
Query Languages Supporting Descriptive Rule
Mining: A Comparative Study

Marco Botta1, Jean-François Boulicaut2, Cyrille Masson2, and Rosa Meo1

1 Universitá di Torino, Dipartimento di Informatica,
corso Svizzera 185, I-10149, Torino, Italy

2 Institut National des Sciences Appliquées de Lyon, LISI/LIRIS,
Bat. Blaise Pascal, F-69621 Villeurbanne cedex, France

Abstract. Recently, inductive databases (IDBs) have been proposed to
tackle the problem of knowledge discovery from huge databases. With
an IDB, the user/analyst performs a set of very different operations on
data using a query language, powerful enough to support all the required
manipulations, such as data preprocessing, pattern discovery and pattern
post-processing. We provide a comparison between three query languages
(MSQL, DMQL and MINE RULE) that have been proposed for descriptive
rule mining and discuss their common features and differences. These
query languages look like extensions of SQL. We present them using
a set of examples, taken from the real practice of rule mining. In the
paper we discuss also OLE DB for Data Mining and Predictive Model
Markup Language, two recent proposals that like the first three query
languages respectively provide native support to data mining primitives
and provide a description in a standard language of statistical and data
mining models.

1 Introduction

Knowledge Discovery in Databases (KDD) is a complex process which involves
many steps that must be done sequentially. When considering the whole KDD
process, the proposed approaches and querying tools are still unsatisfactory. The
relation among the various proposals is also sometimes unclear because, at the
moment, a general understanding of the fundamental primitives and principles
that are necessary to support the search of knowledge in databases is still lacking.

In the cInQ project1, we want to develop a new generation of databases,
called “inductive databases”, as suggested in [5]. This kind of databases inte-
grates raw data with knowledge extracted from raw data, materialized under the
form of patterns, into a common framework that supports the KDD process. In
this way, the KDD process consists essentially in a querying process, enabled by
a powerful query language that can deal with both raw data and patterns. A few
query languages can be considered as candidates for inductive databases. Most
proposals emphasize one of the different phases of the KDD process. This paper

1 Project (IST 2000-26469) partially funded by the EC IST Programme - FET.

R. Meo et al. (Eds.): Database Support forData MiningApplications, LNAI 2682, pp. 24–51, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Query Languages Supporting Descriptive Rule Mining 25

is a critical evaluation of three proposals in the light of the IDBs’ requirements:
MSQL [6,7], DMQL [10,11] and MINE RULE [12,13]. In the paper we discuss also OLE
DB for Data Mining (OLE DB DM) by Microsoft and Predictive Model Markup
Language (PMML) by Data Mining Group [18]. OLE DB DM is an Application Pro-
gramming Interface whose aim is to ease the task of developing data mining
applications over databases. It is related to the other query languages because
like them it provides native support for data mining primitives. PMML, instead, is
a standard markup language, based on XML, and describes statistical and data
mining models.

The paper is organized as follows. Section 2 summarizes the desired proper-
ties of a language for mining inside an inductive database. Section 3 introduces
the main features of the analyzed languages, whereas in Section 4 some real ex-
amples of queries are discussed, so that the comparison between the languages
is straightforward. Finally Section 5 draws some conclusions.

2 Desired Properties of a Data Mining Query Language

A query language for IDBs, is an extension of a database query language that
includes primitives for supporting the steps of a KDD process, that are:

– The selection of data to be mined. The language must offer the possibility
to select (e.g., via standard queries but also by means of sampling), to ma-
nipulate and to query data and views in the database. It must also provide
support for multi-dimensional data manipulation.
DMQL, MINE RULE and OLE DB DM allow the selection of data. Neither
of them has primitives for sampling. All of them allow multi-
dimensional data manipulation (because this is inherent to SQL).

– The specification of the type of patterns to be mined. Clearly, real-life KDD
processes need for different kinds of patterns like various types of descriptive
rules, clusters or predictive models.
DMQL considers different patterns beyond association rules.

– The specification of the needed background knowledge (e.g., the definition
of a concept hierarchy).
Even though both MINE RULE and MSQL can treat hierarchies if the
relationship ‘is-a’ is represented in a companion relation, DMQL
allows its explicit definition and use during the pattern extraction.

– The definition of constraints that the extracted patterns must satisfy. This
implies that the language allows the user to define constraints that specify
the interesting patterns (e.g., using measures like frequency, generality, cov-
erage, similarity, etc).
DMQL, MSQL and MINE RULE allow the specification of various kinds
of constraints based on rule elements, rule cardinality and aggre-
gate values. They allow the specification of primitive constraints
based on support and confidence measures. DMQL allows some other
measures like novelty.

26 M. Botta et al.

– The satisfaction of the closure property (by storing the results in the database).
All of them satisfy this property.

– The post-processing of results. The language must allow to browse the pat-
terns, apply selection templates, cross over patterns and data, e.g., by se-
lecting the data in which some patterns hold, or aggregating results.
MSQL is richer than the other languages in its offer of few post-
processing primitives (it has a dedicated operator, SelectRules).
DMQL allows some visualization options. However, all the languages
are quite poor for rule post-processing.

3 Query Languages for Rule Mining

3.1 MSQL

MSQL [7,14] has been designed at the Rutgers University, New Jersey, USA.
Rules in MSQL are based on descriptors, each descriptor being an expression of
the form (Ai = aij), where Ai is an attribute and aij is a value or a range of
values in the domain of Ai. A conjunctset is the conjunction of an arbitrary
number of descriptors, provided that there is no pair of descriptors built on the
same attribute. In practice, MSQL extracts propositional rules like A ⇒ B, where
A is a conjunctset and B is a descriptor (it follows that only a single proposition
is allowed in the consequent). We say that a tuple t of a relation R satisfies a
descriptor (Ai = aij) if the value of Ai in t is equal to aij . Moreover, t satisfies
a conjunctset C if it satisfies all the descriptors of C. Finally, t satisfies a rule
A ⇒ B if it satisfies all the descriptors in A and B, but it violates the rule
A ⇒ B if it does not satisfy A or B. Notice that support of a rule is defined
as the number of tuples satisfying A in the relation on which the mining has
been performed, and the confidence is the ratio between the number of tuples
satisfying both A and B and the support of the rule. An example of a rule
extracted from Emp(emp id, job, sex, car) relation containing employee data is
(job = doctor) ∧ (sex = male) ⇒ (car = BMW).

The main features of MSQL, as stated by the authors, are:

– Ability to nest SQL expressions such as sorting and grouping in a MSQL
statement and allowing nested SQL queries by means of the WHERE clause.

– Satisfaction of the closure property and availability of operators to further
manipulate results of previous MSQL queries.

– Cross-over between data and rules with operations allowing to identify sub-
sets of data satisfying or violating a given set of rules.

– Distinction between rule generation and rule querying. This allows splitting
rule generation, that is computationally expensive from rule post-processing,
that must be as interactive as possible.

MSQL comprises four basic statements (see Section 4 for examples):

– Create Encoding that encodes continuous valued attributes into discrete
values. Notice that during mining, the discretization is done “on the fly”, so
that it is not necessary to materialize a separate copy of the table.

Query Languages Supporting Descriptive Rule Mining 27

– A GetRules query computes rules from the data and materializes them into
a rule database. Its syntax is as follows:

[Project Body, Consequent, confidence, support]
GetRules(C) [as R1] [into <rulebase_name>]
[where (RC|PC|MC|SQ)]
[sql-group-by clause] [using-encoding-clause]

A GetRules query can deal with different conditions on the rules:
• Rule format condition (RC), that enables to restrict the items occuring

in the rules elements. RC has the following format:
Body { in | has | is } <descriptor-list>
Consequent { in | is } <descriptor-list>

• Pruning condition (PC), that defines thresholds for support and con-
fidence values, and constraints on the length of the rules. PC has the
format:
confidence <relop> <float-val in [0.0,1.0]>
support <relop> <integer>
support <relop> <float-val in [0.0,1.0]>
length <relop> <integer>
relop ::= { < | <= | = | >= | > }

• Mutex condition (MC), that avoids two given attributes to occur in the
same rule (useful when we know some functional dependencies between
attributes). Its syntax is:
Where <other-conditions>

{ AND | OR } mutex(method, method [, method])
[{ AND | OR} mutex(method, method [, method])]

• Subquery conditions (SQ), which are subqueries connected with the con-
ventional WHERE keyword using IN and (NOT) EXISTS.

