a lattice structure. For important constraints, the spe-
cialization relation has an anti-monotonicity property. For instance, set inclusion for
itemsets or substring for strings are anti-monotonic specialization relations w.r.t. a
minimal frequency constraint. Anti-monotonicity means that when a pattern does not
satisfy C (e.g., an itemset is not frequent) then none of its specializations can satisfy
C (e.g., none of its supersets are frequent). It becomes possible to prune huge parts
of the search space which can not contain interesting patterns. This has been studied
within the “learning as search” framework (Mitchell, 1980) and the generic level-
wise algorithm from (Mannila and Toivonen, 1997) has inspired many algorithmic
developments (see Section 17.3). In this context where we say that the constraint C
is anti-monotonic, the most specific patterns constitute the positive border of the the-
ory (denoted Bd+(C)) (Mannila and Toivonen, 1997) and Bd+(C) is a condensed
representation of Th(D ,L ,C). It corresponds to the S set in the terminology of ver-
sions spaces (Mitchell, 1980). For instance, the collection of the maximal frequent
patterns Bd+(Cσ -freq) in D is generally several orders of magnitude smaller than the
complete collection of the frequent patterns in D . It is a condensed representation for
Th(D ,2I ,Cσ -freq): deriving subsets (i.e., generalizations) of each maximal frequent
set (i.e., each most specific pattern) enables to regenerate the whole collection of the
frequent sets (i.e., the whole theory of interesting patterns w.r.t. the constraint).

In many applications, however, the user wants not only the collection of the pat-
terns satisfying C but also the results of some evaluation functions for these patterns.

17 Constraint-based Data Mining 343

This is quite typical for the frequent pattern discovery problem: these patterns are
generally exploited in a post-processing step to derive more useful statements about
the data, e.g., the popular frequent association rules which have a high enough con-
fidence (Agrawal et al., 1996). This can be done efficiently if we compute not only
the collection of frequent itemsets but also their frequencies. In fact, the semantics
of an inductive query is better captured by the concept of extended theories. An ex-
tended theory w.r.t. an evaluation function f on a domain V is Thx(D ,L ,C , f) =
{(ϕ , f (ϕ)) ∈L ⊗V | C (ϕ,D) = true}. The classical FIM problem turns to be the
computation of Thx(D ,2I ,Cσ -freq, freq). Another example concerns the closure
evaluation function.

For instance,
{
(ϕ, f (ϕ)) ∈ 2I ⊗2I | Cσ -freq(ϕ,D) = true

}
is the collection of

the frequent sets and their closures, i.e., the frequent closed sets.
An alternative and useful specification for the frequent closed sets is{

(ϕ, f (ϕ)) ∈ 2I ⊗2I | Cσ -freq(ϕ,D)∧Cfree(ϕ ,D) = true
}

.
Condensed representations can be designed for extended theories as well. Now,

a condensed representation C R must enable to regenerate the patterns, but also the
values of the evaluation function f on each pattern without any further access to the
data. If the regenerated values for f are only approximated, the condensed represen-
tation is called approximate. Moreover, if the error on f can be bounded by ε , the
approximate condensed representation is called an ε-adequate representation of the
extended theory (Mannila and Toivonen, 1996). The idea is that we can trade off the
precision on the evaluation function values with computational feasibility.

Most of condensed representations studied so far are condensed representations
of the frequent itemsets. We have the maximal frequent itemsets (see, e.g., (Bayardo,
1998)), the frequent closed itemsets (see, e.g., (Pasquier et al., 1999, Boulicaut and
Bykowski, 2000)), the frequent free itemsets and the δ -free itemsets (Boulicaut et al.,
2000,Boulicaut et al., 2003), the disjunction-free sets (Bykowski and Rigotti, 2003),
the non-derivable itemsets (Calders and Goethals, 2002), the frequent pattern bases
(Pei et al., 2002), etc. Except for the maximal frequent itemsets from which it is not
possible to get a useful approximation of the needed frequencies, these are condensed
representations of the extended theory Thx(D ,2I ,Cσ -freq, freq) and δ -free itemsets
and pattern bases are approximate representations.

Condensed representations have three main advantages. First, they contain (al-
most) the same information than the whole theory but are significantly smaller (gen-
erally by several orders of magnitude), which means that they are more easily stored
or manipulated. Next, the computation of C R and the regeneration of the theory Th
from C R is often less expensive than the direct computation of Th. One can even
say that, as soon as a transactional data set is dense, mining condensed representa-
tions of the frequent itemsets is the only way to solve the FIM problem for practical
applications. Last, many proposals emphasize the use of condensed representations
for deriving directly useful patterns (i.e., skipping the regeneration phase). This is
obvious for feature construction (see, e.g., (Kramer et al., 2001)) but has been con-
sidered also for the generation of non redundant association rules (see, e.g., (Bastide
et al., 2000A)) or interesting classification rules (Crémilleux and Boulicaut, 2002)).

344 Jean-Francois Boulicaut and Baptiste Jeudy

17.3 Solving Anti-Monotonic Constraints

In this section, we consider efficient solutions to compute (extended) theories for
anti-monotonic constraints. We still focus on constraint-based mining of itemsets
when the constraint is anti-monotonic. It is however straightforwardly extended to
many other pattern domains.

An anti-monotonic constraint on itemsets is a constraint denoted Cam such that
for all itemsets S,S′ ∈ 2I : (S′ ⊆ S∧ S satisfies Cam) ⇒ S′ satisfies Cam . Cσ -freq,
Cfree, A (∈ S, S ⊆ {A,B,C} and S∩{A,B,C}= /0 are examples of anti-monotonic con-
straints. Furthermore, it is clear that a disjunction or a conjunction of anti-monotonic
constraints is an anti-monotonic constraint.

Let us be more precise on the useful concept of border (Mannila and Toivonen,
1997). If Cam denotes an anti-monotonic constraint and the goal is to compute T =
Th(D ,2I ,Cam), then Bd+(Cam) is the collection of the maximal (w.r.t. the set
inclusion) itemsets of T that satisfy Cam and Bd−(Cam) is the collection of the
minimal (w.r.t. the set inclusion) itemsets that do not satisfy Cam .

Some algorithms have been designed for computing directly the positive borders,
i.e., looking for the complete collection of the most specific patterns. A famous one is
the Max-Miner algorithm which uses a clever enumeration technique for computing
depth-first the maximal frequent sets (Bayardo, 1998). Other algorithms for comput-
ing maximal frequent sets are described in (Lin and Kedem, 2002, Burdick et al.,
2001, Goethals and Zaki, 2003). The computation of positive borders with applica-
tions to not only itemset mining but also dependency discovery, the generic “dualize
and advance” framework, is studied in (Gunopulos et al., 2003).

The levelwise algorithm by Mannila and Toivonen (Mannila and Toivonen, 1997)
has influenced many research in data mining. It computes
Th(D ,2I ,Cam) levelwise in the lattice (L associated to its specialization rela-
tion) by considering first the most general patterns (e.g., the singleton in the FIM
problem). Then, it alternates candidate evaluation (e.g., frequency counting or other
checks for anti-monotonic constraints) and candidate generation (e.g., building larger
itemsets from discovered interesting itemsets) phases. Candidate generation can be
considered as the computation of the negative border of the previously computed
collection. Candidate pruning is a major issue and it can be performed partly during
the generation phase or just after: indeed, any candidate whose one generalization
does not satisfy Cam can be pruned safely (e.g., any itemset whose one of its subsets
is not frequent can be removed). The algorithm stops when it can not generate new
candidates or, in other terms, when the most specific patterns have been found (e.g.,
all the maximal frequent itemsets).

The Apriori algorithm (Agrawal et al., 1996) is clearly the most famous instance
of this levelwise algorithm. It computes Th(D ,2I ,Cσ -freq, freq) and it uses a clever
candidate generation technique. A lot of work has been done for efficient implemen-
tations of Apriori-like algorithms.

Pruning based on anti-monotonic constraints has been proved efficient on hard
problems, i.e., huge volume and high dimensional data sets. The many experimen-
tal results which are available nowadays prove that the minimal frequency is often

17 Constraint-based Data Mining 345

an extremely selective constraint in real data sets. Interestingly, an algorithm like
AcMiner (Boulicaut et al., 2000,Boulicaut et al., 2003) which can compute frequent
closed sets (closeness is not an anti-monotonic constraint) via the frequent free sets
exploits these pruning possibilities. Indeed, the conjunction of freeness and mini-
mal frequency is an anti-monotonic constraint which enables an efficient pruning in
dense and/or highly correlated data sets.

The dual property of monotonicity is interesting as well. A monotonic constraint
on itemsets is a constraint denoted Cm such that for all itemsets S,S′ ∈ 2I : (S⊆ S′ ∧S
satisfies Cm) ⇒ S′ satisfies Cm . A constraint is monotonic when its negation is anti-
monotonic (and vice-versa). In the itemset pattern domain, the maximal frequency
constraint or a syntactic constraint like A ∈ S are examples of monotonic constraints.

The concept of border can be adapted to monotonic constraints. The positive
border Bd+(Cm) of a monotonic constraint Cm is the collection of the most general
patterns that satisfy the constraint. The theory Th(D ,L ,Cm) is then the set of pat-
terns that are more specific than the patterns of the border Bd+(Cm). For instance,
we have Bd+(A ∈ S) = {A} and the positive border of the monotonic maximal fre-
quency constraint is the collection of the smallest itemsets which are not frequent in
the data. In other terms, a monotonic constraint defines also a border in the search
space which corresponds to the G set in the version space terminology (see Fig-
ure 17.1 for an example).

The recent work has indeed exploited this duality for solving conjunctions of
monotonic and anti-monotonic constraints (see Section 17.4.2).