– A SelectRules query can be used for rule post-processing, i.e., querying
previously extracted rules. Its syntax is as follows:

SelectRules(rulebase_name) [where <conditions>]

where <conditions> concerns the body, the consequent, the support and/or
the confidence of the rules.

– Satisfies and Violates, that allow to cross-over data and rules. These two
statements can be used together with a database selection statement, inside
the WHERE clause of a query.

3.2 MINE RULE

MINE RULE has been designed at the Politecnico di Torino and the Politecnico di
Milano, Italy [12,13]. This operator extracts a set of association rules from the
database and stores them back in the database in a separate relation.

An association rule extracted by MINE RULE from a source relation is defined
as follows. Let us consider a source relation over the schema S. Let R and G

28 M. Botta et al.

be two disjoint subsets of S called respectively the schema of the rules and
the grouping attributes. An association rule is extracted from (or satisfied by)
at least a group of the source relation, where each group is a partition of the
relation by the values of the grouping attributes G. An association rule has the
form A ⇒ B, where A and B are sets of rule elements (A is the body of the rule
and B the head). The elements of a rule are taken from the tuples of one group.
In particular, each rule element is a projection over (a subset of) R. Note that
however, for a given MINE RULE statement, the schema of the body and head
elements is unique, even though they may be different.

An example of a rule extracted from the relation Emp(emp id, job, sex, car)
grouped by emp id with the schema of the body (job, sex) and the schema of
the head (car) is the following: {(doctor, male)} ⇒ {(BMW)}. This rule is ex-
tracted from within tuples, because each group coincides with a tuple of the rela-
tion. Instead, for the relation Sales(transaction id, item, customer, payment),
collecting data on customers purchases, grouped by customer and with the rule
schema (item) (where body and head schemas are coincident) a rule could be
{(pasta), (oil), (tomatoes)} ⇒ {(wine)}.

The MINE RULE language is an extension of SQL. Its main features are:

– Selection of the relevant set of data for a data mining process. This feature
is applied at different granularity levels, that is at the row level (selection of
a subset of the rows of a relation) or at the group level (group condition).
The grouping condition determines which data of the relation can take part
to an association rule. This feature is similar to the grouping conditions that
we can find in conventional SQL. The definition of groups, i.e. the partitions
from which the rules are extracted, is made at run time and is not decided
a priori with the key of the source relation (as in DMQL).

– Definition of the structure of the rules. This feature defines single-dimensional
association rules (i.e., rule elements are the different values of the same di-
mension or attribute), or multi-dimensional rules (rule elements involve the
value of more than one attribute). The structure of the rules can also be
constrained by specifying the cardinality of the rule’s body and head.

– Definition of constraints applied at different granularity levels. Constraints
belong to two categories: constraints applied at the rule level (mining con-
ditions), and constraints applied at the cluster level (cluster conditions). A
mining condition is a constraint that is evaluated and satisfied by each tu-
ple whose attributes, as rule elements, are involved in the rule. A cluster
condition is a constraint evaluated for each cluster. Clusters are subgroups
(or partitions) of the main groups that are created keeping together tuples
of the same group that present common features (i.e., the value of the clus-
tering attributes). In presence of clusters, rule body and head are extracted
from a pair of clusters of the same group satisfying the cluster conditions.
For instance, clusters and cluster condition may be exploited in order to
extract association rules in which body and head are ordered and therefore
constitute the elementary patterns of sequences.

Query Languages Supporting Descriptive Rule Mining 29

– Definition of rule evaluation measures. Practically, the language allows to
define support and confidence thresholds.

The general syntax of MINE RULE follows:

<MineRuleOp> := MINE RULE <TableName> AS
SELECT DISTINCT <BodyDescr>, <HeadDescr> [,SUPPORT] [,CONFIDENCE]
[WHERE <WhereClause>]
FROM <FromList> [WHERE <WhereClause>]
GROUP BY <AttrList> [HAVING <HavingClause>]
[CLUSTER BY <AttrList> [HAVING <HavingClause>]]
EXTRACTING RULES WITH SUPPORT:<real>, CONFIDENCE:<real>

<BodyDescr>:= [<CardSpec>] <AttrList> AS BODY
<BodyDescr>:= [<CardSpec>] <AttrList> AS HEAD
<CardSpec>:=<Number> .. (<Number> | n)
<AttrList>:=<AttrName>[,<AttrList>]

3.3 DMQL

DMQL has been designed at the Simon Fraser University, Canada [10,11]. In DMQL,
an association rule is a relation between the values of two sets of predicates that
are evaluated on the relations of the database. These predicates are of the form
P (X, c) where P is a predicate that takes the name of an attribute of the underly-
ing relation, X is a variable and c is a constant value belonging to the attribute’s
domain. The predicate is satisfied if in the relation there exists a tuple identified
by the variable X whose homonymous attribute takes the value c. Notice that it is
possible for the predicates to be evaluated on different relations of the database.
For instance, DMQL can extract rules like town(X,′ London′) ⇒ buys(X,′ DV D′)
where town and buys may be two attributes of different relations and X is an at-
tribute present in the both relations. Rules may belong to different categories: a
single-dimensional rule contains multiple occurrences of a single predicate (e.g.,
buys) while a multi-dimensional rule involves more predicates, each of which
occurs only once in the rule. However, the presence of one or more instances of a
predicate in the same rule can be specified by the name of the predicate followed
by +. Another important feature of DMQL is that it allows to guide the discovery
process by using metapatterns. Metapatterns are a kind of templates that re-
stricts the syntactical aspect of the association rules to be extracted. Moreover,
they represent a way to push some hypotheses of the user and it is possible to
incorporate some further constraints in them. An example of metapattern could
be town(X : customer, London) ∧ income(X, Y) ⇒ buys(X, Z), which restricts
the discovery to rules with a body concerning town and income levels of the
customers and a head concerning one item bought by those customers. Further-
more, a metapattern can allow the presence of non instantiated predicates that
the mining task will take care to instantiate to the name of a valid attribute
of the underlying relation. For instance, if we want to extract association rules
describing the customers traits that are frequently related to the purchase of

30 M. Botta et al.

certain items by those customers we could use the following metapattern to
guide the association rule mining:

P (X : customer, W) ∧ Q(X, Y) ⇒ buys(X, Z)
where P and Q are predicate variables that can be instantiated to the rele-

vant attributes of the relations under examination, X is a key of the customer
relation, W , Y and Z are object variables that can assume the values of the
respective predicates for customer X.

DMQL consists of the specification of four major primitives in data mining,
that are the following:

– The set of relevant data w.r.t. a data mining process.
This primitive can be specified like in a conventional relational query ex-
tracting the set of relevant data from the database.

– The kind of knowledge to be discovered.
This primitive may include association rules, classification rules (rules that
assign data to disjoint classes according to the value of a chosen classifying
attribute), characteristics (descriptions that constitute a summarization of
the common properties in a given set of data), comparisons (descriptions
that allow to compare the total number of tuples belonging to a class with
different contrasting classes), generalized relations (obtained by generalizing
a set of data corresponding to low level concepts with data corresponding to
higher level concepts according to a specified concept hierarchy).

– The background knowledge.
This primitive manages a set of concept hierachies or generalization opera-
tors which assist the generalization process.

– The justification of the interestingness of the knowledge (i.e., thresholds).
This primitive is included as a set of different constraints depending on the
kind of target rules. For association rules, e.g., besides the classical support
and confidence thresholds, DMQL allows the specification of noise (the mini-
mum percentage of tuples in the database that must satisfy a rule so that it
is not discarded) and rule novelty, for selecting the most specific rules.

The DMQL grammar for extracting association rules is an extension of the
conventional SQL grammar. Thus, we can find in it traditional relational oper-
ators like HAVING, WHERE, ORDER BY and GROUP BY, but we can also specify the
database, select the relevant attributes of the database relation and the concept
hierarchy, define thresholds and guide the mining process using a metapattern.
The general syntax of a DMQL query is:

use database 〈database name〉
{use hierarchy 〈hierarchy name〉 for 〈attribute or dimension〉 }
in relevance to 〈attribute or dimension list〉
mine associations [as 〈pattern name〉] [matching 〈metapattern〉]
from 〈relation(s)/cube(s)〉 [where 〈condition〉]
[order by 〈order list〉]
[group by 〈grouping list〉][having 〈condition〉]
with 〈interest measure〉 threshold = value

Query Languages Supporting Descriptive Rule Mining 31

3.4 OLE DB DM

OLE DB DM has been designed at Microsoft Corporation [17] [16]. It is an exten-
sion of the OLE DB Application Programming Interface (API) that allows any
application to easily access a relational data source under the Windows family
OS. The main motivation of the design of OLE DB for DM is to ease the de-
velopment of data mining projects with applications that are not stand-alone
but are tightly-coupled with the DBMS. Indeed, research work in data min-
ing focused on scaling analysis and algorithms running outside the DBMS on
data exported from the databases in files. This situation generates problems in
the deployment of the data mining models produced because the data manage-
ment and maintenance of the model occurs outside of the DBMS and must be
solved by ad-hoc solutions. OLE DB DM aims at ease the burden of making data
sources communicate with data mining algorithms (also called mining model
provider).

The key idea of OLE DB DM is the definition of a data mining model, i.e. a
special sort of table whose rows contain an abstraction, a synthetic description
of input data (called case set). The user can populate this model with predicted
or summary data obtained running a data mining algorithm, specified as part
of the model, over the case set. Once the mining task is done, it is possible
to use the data mining model, for instance to predict some values over new
cases, or browse the model for post-processing activities, such as reporting or
visualization.

The representation of the data in the model depends on the format of data
produced by the algorithm. This one could produce output data for instance
by using PMML (Predictive Model Markup Language [18]). PMML is a standard
proposed by DMG based on XML. It is a mark-up language for the description
of statistical and data mining models. PMML describes the inputs of data min-
ing models, the data transformations used for the preparation of data and the
parameters used for the generation of the models themselves.

OLE DB DM provides an SQL-like language that allows client applications to
perform the key operations in the OLE DB DM framework: definition of a data
mining model (with the CREATE MINING MODEL statement), execution of an ex-
ternal mining algorithms on data provided by a relational source and population
of the data mining model (INSERT INTO statement), prediction of the value of
some attributes on new data (PREDICTION JOIN), browsing of the model (SELECT
statement).

Thus, elaboration of an OLE DB DM model can be done using classical SQL
queries. Once the mining algorithm has been executed, it is prossible to do some
crossing-over between the data mining model and the data fitting the mining
model using the PREDICTION JOIN statement. This is a special form of the SQL
join that allows to predict the value of some attributes in the input data (test
data) according to the model, provided that these attributes were specified as
prediction attributes in the mining model.

32 M. Botta et al.

The grammar for the creation of a data mining model is the following:

<dm_create>::=CREATE MINING MODEL <identifier> (<col_def_list>)
USING <algorithm> [(<algo_param_list>)]

<col_def_list>::= <col_def> |<col_def_list> , <col_def>
<col_def>::= <col_def_reg> | <col_def_tbl>
<col_def_reg>::= <identifier> <col_type> [<col_distribution>]

[<col_binary>] [<col_content>] [<col_content_qual>]
[<col_qualif>] [<col_prediction>] [<relation_clause>]

<col_def_tbl> ::= <identifier> TABLE <col_prediction>
(<col_def_list>)

// 2 algorithms currently implemented in SQL server 2000
<algorithm> ::= MICROSOFT_DECISION_TREES | MICROSOFT_CLUSTERING

<algo_param_list>::=<algo_param> | <algo_param>,<algo_param_list>
<algo_param>::= <identifier> = <value>

<col_type>::= LONG | BOOLEAN | TEXT | DOUBLE | DATE

<col_distribution>-> NORMAL | UNIFORM

<col_binary>::= MODEL_EXISTENCE_ONLY | NOT NULL

<col_content>::= DISCRETE | CONTINUOUS
| DISCRETIZED ([<disc_method> [, <numeric_const>]])
| SEQUENCE_TIME

<disc_method>::=AUTOMATIC | EQUAL_AREAS | THRESHOLDS | CLUSTERS

<col_content_qual>::= ORDERED | CYCLICAL

<col_qualif>::= KEY | PROBABILITY | VARIANCE | STDEV | STDDEV
| PROBABILITY_VARIANCE | PROBABILITY_STDEV
| PROBABILITY_STDDEV | SUPPORT

<col_prediction>::= PREDICT | PREDICT_ONLY

<relation_clause>::= <related_to_clause> | <of_clause>

<related_to_clause>::=RELATED TO <identifier> | RELATED TO KEY

<of_clause>::= OF <identifier> | OF KEY

Query Languages Supporting Descriptive Rule Mining 33

Notice that the grammar allows to specify many kinds of qualifiers for an
attribute. For instance, it allows to specify the role of an attribute in the model
(key), the type of an attribute, if the attribute domain is ordered or cyclical, if it
is continuous or discrete (and in this latter case the type of discretization used),
if the attribute is a measurement of time, and its range, etc. It is possible to
give a probability and other statistical features associated to an attribute value.
The probability specifies the degree of certainty that the value of the attribute
is correct.

PREDICT keyword specifies that it is a prediction attribute. This means that
the content of the attribute will be predicted on test data by the data mining
algorithm according to the values of the other attributes of the model.

RELATED TO allows to associate the current attribute to other attributes, for
instance for a foreign key relationship or because the attribute is used to classify
the values of another attribute.

Notice that <col def tbl> production rule allows a data mining model
to contain nested tables. Nested tables are tables stored as the single values
of a column in an outer table. The input data of a mining algorithm are often
obtained by gathering and joining information that is scattered in different tables
of the database. For instance, customer information and sales information are
generally kept in different tables. Thus, when joining the customer and the sales
tables, it is possible to store in a nested table of the model all the items that have
been bought by a given customer. Thus, nested tables allow to reduce redundant
information in the model.

Notice that OLE DB DM seems particularly tailored to predictive tasks, i.e. to
predict the value of an attribute in a relational table. Indeed, the current im-
plementation of OLE DB DM in Microsoft SQL Server 2000, only two algorithms
are provided (Microsoft Decision Trees and Microsoft Clustering) and both of
them are designed for attribute prediction. Instead, algorithms that use data
mining models for the discovery of association rules, therefore for tasks without
a direct predictive purpose, seems not currently supported by OLE DB DM. How-
ever, according to the specifications [17], OLE DB DM should be soon extended
for association rules mining.

Notice also that it is possible to directly create a mining model that conforms
to the PMML standard using the following statement:

<pmml_create>::=CREATE MINING MODEL <id> FROM PMML <string>

We recall here the schema used by PMML for the definition of models based
on association rules.

<!ENTITY \% FIELD-USAGE-TYPE "(active |
predicted |
supplementary)" >

<!ENTITY \% OUTLIER-TREAT-METHOD "(asIs |
asMissingValues |
asExtremeValues) " >

34 M. Botta et al.

<!ENTITY \% MISS-VALUE-TREAT-METHOD "(asIs | asMean |
asMode | asMedian |
asValue) " >

<!ELEMENT MiningField (Extension*)>
<!ATTLIST MiningField
name \%FIELD-NAME; #REQUIRED
usageType \%FIELD-USAGE-TYPE; "active"
outliers \%OUTLIER-TREAT-METHOD; "asIs"
lowValue \%NUMBER; #IMPLIED
highValue \%NUMBER; #IMPLIED
missingValueReplacement CDATA #IMPLIED
missingValueTreatment \%MISS-VALUE-TREAT-METHOD; #IMPLIED

<!ELEMENT MiningSchema (MiningField+) >

Notice that according to this specification it is possible to specify the schema
of a model giving the name, type, range of values of each attribute. Furthermore,
it is possible to specify the treatment method if the value of the attribute is
missing, or if it is an outlier w.r.t. the predicted value for that attribute.