17.4 Introducing non Anti-Monotonic Constraints

Pushing anti-monotonic constraints in the levelwise algorithm always leads to less
constraint checking. Of course, anti-monotonic constraints are exploited into alter-
native frameworks, like depth-first algorithms.

However, this is no longer the case when pushing non anti-monotonic constraints.
For instance, if an itemset does not satisfy an anti-monotonic constraint Cam , then its
supersets can be pruned. But if this itemset does not satisfy the non anti-monotonic
constraint, then its supersets are not pruned since the algorithm does not test Cam on
it. Pushing non anti-monotonic constraint can therefore lead to less efficient prun-
ing (Boulicaut and Jeudy, 2000, Garofalakis et al., 1999). Clearly, we have here a
trade-off between anti-monotonic pruning and monotonic pruning which can be de-
cided if the selectivity of the various constraints is known in advance, which is ob-
viously not the case in most of the applications. Nice contributions have considered
boolean expressions over monotonic and anti-monotonic constraints. The problem is
still quite open for optimization constraints.

346 Jean-Francois Boulicaut and Baptiste Jeudy

17.4.1 The Seminal Work

MultipleJoins, Reorder and Direct

Srikant et al. (Srikant et al., 1997) have been the first to address constraint-based
mining of itemsets when the constraint C is not reduced to the minimum frequency
constraint Cσ -freq. They consider syntactical constraints built on two kinds of primi-
tive constraints: Ci(S) = (i ∈ S), and C¬i(S) = (i (∈ S) where i ∈I . They also intro-
duce new constraints if a taxonomy on items is available. A taxonomy (also called
a is-a relation) is an acyclic relation r on I . For instance, if the items are prod-
ucts like Milk, Jackets. . . the relation can state that Milk is-a Beverages, Jackets
is-a Outer-wear, . . . The primitive constraints related to a taxonomy are: Ca(i)(S) =
(S∩ ancestor(i) (= /0), Cd(i)(S) = (S∩descendant(i) (= /0) , and their negations. Func-
tions ancestor and descendant are defined using the transitive closure r∗ of r: we have
ancestor(i) = {i′ ∈I | r∗(i′, i)} and descendant(i) = {i′ ∈ I | r∗(i, i′)}. These new
constraints can be rewritten using the two primitive constraints Ci and C¬i, e.g.,
Cdesc(i)(S) =

∨
j∈descendant(i)C j(S).

It is now possible to specify syntactical constraints Csynt as a boolean combi-
nation of the primitive constraints which is written in disjunctive normal form, i.e.,
Csynt = D1 ∨D2 ∨ . . .∨Dm where each Dk is Ck1 ∧Ck2 ∧ . . .∧Cknk and Ck j is either
Ci or C¬i with i ∈ I .

Srikant et al. (1997) provide three algorithms to compute Thx(D ,2I ,C , freq)
where C = Cσ -freq ∧ Csynt. The first two algorithms
(MultipleJoins and Reorder) use a relaxation of the syntactical constraint. They
show how to compute from Csynt an itemset T such that every itemset S satisfy-
ing the Csynt also satisfies the constraint S∩T (= /0. This constraint is pushed in an
Apriori-like levelwise algorithm to obtain MultipleJoins and Reorder (Reorder is
a simplification of MultipleJoins). The third algorithm, Direct, does not use a re-
laxation and pushes the whole syntactical constraint at the extended cost of a more
complex candidate generation phase. Experimental results confirm that the behavior
of the algorithms depends clearly of the selectivity of the constraints on the consid-
ered data sets.

CAP

The CAP algorithm (Ng et al., 1998) computes the extended theory Thx(D ,2I ,C , freq)
for C = Cσ -freq ∧ Cam ∧ Csucc where Cam is an anti-monotonic syntactical con-
straint and Csucc is a succinct constraint. A constraint C is succinct (Ng et al.,
1998) if it is a syntactical constraint and if we have itemsets I1, I2, . . . Ik such that
C (S) = S ⊆ I1 ∧ S (⊆ I2 ∧ . . .∧ S (⊆ Ik. Efficient candidate generation techniques can
be performed for such constraints which can be considered as special cases of con-
junctions of anti-monotonic and monotonic syntactical constraints.

In (Ng et al., 1998), the syntactical constraints are conjunctions of primitive con-
straints which are Ci, C¬i and constraints based on aggregates. They indeed assume
that a value v is associated with each item i and denoted i.v such that several aggre-
gate functions can be used:

17 Constraint-based Data Mining 347

MAX(S) = max{i.v | i ∈ S} , MIN(S) = min{i.v | i ∈ S} ,

SUM(S) =∑
i∈S

i.v, AVG(S) =
SUM(S)

|S| .

These aggregate functions enable to define new primitive constraints
AGG(S)θn where AGG is an aggregation function, θ is in {=,<,>} and n is a
number. In a market basket analysis application, v can be the price of each item and
we can define aggregate constraints to extract, e.g., itemsets whose average price of
items is above a given threshold (AVG(S)> 10). Among these constraints, some are
anti-monotonic (e.g., SUM(S) < 100 if all the values are positive, MIN(S) > 10),
some are succinct (e.g., MAX(S) > 10, |S| > 3) and others have no special prop-
erties and must be relaxed to be used in the CAP algorithm (e.g., SUM(S) < 10,
AVG(S)< 10).

The candidate generation function of CAP algorithm is an improvement over
Direct algorithm. However, it can not use all syntactical constraints like Direct (only
conjunction of anti-monotonic and succinct constraints can be used by CAP). The
CAP algorithm can also use aggregate constraints. These constraints could also be
used in Direct but they would need to be rewritten in disjunctive normal form us-
ing Ci and C¬i. This rewriting stage can be computationally expensive such that, in
practice, we can not push aggregate constraints into Direct.

SPIRIT

In (Garofalakis et al., 1999), the authors present several version of the SPIRIT algo-
rithm to extract frequent sequences satisfying a regular expression (such sequences
are called valid w.r.t. the regular expression). For instance, if the sequences consist
of letters, the valid sequences with respect to the regular expression a*(bb|cc)e
are the sequences that start with several a followed by either bbe or cce. In the
general case, such a syntactical constraint is not anti-monotonic. The different ver-
sions of SPIRIT use more and more selective relaxations of this regular expression
constraint. The first algorithm, SPIRIT(N), uses an anti-monotonic relaxation of the
syntactical constraint. This constraint CN is satisfied by sequences s such that all
the items appearing in s also appear in the regular expression. With our running
example, CN(s) is true if s is built on letters a, b, c, and e only. A constraint CL
is used by the second algorithm, SPIRIT(L). It is satisfied by a sequence s if s is
a legal sequence w.r.t. the regular expression. A sequence s is legal if we can find
a valid sequence s′ such that s is a suffix of s′. For instance, cce is a legal se-
quence w.r.t. our running example. The SPIRIT(V) algorithm uses the constraint CV
which is satisfied by all contiguous sub-sequences of a valid sequence. Finally, the
SPIRIT(R) algorithm uses the full constraint CR which is satisfied only by valid se-
quences. For the three first algorithms, a final post-processing step is necessary to fil-
ter out non-valid sequences. There is a subset relationship between the theories com-
puted by these four algorithms: Th(D ,L ,CR∧Cσ -freq)⊆ Th(D ,L ,CV ∧Cσ -freq)⊆
Th(D ,L ,CL ∧Cσ -freq)⊆ Th(D ,L ,CN ∧Cσ -freq). Clearly, the first two algorithms

348 Jean-Francois Boulicaut and Baptiste Jeudy

are based mostly on minimal frequency pruning while the two last ones exploit fur-
ther regular expression pruning. Here again, only a prior knowledge on constraint
selectivity enables to inform the choice of one of the algorithms, i.e., one of the
pruning strategies.

17.4.2 Generic Algorithms

We now sketch some important results for the evaluation of quite general forms of
inductive queries.

Conjunction of Monotonic and Anti-Monotonic Constraints

Let us assume that we use constraints that are conjunctions of a monotonic constraint
and an anti-monotonic one denoted Cam ∧Cm . The structure of Th(D ,L ,Cam ∧
Cm) is well known. Given the positive borders Bd+(Cam) and Bd+(Cm), the pat-
terns belonging to Th(D ,L ,Cam ∧Cm) are exactly the patterns that are more spe-
cific than a pattern of Bd+(Cm) and more general than a pattern of Bd+(Cam).
This kind of convex pattern collection is called a Version Space and is illustrated on
Fig. 17.1.

AB AC AD AE CD

ABC ABD ABE ACD BCD

A

ABCD

ABCDE

ABCE ACDE BCDE

ACE ADE

ABDE

BCE BDE CDE

DECEBC BD BE

EDCB

O/

2

2

3

2

4

3 3 2 4

2 2 3

1

12

5 4 3

222

3

111

11

11

11

D =

TID Transaction
1 ABCDE
2 ABCD
3 ABE
4 ACD
5 CD
6 CE

Fig. 17.1. This figure shows the itemset lattice associated to D (the subscript number is
the frequency of each itemset in D). The itemsets above the black line satisfy the mono-
tonic constraint Cm(S) = (B ∈ S)∨ (CD ⊆ S) and the itemsets below the dashed line sat-
isfy the anti-monotonic constraint Cam = C2-freq. The black itemsets belong to the the-
ory Th(D ,2I ,Cam ∧Cm). They are exactly the itemsets that are subsets of an element of
Bd+(Cam) = {ABCD,ABE,CE} and supersets of an element of Bd+(Cm) = {A,CD}.