3.5 Feature Summary

Table 1 summarizes the different features of an ideal query language for rule
mining and shows how the studied proposals satisfy them as discussed in pre-
vious Sections. Notice that the fact that OLE DB DM supports or not some of

Table 1. Summary of the main features of the different languages. 1Depending
on the algorithm. 2Only association rules. 3Association rules and elementary
sequential patterns. 4Concept hierarchies. 5Selectrules, satisfies and violates.
6Operators for visualization. 7PREDICTION JOIN. 8Algorithm parameters

Feature MSQL MINE RULE DMQL OLE DB DM
Satisfaction of the Yes Yes Yes Yes1

closure property
Selection of source data No Yes Yes Yes
Specification of No2 Some3 Yes Not directly1

different types
of patterns
Specification of the No No Some4 No
Background Knowledge
Post-processing of Yes5 No Some6 Some7

the generated results
Specification of Yes Yes Yes No8

constraints

Query Languages Supporting Descriptive Rule Mining 35

the features reported in Table 1 depends strictly by the data mining algorithm
referenced in the data mining model. Instead, OLE DB DM guarantees naturally
the selection of source data, since this feature is its main purpose.

When considering different languages, it is important to identify precisely the
kind of descriptive rules that are extracted. All the languages can extract intra-
tuple association rules, i.e. rules that associate values of attributes of a tuple. The
obtained association rules describe the common properties of (a sufficient number
of) tuples of the relation. Instead, only DMQL and MINE RULE can extract inter-
tuple association rules, i.e. rules that associate the values of attributes of different
tuples and therefore describe the properties of a set of tuples. Nested tables in
the data mining model of OLE DB DM could ease the extraction of inter-tuple
association rules by the data mining algorithm. Indeed, nested tables include in
an unique row of the model the features of different tuples of the source, original
tables. Thus, intra-tuple association rules seem to constitute the common “core”
of the expressive capabilities of the three languages.

The language capability of dealing with inter-tuple rules affects the represen-
tation of the input for the mining engine. As already said, MSQL considers only
intra-tuple association rules. As illustrated in the next section, this limit may be
overcome by a change of representation of the input relation, i.e., by inclusion
of the relevant attributes of different tuples in a unique tuple of a new relation.
However, this can be a tedious and long pre-processing work. Furthermore in
these cases, the MSQL statements that catch the same semantics of the analo-
gous statements in DMQL and MINE RULE, can be very complex and difficult to
understand.

As a last example of the different capabilities of the languages, we can mention
that while DMQL and MINE RULE effectively use aggregate functions (resp. on rule
elements and on clusters) for the extraction of association rules, MSQL provides
them only as a post-processing tool over the results.

4 Comparative Examples

We describe here a complete KDD process centered around the classical basket
analysis problem that will serve as a running example throughout the paper.

We are considering information of relations Sales, Transactions and Cus-
tomers shown in Figure 1. In relation Sales we have stored information on sold
items in the purchase transactions; in relation Transactions we identify the
customers that have purchased in the transactions and record the method of
payment; in relation Customers we collect information on the customers.

From the information of these tables we want to look for association rules
between bought items and customer’s age for payments with credit cards. The
discovered association rules are meant to predict the age of customers according
to their purchase habits. This data mining step requires at first some manipula-
tions as a preprocessing step (selection of the items bought by credit card and
encoding of the age attribute) in order to prepare data for the successive pattern
extraction; then the actual pattern extraction step may take place.

36 M. Botta et al.

transaction id item
1 ski pants
1 hiking boots
2 col shirts
2 brown boots
3 col shirts
3 brown boots
4 jackets
5 col shirts
5 jackets
6 hiking boots
6 brown boots
7 ski pants
7 hiking boots
7 brown boots
8 ski pants
8 hiking boots
8 brown boots
8 jackets
9 hiking boots
10 ski pants
11 ski pants
11 brown boots
11 jackets

transaction id customer payment
1 c1 credit card
2 c2 credit card
3 c3 cash
4 c4 credit card
5 c5 credit card
6 c6 cash
7 c7 credit card
8 c8 credit card
9 c9 credit card
10 c3 credit card
11 c2 cash

customer id customer age job
c1 26 employee
c2 35 manager
c3 48 manager
c4 39 engineer
c5 46 teacher
c6 25 student
c7 29 employee
c8 24 student
c9 28 employee

Fig. 1. Sales table (on the left); Transactions table (on the right above);
Customers table (on the right below)

Suppose that by inspecting the result of a previous data mining extraction
step, we are now interested in investigating the purchases that violate certain
extracted patterns. In particular, we are interested in obtaining association rules
between sets of bought items in the purchase transactions that violate the rules
with ‘ski pants’ in their antecedent. To this aim, we can cross-over between
extracted rules and original data, selecting tuples of the source table that violate
the interesting rules, and perform a second mining step, based on the results
of the previous mining step: from the selected set of tuples, we extract the
association rules between two sets of items with a high confidence threshold.
Finally, we allow two post-processing operations over the extracted association
rules: selection of rules with 2 items in the body and selection of rules with a
maximal body among the rules with the same consequent.

4.1 MSQL

The first thing to do is to represent source data in a suitable format for MSQL.
Indeed, MSQL expects to receive a unique relation obtained by joining the source
relations Sales, Transactions and Customers on attributes transaction id and
customer id. Furthermore, the obtained relation must be encoded in a binary
format such that each tuple represents a transaction with as many boolean

Query Languages Supporting Descriptive Rule Mining 37

Table 2. Boolean Sales transactional table used with MSQL

t id ski pants hiking boots col shirts brown boots jackets customer age payment
t1 1 1 0 0 0 26 credit card
t2 0 0 1 1 0 35 credit card
t3 0 0 1 1 0 48 cash
t4 0 0 0 0 1 39 credit card
t5 0 0 1 0 1 46 credit card
t6 0 1 0 1 0 25 cash
t7 1 1 0 1 0 29 credit card
t8 1 1 0 1 1 24 credit card
t9 0 1 0 0 0 28 credit card
t10 1 0 0 0 0 41 credit card
t11 1 0 0 1 1 36 cash

attributes as are the possible items that a customer can purchase. We obtain
the relation in Table 2.

This data trasformation puts in evidence the main weakness of MSQL. MSQL
is designed to discover the propositional rules satisfied by the values of the
attributes inside a tuple of a table. If the number of possible items on which a
propositional rule must be generated is very large (as, for instance the number of
different products in markets stores) the obtained input table is very large, not
easily maintainable and user-readable because it contains for each transaction
all the possible items even if they have not been bought. Boolean table is an
important fact to take into consideration because its presence is necessary for
MSQL language, otherwise it cannot work (and so this language is not very much
flexible in its input); furthermore, boolean table requires a data transformation
which is expensive (especially considering that the volume of tables is huge) and
must be performed each time a new problem/source table is submitted.

Pre-processing Step 1: Selection of the Subset of Data to be Mined.
We are interested only in clients paying with a credit card. MSQL requires that
we make a selection of the subset of data to be mined, before the extraction
task. The relation on which we will work is supposed to have been correctly
selected from the pre-existing set of data in Table 2, by means of a view, named
V iew on Sales.

Pre-processing Step 2: Encoding Age. MSQL provides methods to declare
encodings on some attributes. It is important to note that MSQL is able to do
discretization “on the fly”, so that the intermediate encoded value will not appear
in the final results. The following query will encode the age attribute:

CREATE ENCODING e_age ON View_on_Sales.customer_age AS
BEGIN

(MIN, 9, 0), (10, 19, 1), (20, 29, 2), (30, 39, 3), (1)
(40, 49, 4), (50, 59, 5), (60, 69, 6), (70, MAX,7), 0

END;

The relation obtained after the two pre-processing steps is shown in Table 3.