Several algorithms have been developed to deal with Cam ∧Cm . The generic al-
gorithm presented in (Boulicaut and Jeudy, 2000) computes the extended theory for
a conjunction Cam ∧Cm . It is a levelwise algorithm, but instead of starting the explo-
ration with the most general patterns (as it is done for anti-monotonic constraints), it
starts with the minimal itemsets (most general patterns) satisfying Cm , i.e., the item-
sets of the border Bd+(Cm). This is a generalization of MultipleJoins, Reorder

17 Constraint-based Data Mining 349

and CAP: the constraint T ∩ S (= /0 used in MultipleJoins and Reorder is indeed
monotonic and succinct constraints used in CAP can be rewritten as the conjunction
of a monotonic and an anti-monotonic constraints.

Since Bd+(Cam) et Bd+(Cm) characterize the theory of Cam ∧Cm , these bor-
ders are a condensed representation of this theory. The Molfea algorithm and the
Dualminer algorithms extract these two borders. They are interesting algorithms for
feature extraction.

The Molfea algorithm presented in (Kramer et al., 2001, De Raedt and Kramer,
2001) extract linear molecular fragments (i.e., strings) in a a partitioned database
of molecules (say, active vs. inactive molecules). They consider conjunctions of a
minimum frequency constraint (say in the active molecules), a maximum frequency
constraint (say in the inactive ones) and syntactical constraints. The two borders
are constructed in an incremental fashion, considering the constraints one after the
other, using a level-wise algorithm for the frequency constraints and Mellish algo-
rithm (Mellish, 1992) for the syntactical constraints. The Dualminer algorithm (Bu-
cila et al., 2003) uses a depth-first exploration similar to the one of Max-Miner
whereas Dualminer deals with Cam ∧Cm instead of just Cam .

In (Bonchi et al., 2003C), the authors consider the computation of not only bor-
ders but also the extended theory for Cam ∧Cm . In this context, they show that the
most efficient approach is not to reason on the search space only but both the search
space and the transactions from the input data. They have a clever approach to data
reduction based on the monotonic part. Not only it does not affect anti-monotonic
pruning but also they demonstrate that the two pruning opportunities are mutually
enhanced.

Arbitrary Expression over Monotonic and Anti Monotonic Constraints

The algorithms presented so far cannot deal with an arbitrary boolean expression
consisting of monotonic and anti-monotonic constraints. These more general con-
straints are studied in (De Raedt et al., 2002). Using the basic properties of mono-
tonic and anti-monotonic constraints, the authors show that such a constraint can be
rewritten as (Cam1 ∧Cm1)∨ (Cam2 ∧Cm2)∨ . . .∨ (Camn ∧Cmn). The theory of each
conjunction (Cami ∧Cmi) is a version space and the theory w.r.t. the whole constraint
is a union of version spaces. The theory of each conjunction can be computed using
any algorithm described in the previous sections. Since there are several ways to ex-
press the constraint as a disjunction of conjunctions, it is therefore desirable to find
an expression in which the number of conjunction is minimal.

Conjunction of Arbitrary Constraints

When constraints are neither anti-monotonic nor monotonic, finding an efficient al-
gorithm is difficult. The common approach is to design a specific strategy to deal with
a particular class of constraints. Such algorithms are presented in the next section. A
promising generic approach has been however presented recently. It is the concept
of witness presented in (Kifer et al., 2003) for itemset mining. This paper does not

350 Jean-Francois Boulicaut and Baptiste Jeudy

describe a mining algorithm but rather a pruning technique for non anti-monotonic
and non monotonic constraints. Considering a sub-lattice Å of 2I , the problem is to
decide whether this sub-lattice can be pruned. A sub-lattice is characterized by its
maximal element M and its minimal element m, i.e., the sub-lattice is the collection
of all itemsets S such that m ⊆ S ⊆ M. To prune this sub-lattice, one must prove that
none of its elements can satisfy the constraint C . To check this, the authors introduce
the concept of negative witness: a negative witness for C in the sub-lattice Å is an
itemset W such that ¬C (W)⇒ ∀X ∈ Å, ¬C (X). Therefore, if the constraint is not
satisfied by the negative witness, then the whole sub-lattice can be pruned. Finding
witnesses for anti-monotonic or monotonic constraints is easy : m is the witness for
all anti-monotonic constraints and M for all monotonic ones. The authors then show
how to compute efficiently witnesses for various tough constraints. For instance, for
AVG(S) > σ , a witness is the set m∪ {i ∈ M | i.v > σ}. The authors also gives an
algorithm (linear in the size of I) to compute a witness for the difficult constraint
(VAR(S)> σ) where VAR denotes the variance.

17.4.3 Ad-hoc Strategies

Apart from generic algorithms, many algorithms have been designed to cope with
specific classes of constraints. We select only two examples.

The FIC algorithm (Pei et al., 2001) does a depth-first exploration of the item-
set lattice. It is very efficient due to its clever data structure, a prefix-tree used to
store the database. This algorithm can compute the extended theory for a conjunction
Cam ∧Cm ∧C ′ where C ′ is convertible anti-monotonic or monotonic. A constraint
C ′ is convertible anti-monotonic if there exists an order on the items such that, if
itemsets are written using this order, every prefix of an itemset satisfying C ′ satisfies
C ′. For instance, AVG(S) > σ is convertible anti-monotonic if the items i are or-
dered by decreasing value i.v. The main problem with convertible constraints is that
a conjunction of convertible constraints is generally not convertible.

Another example of an ad-hoc strategy is used in the c-Spade algorithm (Zaki,
2000). This algorithm is used to extract constrained sequences where each event
in the sequences is dated. One of the constraints, the max− gap constraint, states
that two consecutive events occurring in a pattern must not be further apart than a
given maximum gap. This constraint is neither anti-monotonic nor monotonic and a
specific algorithm has been designed for it.

17.4.4 Other Directions of Research

Among others, let us introduce here three important directions of research.

Adaptive Pruning Strategies

We mentioned the trade-off between anti-monotonic pruning which is known to be
quite efficient and pruning based on non anti-monotonic constraints. Since the se-
lectivity of the various constraints is generally unknown, a quite exciting challenge

17 Constraint-based Data Mining 351

is to look for adaptive strategies which can decide of the pruning strategy dynam-
ically. (Bonchi et al., 2003A, Bonchi et al., 2003B) propose algorithms for fre-
quent itemsets under syntactical monotonic constraints. (Albert-Lorincz and Bouli-
caut, 2003) considers frequent sequence mining under regular expression constraints.
These are promising approaches to widen the applicability of constraint-based min-
ing techniques in real contexts.

Combining Constraints and Condensed Representations

A few papers, e.g., (Boulicaut and Jeudy, 2000, Bonchi and Lucchese, 2004), deal
with the problem of extracting constrained condensed representation. In these works,
the aim is to compute a condensed representation of the extended theory
Thx(D ,2I ,Cam ∧Cm , freq). In (Boulicaut and Jeudy, 2000), the authors use free
itemsets, i.e., their algorithm computes the extended theory Thx(D ,2I ,Cam ∧Cm ∧
Cfree, freq). In (Bonchi and Lucchese, 2004), the authors use closed itemsets, i.e.,
their algorithm computes the extended theory Thx(D ,2I ,Cam ∧Cm ∧Cclos, freq).
However, in these two works, the definition of free sets and closed sets have been
modified to be able to regenerate the extended theory Thx(D ,2I ,Cam ∧Cm , freq)
from the extracted theories. This kind of research combines the advantages of both
condensed representations and constrained mining which result in very efficient al-
gorithms.

Constraint-based Mining of more Complex Pattern
Domains

Most of the recent results have concerned simple local pattern discovery tasks like
the ones based on itemsets or sequences. We believe that inductive querying is much
more general. Many open problems are however to be addressed. For instance, even
constraint-based mining of association rules is already much harder than constraint-
based mining of itemsets (Lakshmanan et al., 1999,Jeudy and Boulicaut, 2002). The
recent work on the MINE RULE query language (Meo et al., 1998) is also typical
of the difficulty to optimize constraint-based association rule mining (Meo, 2003).
When considering model mining under constraints (e.g., classifier design or clus-
tering), only very preliminary approaches are available (see, e.g., (Garofalakis and
Rastogi, 2000)). We think that this will be a major issue for research in the next few
years. For instance, for clustering, it seems important to go further than the classical
similarity optimization constraints and enable to specify other constraints on clusters
(e.g., enforcing that some objects are or are not within the same clusters).

17.5 Conclusion

In this chapter, we have considered constraint-based mining approaches, i.e., the core
techniques for inductive querying.

352 Jean-Francois Boulicaut and Baptiste Jeudy

This domain has been studied a lot for simple pattern domains like itemsets or
sequences. Rather general forms of inductive queries on these domains (e.g., ar-
bitrary boolean expressions over monotonic and anti-monotonic constraints) have
been considered. Beside the many ad-hoc algorithms, an interesting effort has con-
cerned generic algorithms. Many open problems are still there: how to solve tough
constraints?, how to design relevant approximation or relaxation schemes? how to
combine constraint-based mining with condensed representations, not only for sim-
ple pattern domains but also more complex ones?

Moreover, within the inductive database framework, the problem is to optimize
sequences of queries and typically sequences of correlated inductive queries. It is
crucial to consider that the optimization of a query and thus constraint-based mining
must also take into account the previously solved queries. Looking for the formal
properties between inductive queries, especially containment, is thus a major priority.
Here again, we believe that condensed representations might play a major role.

Last but not the least, a quite challenging problem is to consider from where
the constraints come. The analysts can think in terms of constraints or declarative
specifications which are not supported by the available solvers: an obvious example
could be unexpectedness or novelty w.r.t. some explicit background knowledge. To
be able to derive appropriate inductive queries based on a limited number of primi-
tives (and some associated solvers) from the constraints expressed by the analysts is
challenging.