38 M. Botta et al.

Table 3. View on Sales transactional table after the pre-processing phase

t id ski pants hiking boots col shirts brown boots jackets e age payment
t1 1 1 0 0 0 2 credit card
t2 0 0 1 1 0 3 credit card
t4 0 0 0 0 1 3 credit card
t5 0 0 1 0 1 4 credit card
t7 1 1 0 1 0 2 credit card
t8 1 1 0 1 1 2 credit card
t9 0 1 0 0 0 2 credit card
t10 1 0 0 0 0 4 credit card

Rules Extraction over a Set of Items and Customers’ Age. We want
to extract rules associating a set of items to the customer’s age and having a
support over 2 and a confidence over (or equal to) 50%.

GETRULES(View_on_Sales) INTO SalesRB
WHERE BODY has {(ski_pants=1) OR (hiking_boots=1) OR (2)
(col_shirts=1) OR (brown_boots=1) OR (jackets=1)} AND
Consequent is {(Age = *)} AND support>2 AND confidence>=0.5

USING e_age FOR customer_age

This example puts in evidence a limit of MSQL: if the number of items is high,
the number of predicates in the WHERE clause increases correspondingly! The
resulting rules are shown in Table 4.

Table 4. Table SalesRB produced by MSQL in the first rule extraction phase

Body Consequent Support Confidence
(ski pants=1) (customer age=[20,29]) 3 75%

(hiking boots=1) (customer age=[20,29]) 4 100%
(brown boots=1) (customer age=[20,29]) 3 66%

(ski pants=1) ∧ (hinking boots=1) (customer age=[20,29]) 3 100%

Crossing-over: Looking for Exceptions in the Original Data. We select
tuples from V iew on Sales that violate all the extracted rules with ski pants
in the antecedent (the first and last rule in Table 4).

INSERT INTO Sales2 AS
SELECT * FROM View_on_Sales
WHERE VIOLATES ALL ((3)

SELECTRULES(SalesRB) WHERE BODY HAS {(ski_pants=1)})

We obtain results given in Table 5.

Rules Extraction over Two Sets of Items. MSQL does not support a con-
junction of an arbitrary number of descriptors in the consequent. Therefore, in
this step we can extract only association rules between one set of items in the
antecedent and a single item in the consequent. The resulting rule set is only
(brown boots = 1) ⇒ (color shirts = 1) with support=1 and confidence=100%.

Query Languages Supporting Descriptive Rule Mining 39

Table 5. Tuples (in Sales2) violating all rules (in SalesRB) with ski pants in the
antecedent

t id ski pants hiking boots col shirts brown boots jackets e age
t2 0 0 1 1 0 3
t4 0 0 0 0 1 3
t5 0 0 1 0 1 4
t9 0 1 0 0 0 2
t10 1 0 0 0 0 4

GETRULES(Sales2) INTO SalesRB2
WHERE (Body has {(hiking_boots=1) OR (col_shirts=1)
OR (brown_boots=1)}

AND Consequent is {(jackets=1)}
OR Body has {(col_shirts=1) OR (brown_boots=1) OR (jackets=1)}

AND Consequent is {(hiking_boots=1)}
OR Body has {(brown_boots=1) OR (jackets=1) (4)
OR (hiking_boots=1)}

AND Consequent is {(col_shirts=1)}
OR Body has {(jackets=1) OR (hiking_boots=1)
OR (col_shirts=1)}

AND Consequent is {(brown_boots=1)})
AND support>=0.0 AND confidence>=0.9
USING e_age FOR customer_age

Notice that in this statement the WHERE clause allows several different con-
ditions on the Body and on the Consequent, because we wanted to allow in the
Body a proposition on every possible attribute except one that is allowed to ap-
pear in the Consequent. Writing this statement was possible because the total
number of items is small in this toy example but would be impossible for a real
example in which the number of propositions in the WHERE clause explodes.

Post-processing Step 1: Manipulation of Rules. Select the rules with 2
items in the body.

As MSQL extracts rules with one item in the consequent and it provides the
primitive length applied to the itemsets originating rules, we specify that the
total length of the rules is 3.

SelectRules(SalesRB) where length=3 (5)

The only rule satisfying this condition is:
(ski pants = 1) ∧ (hiking boots = 1) ⇒ (customer age = [20; 29])

Post-processing Step 2: Extraction of Rules with a Maximal Body. It
is equivalent to require that there is no pair of rules with the same consequent,
such that the body of the first rule is included in the body of the second one.

40 M. Botta et al.

SELECTRULES(SalesRB) AS R1
WHERE NOT EXISTS (SELECTRULES(SalesRB) AS R2

WHERE R2.body has R1.body (6)
AND NOT (R2.body is R1.body)
AND R2.consequent is R1.consequent)

There are two rules satisfying this condition:
(ski pants = 1) ∧ (hiking boots = 1) ⇒ (customer age = [20; 29])
(brown boots = 1) ⇒ (customer age = [30, 39])

Pros and Cons of MSQL. Clearly, the main advantage of MSQL is that it is
possible to query rules as well as data, by using SelectRules on rulebases and
GetRules on data. Another good point is that MSQL has been designed to be
an extension of classical SQL, making the language quite easy to understand.
For example, it is quite simple to test rules against a dataset and to make
crossing-over between the original data and query results, by using SATISFIES
and VIOLATES. To be considered as a good candidate language for inductive
databases, it is clear that MSQL, which is essentially built around the extraction
phase, should be extended, particularly with a better handling of pre- and post-
processing steps. For instance, even if it provides some pre-processing operators
like ENCODE for discretization of quantitative attributes, it does not provide any
support for complex pre-processing operations, like sampling. Moreover, tuples
on which the extraction task must be performed are supposed to have been se-
lected in advance. Concerning the extraction phase, the user can specify some
constraints on rules to be extracted (e.g., inclusion of an item in the body or in
the head, rule’s length, mutually exclusive items, etc) and the support and con-
fidence thresholds. It would be useful however to have the possibility to specify
more complex constraints and interest measures, for instance user defined ones.

4.2 MINE RULE

MINE RULE does not require a specific format for the input table. Therefore
we can suppose to receive data either in the set of normalized relations Sales,
Transactions and Customers of Figure 1 or in a view obtained joining them.
This view is named SalesV iew and is shown in Table 6 and we assume it is the
input of the mining task. Using a view is not necessary but it allows to make
SQL querying easier by gathering all the necessary information in one table
eventhough all these data are initially scattered in different tables. Thus, the
user can focus the query writing on the constraints useful for its mining task.

Pre-processing Step 1: Selection of the Subset of Data to be Mined.
In contrast to MSQL, MINE RULE does not require to apply some pre-defined view
on the original data. As it is designed as an extension to SQL, it perfectly nests
SQL, and thus, it is possible to select the relevant subset of data to be mined
by specifying it in the FROM.. WHERE.. clauses of the query.

Query Languages Supporting Descriptive Rule Mining 41

Table 6. SalesView view obtained joining the input relations

transaction id item customer age payment
1 ski pants 26 credit card
1 hiking boots 26 credit card
2 col shirts 35 credit card
2 brown boots 35 credit card
3 col shirts 48 cash
3 brown boots 48 cash
4 jackets 39 credit card
5 col shirts 46 credit card
5 jackets 46 credit card
6 hiking boots 25 cash
6 brown boots 25 cash
7 ski pants 29 credit card
7 hiking boots 29 credit card
7 brown boots 29 credit card
8 ski pants 24 credit card
8 hiking boots 24 credit card
8 brown boots 24 credit card
8 jackets 24 credit card
9 hiking boots 28 credit card
10 ski pants 48 credit card
11 ski pants 35 cash
11 brown boots 35 cash
11 jackets 35 cash

Pre-processing Step 2: Encoding Age. Since MINE RULE does not have an
encoding operator for performing pre-processing tasks, we must discretize the
interval values.