References

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of
association rules. In Advances in Knowledge Discovery and Data Mining, pages 307–
328. AAAI Press, 1996.

H. Albert-Lorincz and J.-F. Boulicaut. Mining frequent sequential patterns under regular
expressions: a highly adaptative strategy for pushing constraints. In Proc. SIAM DM’03,
pages 316–320, 2003.

Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and L. Lakhal. Mining minimal non-
redundant association rules using frequent closed itemsets. In Proc. CL 2000, volume
1861 of LNCS, pages 972–986. Springer-Verlag, 2000.

Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent patterns with
counting inference. SIGKDD Explorations, 2(2):66–75, 2000.

R. J. Bayardo. Efficiently mining long patterns from databases. In Proc. ACM SIGMOD’98,
pages 85–93, 1998.

F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Adaptive constraint pushing in fre-
quent pattern mining. In Proc. PKDD’03, volume 2838 of LNAI, pages 47–58. Springer-
Verlag, 2003A.

F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Examiner: Optimized
level-wise frequent pattern mining with monotone constraints. In Proc.
IEEE ICDM’03, pages 11–18, 2003B.

F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Exante: Anticipated data reduction
in constrained pattern mining. In Proc. PKDD’03, volume 2838 of LNAI, pages 59–70.
Springer-Verlag, 2003C.

17 Constraint-based Data Mining 353

F. Bonchi and C. Lucchese. On closed constrained frequent pattern mining. In Proc. IEEE
ICDM’04 (In Press), 2004.

J.-F. Boulicaut. Inductive databases and multiple uses of frequent itemsets: the cInQ ap-
proach. In Database Technologies for Data Mining - Discovering Knowledge with In-
ductive Queries, volume 2682 of LNCS, pages 1–23. Springer-Verlag, 2004.

J.-F. Boulicaut and A. Bykowski. Frequent closures as a concise representation for binary
Data Mining. In Proc. PAKDD’00, volume 1805 of LNAI, pages 62–73. Springer-Verlag,
2000.

J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency queries by mean
of free-sets. In Proc. PKDD’00, volume 1910 of LNAI, pages 75–85. Springer-Verlag,
2000.

J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets : a condensed representation of
boolean data for the approximation of frequency queries. Data Mining and Knowledge
Discovery, 7(1):5–22, 2003.

J.-F. Boulicaut and B. Jeudy. Using constraint for itemset mining: should we prune or not?
In Proc. BDA’00, pages 221–237, 2000.

J.-F. Boulicaut and B. Jeudy. Mining free-sets under constraints. In Proc. IEEE IDEAS’01,
pages 322–329, 2001.

C. Bucila, J. E. Gehrke, D. Kifer, and W. White. Dualminer: A dual-pruning algorithm for
itemsets with constraints. Data Mining and Knowledge Discovery, 7(4):241–272, 2003.

D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent itemset algorithm
for transactional databases. In Proc. IEEE ICDE’01, pages 443–452, 2001.

A. Bykowski and C. Rigotti. DBC: a condensed representation of frequent patterns for
efficient mining. Information Systems, 28(8):949–977, 2003.

T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In Proc. PKDD’02,
volume 2431 of LNAI, pages 74–85. Springer-Verlag, 2002.

B. Crémilleux and J.-F. Boulicaut. Simplest rules characterizing classes generated by delta-
free sets. In Proc. ES 2002, pages 33–46. Springer-Verlag, 2002.

L. De Raedt. A perspective on inductive databases. SIGKDD Explorations, 4(2):69–77,
2003.

L. De Raedt, M. Jaeger, S. Lee, and H. Mannila. A theory of inductive query answering. In
Proc. IEEE ICDM’02, pages 123–130, 2002.

L. De Raedt and S. Kramer. The levelwise version space algorithm and its application to
molecular fragment finding. In Proc. IJCAI’01, pages 853–862, 2001.

M. M. Garofalakis and R. Rastogi. Scalable Data Mining with model constraints. SIGKDD
Explorations, 2(2):39–48, 2000.

M. M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern mining with regular
expression constraints. In Proc. VLDB’99, pages 223–234, 1999.

B. Goethals and M. J. Zaki, editors. Proc. of the IEEE ICDM 2003 Workshop on Frequent
Itemset Mining Implementations, volume 90 of CEUR Workshop Proceedings, 2003.

D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R. S.
Sharm. Discovering all most specific sentences. ACM Transactions on
Database Systems, 28(2):140–174, 2003.

T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Communi-
cations of the ACM, 39(11):58–64, 1996.

B. Jeudy and J.-F. Boulicaut. Optimization of association rule mining queries. Intelligent
Data Analysis, 6(4):341–357, 2002.

D. Kifer, J. E. Gehrke, C. Bucila, and W. White. How to quickly find a witness. In Proc.
ACM PODS’03, pages 272–283, 2003.

354 Jean-Francois Boulicaut and Baptiste Jeudy

S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining in HIV data. In Proc.
ACM SIGKDD’01, pages 136–143, 2001.

L. V. Lakshmanan, R. Ng, J. Han, and A. Pang. Optimization of constrained frequent set
queries with 2-variable constraints. In Proc. ACM SIGMOD’99, pages 157–168, 1999.

D.-I. Lin and Z. M. Kedem. Pincer search: An efficient algorithm for discovering the maxi-
mum frequent sets. IEEE Transactions on Knowledge and Data Engineering, 14(3):553–
566, 2002.

H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed representations.
In Proc. KDD’96, pages 189–194. AAAI Press, 1996.

H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discov-
ery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

C. Mellish. The description identification problem. Artificial Intelligence,
52(2):151–168, 1992.

R. Meo. Optimization of a language for Data Mining. In Proc. ACM SAC’03 - Data Mining
Track, pages 437–444, 2003.

R. Meo, G. Psaila, and S. Ceri. An extension to SQL for mining association rules. Data
Mining and Knowledge Discovery, 2(2):195–224, 1998.

T. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203–226, 1980.
R. Ng, L. V. Lakshmanan, J. Han, and A. Pang. Exploratory mining and

pruning optimizations of constrained associations rules. In Proc. ACM
SIGMOD’98, pages 13–24, 1998.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association rules using
closed itemset lattices. Information Systems, 24(1):25–46, 1999.

J. Pei, G. Dong, W. Zou, and J. Han. On computing condensed frequent pattern bases. In
Proc. IEEE ICDM’02, pages 378–385, 2002.

J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent itemsets with convertible con-
straints. In Proc. IEEE ICDE’01, pages 433–442, 2001.

R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. In Proc.
ACM SIGKDD’97, pages 67–73, 1997.

M. J. Zaki. Sequence mining in categorical domains: incorporating constraints. In Proc.
ACM CIKM’00, pages 422–429, 2000.

	Cover
	Data Mining and Knowledge Discovery Handbook (Second Edition)
	Copyright
	9780387098227

	Preface
	Contents
	List of Contributors
	1 Introduction to Knowledge Discovery and Data Mining
	1.1 The KDD Process
	1.2 Taxonomy of Data Mining Methods
	1.3 Data Mining within the Complete Decision Support System
	1.4 KDD and DM Research Opportunities and Challenges
	1.5 KDD & DM Trends
	1.6 The Organization of the Handbook
	1.7 New to This Edition
	1.7.1 Mining Rich Data Formats
	1.7.2 New Techniques
	1.7.3 New Application Domains
	1.7.4 New Consideration
	1.7.5 Software
	1.7.6 Major Updates

	References

	Part I Preprocessing Methods
	2 Data Cleansing: A Prelude to Knowledge Discovery
	2.1 INTRODUCTION
	2.2 DATA CLEANSING BACKGROUND
	2.3 GENERAL METHODS FOR DATA CLEANSING
	2.4 APPLYING DATA CLEANSING
	2.4.1 Statistical Outlier Detection
	2.4.2 Clustering
	2.4.3 Pattern-based detection
	2.4.4 Association Rules

	2.5 CONCLUSIONS
	References

	3 Handling Missing Attribute Values
	3.1 Introduction
	3.2 Sequential Methods
	3.2.1 Deleting Cases with Missing Attribute Values
	3.2.2 The Most Common Value of an Attribute
	3.2.3 The Most Common Value of an Attribute Restricted to a Concept
	3.2.4 Assigning All Possible Attribute Values to a Missing Attribute Value
	3.2.5 Assigning All Possible Attribute Values Restricted to a Concept
	3.2.6 Replacing Missing Attribute Values by the Attribute Mean
	3.2.7 Replacing Missing Attribute Values by the Attribute Mean Restricted to a Concept
	3.2.8 Global Closest Fit
	3.2.9 Concept Closest Fit
	3.2.10 Other Methods

	3.3 Parallel Methods
	3.3.1 Blocks of Attribute-Value Pairs and Characteristic Sets
	3.3.2 Lower and Upper Approximations
	3.3.3 Rule Induction—MLEM2
	3.3.4 Other Approaches to Missing Attribute Values

	3.4 Conclusions
	References

	4 Geometric Methods for Feature Extraction and Dimensional Reduction - A Guided Tour
	Introduction
	4.1 Projective Methods
	4.1.1 Principal Component Analysis (PCA)
	4.1.2 Probabilistic PCA (PPCA)
	4.1.3 Kernel PCA
	4.1.4 Oriented PCA and Distortion Discriminant Analysis

	4.2 Manifold Modeling
	4.2.1 The Nystr¨om method
	4.2.2 Multidimensional Scaling
	4.2.3 Isomap
	4.2.4 Locally Linear Embedding
	4.2.5 Graphical Methods

	4.3 Pulling the Threads Together
	Acknowledgments
	References

	5 Dimension Reduction and Feature Selection
	5.1 Introduction
	5.2 Feature Selection Techniques
	5.2.1 Feature Filters
	5.2.2 Feature Wrappers

	5.3 Variable Selection
	5.3.1 Mallows Cp (Mallows, 1973)
	5.3.2 AIC, BIC and F ratio
	5.3.3 Principal Component Analysis (PCA)
	5.3.4 Factor Analysis (FA)
	5.3.5 Projection Pursuit
	5.3.6 Advanced Methods for Variable Selection

	References

	6 Discretization Methods
	Introduction
	6.1 Terminology
	6.1.1 Qualitative vs. quantitative
	6.1.2 Levels of measurement scales
	6.1.3 Summary

	6.2 Taxonomy
	6.3 Typical methods
	6.3.1 Background and terminology
	6.3.2 Equal-width, equal-frequency and fixed-frequency discretization
	6.3.3 Multi-interval-entropy-minimization discretization ((MIEMD)
	6.3.4 ChiMerge, StatDisc and InfoMerge discretization
	6.3.5 Cluster-based discretization
	6.3.6 ID3 discretization
	6.3.7 Non-disjoint discretization
	6.3.8 Lazy discretization
	6.3.9 Dynamic-qualitative discretization
	6.3.10 Ordinal discretization
	6.3.11 Fuzzy discretization
	6.3.12 Iterative-improvement discretization
	6.3.13 Summary

	6.4 Discretization and the learning context
	6.4.1 Discretization for decision tree learning
	6.4.2 Discretization for naive-Bayes learning

	6.5 Summary
	References

	7 Outlier Detection
	7.1 Introduction: Motivation, Definitions and Applications
	7.2 Taxonomy of Outlier Detection Methods
	7.3 Univariate Statistical Methods
	7.3.1 Single-step vs. Sequential Procedures
	7.3.2 Inward and Outward Procedures
	7.3.3 Univariate Robust Measures
	7.3.4 Statistical Process Control (SPC)

	7.4 Multivariate Outlier Detection
	7.4.1 Statistical Methods for Multivariate Outlier Detection
	7.4.2 Multivariate Robust Measures
	7.4.3 Data-Mining Methods for Outlier Detection
	7.4.4 Preprocessing Procedures

	7.5 Comparison of Outlier Detection Methods
	References

	Part II Supervised Methods
	8 Supervised Learning
	8.1 Introduction
	8.2 Training Set
	8.3 Definition of the Classification Problem
	8.4 Induction Algorithms
	8.5 Performance Evaluation
	8.5.1 Generalization Error
	8.5.2 Theoretical Estimation of Generalization Error
	8.5.3 Empirical Estimation of Generalization Error
	8.5.4 Computational Complexity
	8.5.5 Comprehensibility

	8.6 Scalability to Large Datasets
	8.7 The “Curse of Dimensionality”
	8.8 Classification Problem Extensions
	References

	9 Classification Trees
	9.1 Decision Trees
	9.2 Algorithmic Framework for Decision Trees
	9.3 Univariate Splitting Criteria
	9.3.1 Overview
	9.3.2 Impurity-based Criteria
	9.3.3 Information Gain
	9.3.4 Gini Index
	9.3.5 Likelihood-Ratio Chi–Squared Statistics
	9.3.6 DKM Criterion
	9.3.7 Normalized Impurity Based Criteria
	9.3.8 Gain Ratio
	9.3.9 Distance Measure
	9.3.10 Binary Criteria
	9.3.11 Twoing Criterion
	9.3.12 Orthogonal (ORT) Criterion
	9.3.13 Kolmogorov–Smirnov Criterion
	9.3.14 AUC–Splitting Criteria
	9.3.15 Other Univariate Splitting Criteria
	9.3.16 Comparison of Univariate Splitting Criteria

	9.4 Multivariate Splitting Criteria
	9.5 Stopping Criteria
	9.6 Pruning Methods
	9.6.1 Overview
	9.6.2 Cost–Complexity Pruning
	9.6.3 Reduced Error Pruning
	9.6.4 Minimum Error Pruning (MEP)
	9.6.5 Pessimistic Pruning
	9.6.6 Error–based Pruning (EBP)
	9.6.7 Optimal Pruning
	9.6.8 Minimum Description Length (MDL) Pruning
	9.6.9 Other Pruning Methods
	9.6.10 Comparison of Pruning Methods

	9.7 Other Issues
	9.7.1 Weighting Instances
	9.7.2 Misclassification costs
	9.7.3 Handling Missing Values

	9.8 Decision Trees Inducers
	9.8.1 ID3
	9.8.2 C4.5
	9.8.3 CART
	9.8.4 CHAID
	9.8.5 QUEST
	9.8.6 Reference to Other Algorithms

	9.9 Advantages and Disadvantages of Decision Trees
	9.10 Decision Tree Extensions
	9.10.1 Oblivious Decision Trees
	9.10.2 Fuzzy Decision Trees
	9.10.3 Decision Trees Inducers for Large Datasets
	9.10.4 Incremental Induction

	References

	10 Bayesian Networks
	10.1 Introduction
	10.2 Representation
	10.3 Reasoning
	10.4 Learning
	10.4.1 Scoring Metrics
	10.4.2 Model Search
	10.4.3 Validation

	10.5 Bayesian Networks in Data Mining
	10.5.1 Bayesian Networks and Classification
	10.5.2 Generalized Gamma Networks
	10.5.3 Bayesian Networks and Dynamic Data

	10.6 Data Mining Applications
	10.6.1 Survey Data
	10.6.2 Customer Profiling

	10.7 Conclusions and Future Research Directions
	Acknowledgments
	References

	11 Data Mining within a Regression Framework
	11.1 Introduction
	11.2 Some Definitions
	11.3 Regression Splines
	11.4 Smoothing Splines
	11.5 LocallyWeighted Regression as a Smoother
	11.6 Smoothers for Multiple Predictors
	11.6.1 The Generalized Additive Model

	11.7 Recursive Partitioning
	11.7.1 Classification and Regression Trees and Extensions
	11.7.2 Overfitting and Ensemble Methods

	11.8 Conclusions
	Acknowledgments
	References

	12 Support Vector Machines
	12.1 Introduction
	12.2 Hyperplane Classifiers
	12.2.1 The Linear Classifier
	12.2.2 The Kernel Trick
	12.2.3 The Optimal Margin Support Vector Machine

	12.3 Non-Separable SVM Models
	12.3.1 Soft Margin Support Vector Classifiers
	12.3.2 Support Vector Regression
	12.3.3 SVM-like Models

	12.4 Implementation Issues with SVM
	12.4.1 Optimization Techniques
	12.4.2 Model Selection
	12.4.3 Multi-Class SVM

	12.5 Extensions and Application
	12.6 Conclusion
	References

	13 Rule Induction
	13.1 Introduction
	13.2 Types of Rules
	13.3 Rule Induction Algorithms
	13.3.1 LEM1 Algorithm
	13.3.2 LEM2
	13.3.3 AQ

	13.4 Classification Systems
	13.5 Validation
	13.6 Advanced Methodology
	References

	Part III Unsupervised Methods
	14 A survey of Clustering Algorithms
	14.1 Introduction
	14.2 Distance Measures
	14.2.1 Minkowski: Distance Measures for Numeric Attributes
	14.2.2 Distance Measures for Binary Attributes
	14.2.3 Distance Measures for Nominal Attributes
	14.2.4 Distance Metrics for Ordinal Attributes
	14.2.5 Distance Metrics for Mixed-Type Attributes

	14.3 Similarity Functions
	14.3.1 Cosine Measure
	14.3.2 Pearson Correlation Measure
	14.3.3 Extended Jaccard Measure
	14.3.4 Dice Coefficient Measure

	14.4 Evaluation Criteria Measures
	14.4.1 Internal Quality Criteria
	14.4.2 External Quality Criteria

	14.5 Clustering Methods
	14.5.1 Hierarchical Methods
	14.5.2 Partitioning Methods
	14.5.3 Density-based Methods
	14.5.4 Model-based Clustering Methods
	14.5.5 Grid-based Methods
	14.5.6 Soft-computing Methods
	14.5.7 Which Technique To Use?

	14.6 Clustering Large Data Sets
	14.6.1 Decomposition Approach
	14.6.2 Incremental Clustering
	14.6.3 Parallel Implementation

	14.7 Determining the Number of Clusters
	14.7.1 Methods Based on Intra-Cluster Scatter
	14.7.2 Methods Based on both the Inter- and Intra-Cluster Scatter
	14.7.3 Criteria Based on Probabilistic

	References

	15 Association Rules
	15.1 Introduction
	15.1.1 Formal Problem Definition
	15.2 Association Rule Mining
	15.2.1 Association Mining Phase
	15.2.2 Rule Generation Phase

	15.3 Application to Other Types of Data
	15.4 Extensions of the Basic Framework
	15.4.1 Some other Rule Evaluation Measures
	15.4.2 Interactive or Knowledge-Based Filtering
	15.4.3 Compressed Representations
	15.4.4 Additional Constraints for Dense Databases
	15.4.5 Rules without Minimum Support

	15.5 Conclusions
	References

	16 Frequent Set Mining
	Introduction
	16.1 Problem Description
	16.2 Apriori
	16.3 Eclat
	16.4 Optimizations
	16.4.1 Item reordering
	16.4.2 Partition
	16.4.3 Sampling
	16.4.4 FP-tree

	16.5 Concise representations
	16.5.1 Maximal Frequent Sets
	16.5.2 Closed Frequent Sets
	16.5.3 Non Derivable Frequent Sets

	16.6 Theoretical Aspects
	16.7 Further Reading
	References

	17 Constraint-based Data Mining
	17.1 Motivations
	17.2 Background and Notations
	17.3 Solving Anti-Monotonic Constraints
	17.4 Introducing non Anti-Monotonic Constraints
	17.4.1 The Seminal Work
	17.4.2 Generic Algorithms
	17.4.3 Ad-hoc Strategies
	17.4.4 Other Directions of Research