Rules Extraction over a Set of Items and Customers’ Age. In MINE
RULE, we specify that we are looking for rules associating one or more items
(rule’s body) and customer’s age (rule’s head):

MINE RULE SalesRB AS
SELECT DISTINCT 1..n item AS BODY, 1..1 customer_age AS HEAD,

SUPPORT, CONFIDENCE
FROM SalesView WHERE payment=’credit_card’ (7)
GROUP BY t_id
EXTRACTING RULES WITH SUPPORT: 0.25, CONFIDENCE: 0.5

If we want to store results in a database supporting the relational model, ex-
tracted rules are stored into the table SalesRB(r id, b id, h id, sup, conf) where
r id, b id, h id are respectively the identifiers assigned to rules, body itemsets
and head itemsets. The body and head itemsets are stored respectively in tables
SalesRB B(b id, item) and SalesRB H(h id, customer age). Tables SalesRB,
SalesRB B and SalesRB H are shown in Figure 2.

42 M. Botta et al.

Rule id Body id Head id Support Confidence
1 1 5 37.5% 75%
2 2 5 50% 100%
3 3 5 37.5% 66%
4 4 5 37.5% 100%

Body id item
1 ski pants
2 hiking boots
3 brown boots
4 ski pants
4 hinking boots

Head id customer age
5 [20,29]

Fig. 2. Normalized tables containing rules produced by MINE RULE in the first
rule extraction phase

Crossing-over: Looking for Exceptions in the Original Data. We want
to find transactions of the original relation whose tuples violate all rules with
ski pants in the body. As rule components (bodies and heads) are stored in re-
lational tables, we use an SQL query to manipulate itemsets. The corresponding
query is the following:

SELECT * FROM SalesView AS S1 WHERE NOT EXISTS
(SELECT * FROM SalesRB AS R1,

SalesRB_B AS R1_B, SalesRB_H AS R1_H
WHERE R1.b_id=R1_B.b_id AND R1.h_id=R1_H.h_id AND
S1.customer_age=R1_H.customer_age AND S1.item=R1_B.item (8)
AND EXISTS(SELECT * FROM SalesRB_B AS R2_B

WHERE R2_B.b_id=R1_B.b_id AND R2_B.item=’ski_pants’)
AND NOT EXISTS

(SELECT * FROM SalesRB_B AS R3_B
WHERE R1_B.b_id=R3_B.b_id AND NOT EXISTS
(SELECT * FROM SalesView AS S2
WHERE S2.t_id=S1.t_id AND S2.item=R3_B.item)))

This query is hard to write and to understand. It aims at selecting tuples of
the original SalesV iew relation, renamed S1, such that there are no rules with
ski pants in the antecedent, that hold on them. These properties are verified
by the first two nested SELECT clauses. Furthermore, we want to be sure that
the above rules are satisfied by tuples belonging to the same transaction of the
original tuple in S1. In other words, that there are no elements of the body
of the rule that are not satisfied by tuples of the same original transaction.
Therefore, we verify that each body element in the rule is satisfied by a tuple of
the SalesV iew relation (renamed S2) in the same transaction of the tuple in S1
we are considering for the output.

Rules Extraction over Two Sets of Items. This is the classical example of
extraction of association rules, formed by two sets of items. Using MINE RULE it
is specified as follows:

Query Languages Supporting Descriptive Rule Mining 43

MINE RULE SalesRB2 AS
SELECT DISTINCT 1..n item AS BODY, 1..n item AS HEAD,

SUPPORT, CONFIDENCE (9)
FROM Sales2
GROUP BY t_id
EXTRACTING RULES WITH SUPPORT: 0.0, CONFIDENCE: 0.9

In this simple toy database the result coincides with the one generated by
MSQL.

Post-processing Step 1: Manipulation of Rules. Once again, as itemsets
corresponding to rule’s components are stored in tables (SalesRB B,
SalesRB H), we can select rules having two items in the body with a simple
SQL query.

SELECT * FROM SalesRB AS R1 WHERE 2= (10)
(SELECT COUNT(*) FROM SalesRB_B R2 WHERE R1.b_id=R2.b_id)

Post-processing Step 2: Selection of Rules with a Maximal Body. We
select rules with a maximal body for a given consequent. As rules’ components
are stored in relational tables, we use again a SQL query to perform such a task.

SELECT * FROM SalesRB AS R1 # We select the rules in R1
WHERE NOT EXISTS # such that there are no
(SELECT * FROM SalesRB AS R2 # other rules (in R2) with
WHERE R2.h_id=R1.h_id # the same head, a different
AND NOT R2.b_id=R1.b_id # body such that it has no
AND NOT EXISTS (SELECT * # items that do not occur in
FROM SalesRB_B AS B1 # the body of the R1 rule
WHERE R1.b_id=B1.b_id AND NOT EXISTS (SELECT *

FROM SalesRB_B AS B2 (11)
WHERE B2.b_id=R2.b_id AND B2.item=B1.item)))

This rather complex query aims at selecting rules such that there are no
rules with the same consequent and a body that strictly includes the body of
the former rule. The two inner sub-queries are used to check that rule body in
R1 is a superset of the rule body in R2. These post-processing queries probably
could be simpler if SQL-3 standard for the ouput of the rules were adopted.

Pros and Cons of MINE RULE. The first advantage of MINE RULE is that it has
been designed as an extension to SQL. Moreover, as it perfectly nests SQL, it
is possible to use classical statements to pre-process the data, and, for instance,
select the subset of data to be mined. Like MSQL, data pre-processing is limited to
operations that can be expressed in SQL: it is not possible to sample data before
extraction, and the discretization must be done by the user. Notice however, that,
by using the CLUSTER BY keyword, we can specify on which subgroups of a group
association rules must be found. Like MSQL, MINE RULE allows the user to specify
some constraints on rules to be extracted (on items belonging to head or body,
their cardinality as well as more complex constraints based on the use of a tax-
onomy). The interested reader is invited to read [12,13] to have an illustration of

44 M. Botta et al.

these latter capabilities. Like MSQL, MINE RULE is essentially designed around the
extraction step, and it does not provide much support for the other KDD steps
(e.g., post-processing tasks must be done with SQL queries). Finally, according
to our knowledge, MINE RULE is one of the few languages that have a well defined
semantics [13] for all its operations. Indeed, it is clear that a clean theoretical
background is a key issue to allow the generation of efficient optimizers.

4.3 DMQL

DMQL can work with traditional databases, so it can receive as input either
the source relations Sales, Transactions and Customers shown in Figure 1
or the view obtained by joining them and shown in Table 6. As already done
with the examples on MINE RULE, let us consider that the view SalesV iew is
given as input, so that the reader’s attention is more focused on the constraints
that are strictly necessary for the mining task.

Pre-processing Step 1: Selection of the Subset of Data to be Mined.
Like MINE RULE, DMQL nests SQL for relational manipulations. So the selection
of the relevant subset of data (i.e. clients buying products with their credit card)
will be done via the use of the WHERE clause of the extraction query.

Pre-processing Step 2: Encoding Age. DMQL does not provide primitives
to encode data like MSQL. However, it allows us to define a hierarchy to specify
ranges of values for customer’s age, as follows:

define hierarchy age_hierarchy for customer_age on SalesView as
level1:{min...9}$<$level0:all
level1:{10...19}$<$level0:all (12)

...
level1:{60...69}$<$level0:all
level1:{70...max}$<$level0:all

Rules Extraction over a Set of Items and Customers’ Age. DMQL allows
the user to specify templates of rules to be discovered, called metapatterns, by
using the matching keyword. These metapatterns can be used to impose strong
syntactic constraints on rules to be discovered. So we can specify that we are look-
ing for rule bodies relative to bought items and rule heads relative to customer’s
age. Moreover, we can specify that we desire to use the predefined hierarchy for
the age attribute.

use database Sales db
use hierarchy age hierarchy for customer age
mine association as SalesRB
matching with item+(X, {I}) ⇒ customer age(X, A) (13)
from SalesView
where payment=‘credit card’
group by t id
with support threshold=25%
with confidence threshold=50%

Query Languages Supporting Descriptive Rule Mining 45

where the above metarule with the notation {I} matches with rules with
repeated item predicate like item(X, I1)∧ item(X, I2) · · · item(X, Ij) where {I1,
I2, · · · Ij}= I are different elements of the I set obtained as input by the WHERE
predicate clause. The result is shown in Table 7.