	17.5 Conclusion
	References

	18 Link Analysis
	18.1 Introduction
	18.2 Social Network Analysis
	18.3 Search Engines
	18.4 Viral Marketing
	18.5 Law Enforcement & Fraud Detection
	18.6 Combining with Traditional Methods
	18.7 Summary
	References

	Part IV Soft Computing Methods
	19 A Review of Evolutionary Algorithms for Data Mining
	19.1 Introduction
	19.2 An Overview of Evolutionary Algorithms
	19.3 Evolutionary Algorithms for Discovering Classification Rules
	19.3.1 Individual Representation for Classification-Rule Discovery
	19.3.2 Searching for a Diverse Set of Rules
	19.3.3 Fitness Evaluation

	19.4 Evolutionary Algorithms for Clustering
	19.4.1 Individual Representation for Clustering
	19.4.2 Fitness Evaluation for Clustering

	19.5 Evolutionary Algorithms for Data Preprocessing
	19.5.1 Genetic Algorithms for Attribute Selection
	19.5.2 Genetic Programming for Attribute Construction

	19.6 Multi-Objective Optimization with Evolutionary Algorithms
	19.7 Conclusions
	References

	20 A Review of Reinforcement Learning Methods
	20.1 Introduction
	20.2 The Reinforcement-Learning Model
	20.3 Reinforcement-Learning Algorithms
	20.3.1 Dynamic-Programming
	20.3.2 Generalization of Dynamic-Programming to Reinforcement-Learning

	20.4 Extensions to Basic Model and Algorithms
	20.4.1 Multi-Agent RL
	20.4.2 Tackling Large Sets of States and Actions

	20.5 Applications of Reinforcement-Learning
	20.6 Reinforcement-Learning and Data-Mining
	20.7 An Instructive Example
	References

	21 Neural Networks For Data Mining
	21.1 Introduction
	21.2 A Brief History
	21.3 Neural Network Models
	21.3.1 Feedforward Neural Networks
	21.3.2 Hopfield Neural Networks
	21.3.3 Kohonen’s Self-organizing Maps

	21.4 Data Mining Applications
	21.5 Conclusions
	References

	22 Granular Computing and Rough Sets - An Incremental Development
	22.1 Introduction
	22.2 Naive Model for Problem Solving
	22.2.1 Information Granulations/Partitions
	22.2.2 Knowledge Level Processing and Computing with Words
	22.2.3 Information Integration and Approximation Theory

	22.3 A Geometric Models of Information Granulations
	22.4 Information Granulations/Partitions
	22.4.1 Equivalence Relations(Partitions)
	22.4.2 Binary Relation (Granulation) - Topological Partitions
	22.4.3 Fuzzy Binary Granulations (Fuzzy Binary Relations)

	22.5 Non-partition Application - Chinese Wall Security Policy Model
	22.5.1 Simple Chinese Wall Security Policy

	22.6 Knowledge Representations
	22.6.1 Relational Tables and Partitions
	22.6.2 Table Representations of Binary Relations
	22.6.3 New representations of topological relations

	22.7 Topological Concept Hierarchy Lattices/Trees
	22.7.1 Granular Lattice
	22.7.2 Granulated/Quotient Sets
	22.7.3 Tree of centers
	22.7.4 Topological tree
	22.7.5 Table Representation of Fuzzy Binary Relations

	22.8 Knowledge Processing
	22.8.1 The Notion of Knowledge
	22.8.2 Strong,Weak and Knowledge Dependence
	22.8.3 Knowledge Views of Binary Granulations

	22.9 Information Integration
	22.9.1 Extensions
	22.9.2 Approximations in Rough Set Theory (RST)
	22.9.3 Binary Neighborhood System Spaces

	22.10 Conclusions
	References

	23 Pattern Clustering Using a Swarm Intelligence Approach
	23.1 Introduction
	23.2 An Introduction to Swarm Intelligence
	23.2.1 The Ant Colony Systems
	23.3 Data Clustering – An Overview
	23.3.1 Problem Definition
	23.3.2 The Classical Clustering Algorithms
	23.3.3 Relevance of SI Algorithms in Clustering
	23.4 Clustering with the SI Algorithms
	23.4.1 The Ant Colony Based Clustering Algorithms
	23.4.2 The PSO-based Clustering Algorithms

	23.5 Automatic Kernel-based Clustering with PSO
	23.5.1 The Kernel Based Similarity Measure
	23.5.2 Reformulation of CS Measure
	23.5.3 The Multi-Elitist PSO (MEPSO) Algorithm
	23.5.4 Particle Representation
	23.5.5 The Fitness Function
	23.5.6 Avoiding Erroneous particles with Empty Clusters or Unreasonable Fitness Evaluation
	23.5.7 Putting It All Together
	23.5.8 Experimental Results

	23.6 Conclusion and Future Directions
	References

	24 Using Fuzzy Logic in Data Mining
	24.1 Introduction
	24.2 Basic Concepts of Fuzzy Set Theory
	24.2.1 Membership function
	24.2.2 Fuzzy Set Operations

	24.3 Fuzzy Supervised Learning
	24.3.1 Growing Fuzzy Decision Tree
	24.3.2 Soft Regression
	24.3.3 Neuro-fuzzy

	24.4 Fuzzy Clustering
	24.5 Fuzzy Association Rules
	24.6 Conclusion
	References

	Part V Supporting Methods
	25 Statistical Methods for Data Mining
	25.1 Introduction
	25.2 Statistical Issues in DM
	25.2.1 Size of the Data and Statistical Theory
	25.2.2 The Curse of Dimensionality and Approaches to Address It
	25.2.3 Assessing Uncertainty
	25.2.4 Automated Analysis
	25.2.5 Algorithms for Data Analysis in Statistics
	25.2.6 Visualization
	25.2.7 Scalability
	25.2.8 Sampling

	25.3 Modeling Relationships using Regression Models
	25.3.1 Linear Regression Analysis
	25.3.2 Generalized Linear Models
	25.3.3 Logistic Regression
	25.3.4 Survival Analysis

	25.4 False Discovery Rate (FDR) Control in Hypotheses Testing
	25.5 Model (Variables or Features) Selection using FDR Penalization in GLM
	25.6 Concluding Remarks
	References

	26 Logics for Data Mining
	Introduction
	26.1 Generalized quantifiers
	26.2 Some important classes of quantifiers
	26.2.1 One-dimensional
	26.2.2 Two-dimensional

	26.3 Some comments and conclusion
	Acknowledgments
	References

	27 Wavelet Methods in Data Mining
	27.1 Introduction
	27.2 A Framework for Data Mining Process
	27.3 Wavelet Background
	27.3.1 Basics of Wavelet in L2(R)
	27.3.2 Dilation Equation
	27.3.3 Multiresolution Analysis (MRA) and Fast DWT Algorithm
	27.3.4 Illustrations of Harr Wavelet Transform
	27.3.5 Properties of Wavelets

	27.4 Data Management
	27.5 Preprocessing
	27.5.1 Denoising
	27.5.2 Data Transformation
	27.5.3 Dimensionality Reduction

	27.6 Core Mining Process
	27.6.1 Clustering
	27.6.2 Classification
	27.6.3 Regression
	27.6.4 Distributed Data Mining
	27.6.5 Similarity Search/Indexing
	27.6.6 Approximate Query Processing
	27.6.7 Traffic Modeling

	27.7 Conclusion
	References

	28 Fractal Mining - Self Similarity-based Clustering and its Applications
	28.1 Introduction
	28.2 Fractal Dimension
	28.3 Clustering Using the Fractal Dimension
	28.3.1 FC Initialization Step
	28.3.2 Incremental Step
	28.3.3 Reshaping Clusters in Mid-Flight
	28.3.4 Complexity of the Algorithm
	28.3.5 Confidence Bounds
	28.3.6 Memory Management
	28.3.7 Experimental Results

	28.4 Projected Fractal Clustering
	28.5 Tracking Clusters
	28.5.1 Experiment on a Real Dataset

	28.6 Conclusions
	References

	29 Visual Analysis of Sequences Using Fractal Geometry
	29.1 Introduction
	29.2 Iterated Function System (IFS)
	29.3 Algorithmic Framework
	29.3.1 Overview
	29.3.2 Sequence Representation
	29.3.3 Sequence Transformation
	29.3.4 Sequence Pattern Detection
	29.3.5 Sequence Pattern Detection Algorithm Description:
	29.3.6 Classifiers Selection

	29.4 Fault Sequence Detection Application
	29.5 Conclusions and Future Research
	References

	30 Interestingness Measures - On Determining What Is Interesting
	Introduction
	30.1 Definitions and Notations
	30.2 Subjective Interestingness
	30.2.1 The Expert-Driven Grammatical Approach
	30.2.2 The Rule-By-Rule Classification Approach
	30.2.3 Interestingness Via What Is Not Interesting Approach

	30.3 Objective Interestingness
	30.3.1 Ranking Patterns
	30.3.2 Pruning and Application of Constraints
	30.3.3 Summarization of Patterns

	30.4 Impartial Interestingness
	30.5 Concluding Remarks
	References

	31 Quality Assessment Approaches in Data Mining
	Introduction
	31.1 Data Pre-processing and Quality Assessment
	31.2 Evaluation of Classification Methods
	31.2.1 Classification Model Accuracy
	31.2.2 Evaluating the Accuracy of Classification Algorithms
	31.2.3 Interestingness Measures of Classification Rules

	31.3 Association Rules
	31.3.1 Association Rules Interestingness Measures
	31.3.2 Other approaches for evaluating association rules

	31.4 Cluster Validity
	31.4.1 Fundamental Concepts of Cluster Validity
	31.4.2 External Criteria
	31.4.3 Internal Criteria
	31.4.4 Relative Criteria
	31.4.5 Fuzzy Clustering
	31.4.6 Other Approaches for Cluster Validity

	References

	32 Data Mining Model Comparison
	32.1 Data Mining and Statistics
	32.2 Data Mining Model Comparison
	32.3 Application to Credit Risk Management
	32.4 Conclusions
	References

	33 Data Mining Query Languages
	33.1 The Need for Data Mining Query Languages
	33.2 Supporting Association Rule Mining Processes
	33.3 A Few Proposals for Association Rule Mining
	33.3.1 MSQL
	33.3.2 MINE RULE
	33.3.3 DMQL
	33.3.4 OLE DB for DM
	33.3.5 A Critical Evaluation

	33.4 Conclusion
	References

	Part VI Advanced Methods
	34 Mining Multi-label Data
	34.1 Introduction
	34.2 Learning
	34.2.1 Problem Transformation
	34.2.2 Algorithm Adaptation

	34.3 Dimensionality Reduction
	34.3.1 Feature Selection
	34.3.2 Feature Extraction

	34.4 Exploiting Label Structure
	34.5 Scaling Up
	34.6 Statistics and Datasets
	34.7 Evaluation Measures
	34.7.1 Bipartitions
	34.7.2 Ranking
	34.7.3 Hierarchical

	34.8 Related Tasks
	34.9 Multi-Label Data Mining Software
	References

	35 Privacy in Data Mining
	35.1 Introduction
	35.2 On the Classification of Protection Procedures
	35.2.1 Computation-Driven Protection Procedures: the Cryptographic Approach
	35.2.2 Data-driven Protection Procedures

	35.3 Disclosure Risk Measures
	35.3.1 An Scenario for Identity Disclosure
	35.3.2 Measures for Identity Disclosure

	35.4 Data Protection Procedures
	35.4.1 Perturbative Methods
	35.4.2 Non-perturbative Methods
	35.4.3 Synthetic Data Generators
	35.4.4 k-Anonymity

	35.5 Information Loss Measures
	35.5.1 Generic Information Loss Measures
	35.5.2 Specific Information Loss Measures

	35.6 Trade-off and Visualization
	35.6.1 The Score
	35.6.2 R-U Maps

	35.7 Conclusions
	Acknowledgements
	References

	36 Meta-Learning - Concepts and Techniques
	36.1 Introduction
	36.2 A Meta-Learning Architecture
	36.2.1 Knowledge-Acquisition Mode
	36.2.2 Advisory Mode

	36.3 Techniques in Meta-Learning
	36.3.1 Dataset Characterization
	36.3.2 Mapping Datasets to Predictive Models
	36.3.3 Learning from Base-Learners
	36.3.4 Inductive Transfer and Learning to Learn
	36.3.5 Dynamic-Bias Selection

	36.4 Tools and Applications
	36.4.1 METAL DM Assistant

	36.5 Future Directions and Conclusions
	References

	37 Bias vs Variance Decomposition For Regression and Classification
	37.1 Introduction
	37.2 Bias/Variance Decompositions
	37.2.1 Bias/Variance Decomposition of the Squared Loss
	37.2.2 Bias/variance decompositions of the 0-1 loss

	37.3 Estimation of Bias and Variance
	37.4 Experiments and Applications
	37.4.1 Bias/variance tradeoff
	37.4.2 Comparison of some learning algorithms
	37.4.3 Ensemble methods: bagging

	37.5 Discussion
	References

	38 Mining with Rare Cases
	38.1 Introduction
	38.2 Why Rare Cases are Problematic
	38.3 Techniques for Handling Rare Cases
	38.3.1 Obtain Additional Training Data
	38.3.2 Use a More Appropriate Inductive Bias
	38.3.3 Using More Appropriate Metrics
	38.3.4 Employ Non-Greedy Search Techniques
	38.3.5 Utilize Knowledge/Human Interaction
	38.3.6 Employ Boosting
	38.3.7 Place Rare Cases Into Separate Classes

	38.4 Conclusion
	References

	39 Data Stream Mining
	39.1 Introduction
	39.2 Clustering Techniques
	39.3 Classification Techniques
	39.4 Frequent Pattern Mining Techniques
	39.5 Time Series Analysis
	39.6 Systems and Applications
	39.7 Taxonomy of Data Stream Mining Approaches
	39.7.1 Data-based Techniques
	39.7.2 Task-based Techniques

	39.8 RelatedWork
	39.9 Future Directions
	39.10 Summary
	References

	40 Mining Concept-Drifting Data Streams
	40.1 Introduction
	40.2 The Data Expiration Problem
	40.3 Classifier Ensemble for Drifting Concepts
	40.3.1 Accuracy-Weighted Ensembles
	40.4 Experiments
	40.4.1 Algorithms used in Comparison
	40.4.2 Streaming Data
	40.4.3 Experimental Results
	40.5 Discussion and RelatedWork
	References

	41 Mining High-Dimensional Data
	41.1 Introduction
	41.2 Chanllenges
	41.3 Frequent Pa
	41.4 Clustering
	41.5 Classification
	References

	42 Text Mining and Information Extraction
	42.1 Introduction
	42.2 Text Mining vs. Text Retrieval
	42.3 Task-Oriented Approaches vs. Formal Frameworks
	42.4 Task-Oriented Approaches
	42.4.1 Problem Dependant Task - Information Extraction in Text Mining

	42.5 Formal Frameworks And Algorithm-Based Techniques
	42.5.1 Text Categorization
	42.5.2 Probabilistic models for Information Extraction

	42.6 Hybrid Approaches - TEG
	42.7 Text Mining – Visualization and Analytics
	42.7.1 Clear Research
	42.7.2 Other Visualization and Analytical Approaches

	References

	43 Spatial Data Mining
	43.1 Introduction
	43.2 Spatial Data
	43.3 Spatial Outliers
	43.4 Spatial Co-location Rules
	43.5 Predictive Models
	43.6 Spatial Clusters
	43.7 Summary
	Acknowledgments
	References

	44 Spatio-temporal clustering
	44.1 Introduction
	44.2 Spatio-temporal clustering
	44.2.1 A classification of spatio-temporal data types
	44.2.2 Clustering Methods for Trajectory D

	44.3 Applications
	44.3.1 Movement data
	44.3.2 Cellular networks
	44.3.3 Environmental data

	44.4 Open Issues
	44.5 Conclusions
	References

	45 Data Mining for Imbalanced Datasets: An Overview
	45.1 Introduction
	45.2 Performance Measure
	45.2.1 ROC Curves
	45.2.2 Precision and Recall
	45.2.3 Cost-sensitive Measures

	45.3 Sampling Strategies
	45.3.1 Synthetic Minority Oversampling TEchnique: SMOTE

	45.4 Ensemble-based Methods
	45.4.1 SMOTEBoost

	45.5 Discussion
	Acknowledgements
	References

	46 Relational Data Mining
	46.1 In a Nutshell
	46.1.1 Relational Data
	46.1.2 Relational Patterns
	46.1.3 Relational to propositional
	46.1.4 Algorithms for relational Data Mining
	46.1.5 Applications of relational Data Mining
	46.1.6 What’s in this chapter

	46.2 Inductive logic programming
	46.2.1 Logic programs and databases
	46.2.2 The ILP task of relational rule induction
	46.2.3 Structuring the space of clauses
	46.2.4 Searching the space of clauses
	46.2.5 Transforming ILP problems to propositional form
	46.2.6 Upgrading propositional approaches

	46.3 Relational Association Rules
	46.3.1 Frequent Datalog queries and query extensions
	46.3.2 Discovering frequent queries: WARMR

	46.4 Relational Decision Trees
	46.4.1 Relational Classification, Regression, and Model Trees
	46.4.2 Induction of Relational Decision Trees

	46.5 RDM Literature and Internet Resources
	References

	47 Web Mining
	47.1 Introduction
	47.2 Graph Properties of theWeb
	47.3 Web Search
	47.4 Text Classification
	47.5 Hypertext Classification
	47.6 Information Extraction and Wrapper Induction
	47.7 The SemanticWeb
	47.8 Web Usage Mining
	47.9 Collaborative Filtering
	47.10 Conclusion
	References

	48 A Review of Web Document Clustering Approaches
	48.1 Introduction
	48.2 Motivation for Document Clustering
	48.3 Web Document Clustering Approaches
	48.3.1 Text-based Clustering
	48.3.2 Link-based Clustering
	48.3.3 Hybrid Approaches

	48.4 Comparison
	48.5 Conclusions and Open Issues
	References

	49 Causal Discovery
	49.1 Introduction
	49.2 Background Knowledge
	49.3 Theoretical Foundation
	49.4 Learning a DAG of CN by FDs
	49.4.1 Learning an Ordering of Variables from FDs
	49.4.2 Learning the Markov Boundaries of Undecided Variables

	49.5 Experimental Results
	49.6 Conclusion
	References

	50 Ensemble Methods in Supervised Learning
	50.1 Introduction
	50.2 Sequential Methodology
	50.2.1 Model-guided Instance Selection
	50.2.2 Incremental Batch Learning

	50.3 Concurrent Methodology
	50.4 Combining Classifiers
	50.4.1 Simple Combining Methods
	50.4.2 Meta-combining Methods

	50.5 Ensemble Diversity
	50.5.1 Manipulating the Inducer
	50.5.2 Manipulating the Training Set
	50.5.3 Measuring the Diversity