Table 7. Results produced by DMQL in the first rule extraction phase (SalesRB)

item+(X,{I}) customer age(X,A) Support Confidence
item(X,ski pants) customer age(X,20...29) 37.5% 75%

item(X,hiking boots) customer age(X,20...29) 50% 100%
item(X,brown boots) customer age(X,20...29) 37.5% 66%

item(X,ski pants)∧item(X,hiking boots) customer age(X,20...29) 37.5% 100%

Crossing-over: Looking for Exceptions in the Original Data. Like MINE
RULE, DMQL does not provide support for crossing-over patterns and data: it
requires SQL queries as already shown with MINE RULE (query (8)).

Rules Extraction over Two Sets of Items. This phase is performed by the
following DMQL statement:

use database Sales db
mine association as SalesRB2
matching with item+(X, {I}) ⇒ item+(X, {J}) (14)
from Sales2
group by t id
with confidence threshold=90%

Post-processing Step 1: Selection of the Rules with Two Items in the
Body. Like MINE RULE, DMQL does not provide support for operations of rules
manipulation. As we do not have direct access the rules and thus do not the
exact storage format of rules, we make the assumption the rules are stored in
the same way than in MINE RULE, and that allows us to compare the languages
in the same conditions of storage format. So, for this step, an SQL query similar
to query (10) shown in the examples of MINE RULE is therefore needed.

Post-processing Step 2: Selection of the Rules with a Maximal Body.
Like MINE RULE, DMQL does not provide support for operations of rules manipu-
lation such as the selection of the most general rules. For the same reason as the
previous post-processing step, an SQL query analogous to query (11) is therefore
required.

Pros and Cons of DMQL. Like MINE RULE, one of the main advantages of DQML
is that it completely nests classical SQL, and so it is quite easy for a new user
to learn and use the language. Moreover, DMQL is designed to work with tra-
ditional databases and datacubes. Concerning the extraction step, DMQL allows
to impose strong syntactic contraints on patterns to be extracted, by means
of metapatterns allowing the user to specify the form of extracted rules. An-
other advantage of DMQL is that we can include some background knowledge
in the process, by defining hierarchies on items occurring in the database and

46 M. Botta et al.

mining rules across different levels of hierarchies. Once rules are extracted, we
can perform roll-up and drill-down manipulations on extracted rules. Clearly,
analogously to the other languages studied so far, the main drawback of DMQL
is that the language capabilities are essentially centered around the extraction
phase, and the language relies on SQL or additional tools to perform pre- and
post-processing operations. Finally, we can notice that, beyond association rules,
DMQL can perform other mining tasks, such as classification.

4.4 OLE DB DM

OLE DB DM is designed for a simple use of relational data already available via
OLE DB. Thus, it can work with relational data. Creating a view is not necessary
because putting the data in the right format is exactly one of the purposes of
the definition and population of the mining model.

Pre-processing Step 1: Selection of the Subset of Data to be Mined. In
the OLE DB DM framework, selection of data to be mined is done in the definition
of the data mining model and in the following insertion of data in it. Conceptu-
ally, it is very similar to the creation of a view. Here the mining model is named
[SalesRB] in analogy to the previous examples for the other languages.

Creation of the mining model:

CREATE MINING MODEL [SalesRB](
[transaction_id] LONG KEY,
[customer_age] LONG DISCRETIZED PREDICT,
[items] TABLE (

[item] TEXT KEY
)

)
USING [My_assoc_Algo] (min_support=2, min_confidence=0.5)

Notice that we used a nested table [items] to specify bought items by a cus-
tomer in a transaction and make reference to a mining algorithm, My assoc Algo,
for the extraction of association rules.

Insertion of data in the data mining model:

INSERT INTO [SalesRB]
([transaction_id],[customer_age],[items])
SHAPE
{SELECT [transaction_id],[customer_age]

FROM Transactions,Customers
WHERE Transactions.customer=Customers.customer_id

AND Transactions.payment="credit_card"
APPEND(
{SELECT [item] FROM Sales
ORDER BY [tr_id]}
RELATE [transaction_id] TO [tr_id])
AS [items]}

Query Languages Supporting Descriptive Rule Mining 47

Notice that selection of the interesting source data (purchases made by credit
card) is done in this step. Notice also that APPEND keyword builds the nested table
[items] containing items in source relation Sales purchased in a transaction.
The relationship between the transaction identifier in Sales and the analogous
identifier in the model is done by means of the RELATE keyword.

Pre-processing Step 2: Encoding Age. The definition of the data mining
model allows specification of discretized attributes and of discretization method
used. However, discretization itself must be provided by the data mining algo-
rithm provider.

Rules Extraction over a Set of Items and Customer’s Age. In SQL
Server 2000, no algorithm for association rule mining is currently available, but
the specification of OLE DB DM claims that association rule mining algorithm can
be supported. Here, we supposed that the user has implemented an association
rule mining algorithm, named My assoc Algo, which takes as input parameters
of minimal support and confidence and refers to the content of the [items]
nested tables to elaborate association rules.

The results of the association rule mining process could be stored by the al-
gorithm in a relational table and described by the following PMML representation.

<Item id="1" value="ski_pants" />
<Item id="2" value="hiking_boots" />
<Item id="3" value="brown_boots" />

<Itemset id="1" support="0.5" numberOfItems="1">
<ItemRef itemRef="1">

</Itemset>
<Itemset id="2" support="0.5" numberOfItems="1">
<ItemRef itemRef="2">

</Itemset>
<Itemset id="3" support="0.375" numberOfItems="1">
<ItemRef itemRef="3">

</Itemset>
<Itemset id="4" support="0.375" numberOfItems="2">

<ItemRef itemRef="1" />
<ItemRef itemRef="2" />

</Itemset>

<Item id="4" value="[20,29]" />

<Itemset id="5" support="0.5" numberOfItems="1">
<ItemRef itemRef="4" />

</Itemset>

48 M. Botta et al.

<AssociationRule support="0.375" confidence="0.75"
antecedent="1" consequent="5" />
<AssociationRule support="0.50" confidence="1.0"
antecedent="2" consequent="5" />
<AssociationRule support="0.375" confidence="0.66"
antecedent="3" consequent="5" />
<AssociationRule support="0.375" confidence="1.0"
antecedent="4" consequent="5" />

Notice that such a PMML description is very similar to the rules storage struc-
ture of MINE RULE.

Crossing-over: Looking for Exceptions in the Original Data. For this
task, we must write a query in classical SQL. Since the association rules produced
by the algorithm could be stored in the PMML format, which is quite close of the
storage format of MINE RULE, we can say that the query will be very similar to
the one used with MINE RULE.

Concerning post-processing tasks, or the usage of the rules after their proper
extraction, notice that OLE DB DM only provides some facilities for prediction,
with PREDICTION JOIN. However, this is not useful here.

Rules Extraction over Two Sets of Items. We want to perform a new
mining task here, so we must define a new mining model. This one is analogous
to the model used in previous step with the exception of customers’ age that is
not needed in this case. Indeed, the difference of this mining task with respect to
previous one lies in the proper execution of the mining algorithm that associates
an itemset to another itemset and not to the customers’ age. For sake of space
we do not report this new model here.

Post-processing Step 1: Manipulation of Rules. Here again, we need to
access rules’ components. Since the OLE DB DM suggests that bodies and heads
of rules are stored following the PMML format, the query will be very similar to
the one used with MINE RULE.