	50.6 Ensemble Size
	50.6.1 Selecting the Ensemble Size
	50.6.2 Pruning Ensembles

	50.7 Cluster Ensemble
	References

	51 Data Mining using Decomposition Methods
	51.1 Introduction
	51.2 Decomposition Advantages
	51.2.1 Increasing Classification Performance (Classification Accuracy)
	51.2.2 Scalability to Large Databases
	51.2.3 Increasing Comprehensibility
	51.2.4 Modularity
	51.2.5 Suitability for Parallel Computation
	51.2.6 Flexibility in Techniques Selection

	51.3 The Elementary Decomposition Methodology
	51.4 The Decomposer’s Characteristics
	51.4.1 Overview
	51.4.2 The Structure Acquiring Method
	51.4.3 The Mutually Exclusive Property
	51.4.4 The Inducer Usage
	51.4.5 Exhaustiveness
	51.4.6 Combiner Usage
	51.4.7 Sequentially or Concurrently

	51.5 The Relation to Other Methodologies
	51.6 Summary
	References

	52 Information Fusion - Methods and Aggregation Operators
	52.1 Introduction
	52.2 Preprocessing Data
	52.2.1 Re-identification Algorithms
	52.2.2 Fusion to Improve the Quality of Data

	52.3 Building Data Models
	52.3.1 Data Models Using Aggregation Operators
	52.3.2 Aggregation Operators to Fuse Data Models

	52.4 Information Extraction
	52.4.1 Summarization
	52.4.2 Knowledge from Aggregation Operators

	52.5 Conclusions
	References

	53 Parallel And Grid-Based Data Mining – Algorithms, Models and Systems for High-Performance KDD
	53.1 Introduction
	53.2 Parallel Data Mining
	53.2.1 Parallelism in Data Mining Techniques
	53.2.2 Architectural and Research Issues

	53.3 Grid-Based Data Mining
	53.3.1 Grid-Based Data Mining Systems

	53.4 The Knowledge Grid
	53.4.1 Knowledge Grid Components and Tools

	53.5 Summary
	References

	54 Collaborative Data Mining
	54.1 Introduction
	54.2 Remote Collaboration
	54.2.1 E-Collaboration:Motivations and Forms
	54.2.2 E-Collaboration Space
	54.2.3 Collaborative Data Mining in E-Collaboration Space

	54.3 The Data Mining Process
	54.4 Collaborative Data Mining Guidelines
	54.4.1 Collaboration Principles
	54.4.2 Data Mining model evaluation and combination

	54.5 Discussion
	54.6 Conclusions
	References

	55 Organizational Data Mining
	55.1 Introduction
	55.2 Organizational Data Mining
	55.3 ODM versus Data Mining
	55.3.1 Organizational Theory and ODM

	55.4 Ongoing ODM Research
	55.5 ODM Advantages
	55.6 ODM Evolution
	55.6.1 Past
	55.6.2 Present
	55.6.3 Future
	55.7 Summary
	References

	56 Mining Time Series Data
	56.1 Introduction
	56.2 Time Series Similarity Measures
	56.2.1 Euclidean Distances and Lp Norms
	56.2.2 Dynamic TimeWarping
	56.2.3 Longest Common Subsequence Similarity
	56.2.4 Probabilistic methods
	56.2.5 General Transformations

	56.3 Time Series Data Mining
	56.3.1 Classification
	56.3.2 Indexing (Query by Content)
	56.3.3 Clustering
	56.3.4 Prediction (Forecasting)
	56.3.5 Summarization
	56.3.6 Anomaly Detection
	56.3.7 Segmentation

	56.4 Time Series Representations
	56.4.1 Discrete Fourier Transform
	56.4.2 DiscreteWavelet Transform
	56.4.3 Singular Value Decomposition
	56.4.4 Piecewise Linear Approximation
	56.4.5 Piecewise Aggregate Approximation
	56.4.6 Adaptive Piecewise Constant Approximation
	56.4.7 Symbolic Aggregate Approximation (SAX)

	56.5 Summary
	References

	Part VII Applications
	57 Multimedia Data Mining
	57.1 Introduction
	57.2 A Typical Architecture of a Multimedia Data Mining System
	57.3 An Example— Concept Discovery in Imagery Data
	57.3.1 Background and Related Work
	57.3.2 Region Based Image Representation
	57.3.3 Probabilistic Hidden Semantic Model
	57.3.4 Posterior Probability Based Image Mining and Retrieval
	57.3.5 Approach Analysis
	57.3.6 Experimental Results
	57.4 Summary
	Ackonwledgments
	References

	58 Data Mining in Medicine
	58.1 Introduction
	58.2 Symbolic Classification Methods
	58.2.1 Rule Induction
	58.2.2 Learning of Classification and Regression Trees
	58.2.3 Inductive Logic Programming
	58.2.4 Discovery of Concept Hierarchies and Constructive Induction
	58.2.5 Case-Based Reasoning

	58.3 Subsymbolic Classification Methods
	58.3.1 Instance-Based Learning
	58.3.2 Neural Networks
	58.3.3 Bayesian Classifier

	58.4 Other Methods Supporting Medical Knowledge Discovery
	58.5 Conclusions
	Acknowledgments
	References

	59 Learning Information Patterns in Biological Databases - Stochastic Data Mining
	59.1 Background
	59.2 Learning Stochastic Pattern Models
	59.2.1 Assimilating the Pattern Sets
	59.2.2 Clustering Biological Patterns
	59.2.3 Learning Cluster Models

	59.3 Searching for Meta-Patterns
	59.3.1 Level I Search: Locating High Pattern Density Region
	59.3.2 Level II Search: Meta-Pattern Hypotheses

	59.4 Conclusions
	References

	60 Data Mining for Financial Applications
	60.1 Introduction: Financial Tasks
	60.2 Specifics of Data Mining in Finance
	60.2.1 Time series analysis
	60.2.2 Data selection and forecast horizon
	60.2.3 Measures of success
	60.2.4 QUALITY OF PATTERNS AND HYPOTHESIS EVALUATION

	60.3 Aspects of Data Mining Methodology in Finance
	60.3.1 Attribute-based and relational methodologies
	60.3.2 Attribute-based relational methodologies
	60.3.3 Problem ID and method profile
	60.3.4 Relational Data Mining in finance
	60.5 Conclusion
	References

	60.4 Data Mining Models and Practice in Finance
	60.4.1 Portfolio management and neural networks
	60.4.2 Interpretable trading rules and relational Data Mining
	60.4.3 Discovering money laundering and attribute-based relational Data Mining

	60.5 Conclusion
	References

	61 Data Mining for Intrusion Detection
	61.1 Introduction
	61.2 Data Mining Basics
	61.3 Data Mining Meets Intrusion Detection
	61.3.1 ADAM
	61.3.2 MADAM ID
	61.3.3 MINDS
	61.3.4 Clustering of Unlabeled ID
	61.3.5 Alert Correlation

	61.4 Conclusions and Future Research Directions
	References

	62 Data Mining for CRM
	62.1 What is CRM?
	62.2 Data Mining and Campaign Management
	62.3 An Example: Customer Acquisition
	62.3.1 How Data Mining and Statistical Modeling Changes Things
	62.3.2 Defining Some Key Acquisition Concepts
	62.3.3 It All Begins with the Data
	62.3.4 Test Campaigns
	62.3.5 Building Data Mining Models Using Response Behaviors

	63 Data Mining for Target Marketing
	63.1 Introduction
	63.2 Modeling Process
	63.3 Evaluation Metrics
	63.3.1 Gains Charts
	63.3.2 Prediction Accuracy
	63.3.3 Profitability/ROI
	63.3.4 Gains Table

	63.4 Segmentation Methods
	63.4.1 Judgmentally-based RFM/FRAT methods
	63.4.2 Clustering
	63.4.3 Classification Methods
	63.4.4 Decision Making

	63.5 Predictive Modeling
	63.5.1 Linear Regression
	63.5.2 Logistic Regression
	63.5.3 Neural Networks
	63.5.4 Decision Making

	63.6 In-Market Timing
	63.6.1 Logistic Regression
	63.6.2 Survival Analysis

	63.7 Pitfalls of Targeting
	63.7.1 Modeling Pitfalls
	63.7.2 Data Pitfalls
	63.7.3 Implementation Pitfalls

	63.8 Conclusions
	63.8.1 Multiple Offers
	63.8.2 Multiple Products/Services

	References

	64 NHECD - Nano Health and Environmental Commented Database
	64.1 Introduction
	64.2 The NHECD Model
	64.3 NHECD implementation
	64.3.1 Taxonomies
	64.3.2 Crawling
	64.3.3 Information extraction
	64.3.4 NHECD products
	64.3.5 Scientific paper rating
	64.3.6 NHECD Frontend

	64.4 Conclusions
	64.5 Further research
	References

	Part VIII Software
	65 Commercial Data Mining Software
	65.1 Introduction
	65.2 Literature Review
	65.3 Data Mining Software
	65.3.1 BioDiscovery GeneSight
	65.3.2 Megaputer PolyAnalyst 5.0
	65.3.3 SAS Enterprise Miner
	65.3.4 PASW Modeler/ Formerly SPSS Clementine
	65.3.5 IBM DB2 Intelligent Miner

	65.4 Supercomputing Data Mining Software
	65.4.1 Data Visualization using Avizo
	65.4.2 Data Visualization using JMP Genomics

	65.5 Text Mining Software
	65.5.1 SAS Text Miner
	65.5.2 Megaputer PolyAnalyst

	65.6 Web Mining Software
	65.6.1 Megaputer PolyAnalyst
	65.6.2 SPSS Clementine

	65.7 Conclusion and Future Research
	References

	66 Weka-A Machine LearningWorkbench for Data Mining
	66.1 Introduction
	Acknowledgments
	References

	Index