Post-processing Step 2: Selection of Rules with a Maximal Body. Again,
since the rules could be stored following the PMML format, we can use the same
kind of queries used for MINE RULE.

Pros and Cons of OLE DB for DM. The first advantage of OLE DB DM is that it
is a first temptative of industrial standard and that it begins to be implemented
in some commercial application (like SQL Server 2000). It is designed as an ex-
tension to SQL and so a DBA can write queries that are similar to classical SQL
queries and that define and populate data mining models. But, the main prob-
lem is that the language of OLE DB DM is not really a language for Data Mining
like the other three. It is particularly targeted at making the communication
between relational databases and data mining algorithms easier. So it can work
with a lot of different algorithms, provided that the algorithms are compliant
to OLE DB DM mining model. However, it provides no facilities to handle typical

Query Languages Supporting Descriptive Rule Mining 49

constraints of the association rule mining problem, such as constraints on items,
frequency and confidence. More generally, all these types of constraints must be
given as parameters to the mining algorithm. Moreover, accessing the mining
results and browsing of extracted patterns must be managed by the algorithm
provider, which makes a general method for post-processing difficult to define.
Finally, there is no formal semantics like in MINE RULE.

5 Conclusions

We have considered three languages, MSQL, MINE RULE and DMQL and an API for
data mining, OLE DB DM, with an SQL-like language for the deployment of a data
mining model. All of them request the extraction from a relational database of
data mining patterns, and in particular of association rules. They satisfy the
“closure property”, a crucial property for inductive databases. We have com-
pared the various features of these languages with the desired properties of an
ideal query language for inductive databases dedicated to association rules. We
have prepared a benchmark and tested the languages against it. The benchmark
is constituted by an hypothetical KDD scenario, taken from the data mining
practice, in which we have formulated a collection of queries. We have tested the
possibility and the ease for the user to express the chosen queries in the above
mentioned languages. The outcome is that no language presents all the desired
properties. MSQL seems the one that offers the larger number of primitives tai-
lored for post-processing and an on-the-fly encoding, specifically designed for
efficiency. DMQL allows the extraction of different data patterns, the definition
and use of hierarchies, and some visualization primitives. MINE RULE is the only
one that allows to dynamically partition the source relation into a first and a sec-
ond level grouping (the clusters) from which more sophisticated rule constraints
can be applied. Furthermore, to the best of our knowledge, it looks as the only
language having an algebraic semantics, an important factor for an in-depth
study of optimization issues. OLE DB DM is an API, that allows any application
to access by means of SQL-like queries to a relational data source, and to be cou-
pled with specialized mining algorithms. The main motivation of the design of
OLE DB DM is to ease the communication between a data mining application, the
DBMS providing data and a set of available, advanced data mining algorithms.
However, at the moment, it does not provide any specific feature tailored to any
particular data mining task that is not predictive.

However, it is clear that one of the main limits of all the proposed languages
is the weak support of rule post-processing. In particular, in all the languages
post-processing capabilities are limited to a few predefined built-in primitives.
Instead, it would be desirable that the grammar of the languages would accept
a certain degree of extensibility. Indeed, for instance, it is not possible to intro-
duce user-defined functions in the statements. These ones would allow the user
to provide the implementation of user-defined sophisticated constraints, based,
for instance, on new pattern evaluation measures.

50 M. Botta et al.

Furthermore, the research on condensed representations for frequent itemsets
[2,3] has been proved useful not only for mining frequent itemsets and frequent
association rules from dense databases but also for sophisticated post-processing
[1,15]. Indeed, one of the problems in association rule mining from real-life data
is the huge number of extracted rules. However, many of the rules are redundant
and might be useless. Thus, a condensed representation would help visualizing
the result and focusing the user attention on the relevant rules. For example,
Bastide et al., [1], presents an algorithm to extract a minimal cover of the set of
frequent association rules.

Another crucial issue relative to query language for data mining is the opti-
mization for sequences of queries (e.g., deciding of query containment). To the
best of our knowledge, the materialization of condensed representations of the
frequent itemsets seems to be quite useful [9,4] but still needs further work.

Last but not least, an important issue is the simplicity of the language and
its ease of use. Indeed, we think that a good candidate language for data mining
should be flexible enough to specify a variety of different mining tasks in a
declarative fashion. To the best of our knowledge, the implementation of these
languages tackles the mentioned problems (including the lack of instruments
dedicated to post-processing) by being embedded in a data mining system, which
provides a graphical front end to the language.

References

1. Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining minimal
non-redundant association rules using frequent closed itemsets. Proc. CL’00 (2000),
London (UK). Springer-Verlag LNCS 1861. pp. 972–986.

2. Boulicaut, J-F., Bykowski, A.: Frequent closures as a concise representation for
binary data mining. Proc. PAKDD’00 (2000), Kyoto (JP). Springer-Verlag LNAI
1805. pp. 62–73.

3. Boulicaut J-F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation
of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery (2003). 7(1)5–22.

4. Giacometti, A., Laurent, D., Diop, C.T.: Condensed representations for sets of min-
ing queries. Proc. KDID’02 (2002), Helsinki (FIN). An extended version appears
in this volume.

5. Imielinski, T., Mannila, H.: A Database Perspective on Knowledge Discovery. Com-
munications of the ACM (1996). 3(4)58–64.

6. Imielinski, T., Virmani, A., Abdulghani, A.: DataMine: Application Programming
Interface and Query Language for Database Mining. Proc. KDD’96 (1996), Port-
land (USA). AAAI Press. pp. 256–261.

7. Imielinski, T., Virmani, A.: MSQL: A Query Language for Database Mining. Data
Mining and Knowledge Discovery (1999). 3(4)373–408.

8. Jeudy, B., Boulicaut, J-F.: Optimization of association rule mining queries. Intel-
ligent Data Analysis (2002). 6(4)341–357.

9. Jeudy, B., Boulicaut, J-F.: Using condensed representations for interactive associ-
ation rule mining. Proc. PKDD’02 (2002), Helsinki (FIN). Springer-Verlag LNAI
2431. pp. 225–236.

Query Languages Supporting Descriptive Rule Mining 51

10. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: DMQL: A Data Mining
Query Language for Relational Databases. Proc. of SIGMOD Workshop DMKD’96
(1996), Montreal (Canada). pp. 27–34.

11. Han, J., Kamber, M.: Data Mining – Concepts and Techniques. Morgan Kaufmann
Publishers (2001).

12. Meo, R., Psaila, G., Ceri, S.: A New SQL-like Operator for Mining Association
Rules. Proc. VLDB’96 (1996), Bombay (India). Morgan Kaufmann. pp. 122–133.

13. Meo, R., Psaila, G., Ceri, S.: An Extension to SQL for Mining Association Rules.
Data Mining and Knowledge Discovery (1998). 2(2)195–224.

14. Virmani, A.: Second Generation Data Mining. PhD Thesis, Rutgers University,
1998.

15. Zaki, M.J.: Generating non-redundant association rules. Proc. SIGKDD’00 (2000),
Boston (USA). ACM Press. pp. 34–43.

16. Netz, A., Chaudhuri, S., Fayyad, U., Bernhardt, J.:Integrating Data Mining with
SQL Databases: OLE DB for Data Mining. Proc ICDE’01 (2001), Heidelberg (Ger-
many). IEEE Computer Society. pp. 379–387

17. OLEDB for Data Mining specifications, available at http://www.microsoft.com/
data/oledb/dm/

18. Predictive Model Mark-up Language, available at http://www.dmg.org/
pmmlv2-0.htm

http://www.microsoft.com/data/oledb/dm/
http://www.microsoft.com/data/oledb/dm/
http://www.dmg.org/pmmlv2-0.htm
http://www.dmg.org/pmmlv2-0.htm

	Introduction
	Desired Properties of a Data Mining Query Language
	Query Languages for Rule Mining
	MSQL
	MINE RULE
	DMQL
	OLE DB DM
	Feature Summary

	Comparative Examples
	MSQL
	MINE RULE
	DMQL
	OLE DB DM

	Conclusions

