Proceedings

Comparing Intended and Real Usage in Web
Portal: Temporal Logic and Data Mining

Jérémy Besson', Ieva Mitagitinaité?, Audroné Lupeikiené!, and Jean-Francois
Boulicaut?

! Institute of Mathematics and Informatics, Vilnius, Lithuania,
2 Faculty of Mathematics and Informatics, Vilnius University, Lithuania
3 INSA Lyon, LIRIS CNRS UMR 5205, France

Abstract. Nowadays the software systems, including web portals, are
developed from a priori assumptions about how the system will be used.
However, frequently these assumptions hold only partly and are defined
also partially. Therefore one must be capable to compare the a priori as-
sumptions with the actual user behavior in order to decide how the sys-
tem could be improved. To tackle this problem, we consider a promising
approach to employ the same formalism to express the intended usage,
the web portal model and the frequent real usage patterns, extracted
from the experimental data by data mining algorithms. This allows to
automate the verification whether the frequent real usage patterns satisfy
the intended usage in the web portal model. We propose to use temporal
logic and Kripke structure as such a common formalism.

Key words: Intended Usage, Real Usage, web Portal Model, Linear
Temporal Logic, Pattern Mining

1 Introduction

Nowadays the software systems, including web portals, are developed from a
priori assumptions about how the system will be used. However, frequently these
assumptions hold only partly and are defined only partially. Therefore one must
be capable to compare the a priori assumptions with the actual user behavior
in order to decide how the system should be improved. We intend to develop a
tool that helps to compare the intended usage of a web portal specified by the
web portal designers, and its real (frequent) usage. This would allow to point
out some design decisions that led to the development of a web portal whose
real usage does not correspond to the intended usage.

We focus on corporate portals that present information about an organiza-
tion, its activities, people, etc. Such a portal is a set of client-oriented web sites
that personalize the portals tools and information to the specific needs and char-
acteristics of the person who is visiting this web site, searching information that
is presented directly in the web sites or in the associated databases. As a rule,
it provides a standard set of tools. Corporate portals promote the gathering,
sharing, and dissemination of information throughout the intranet, extranet and

BIS 2010, Springer LNBIS 47, pp. 83-93.

jfboulicaut
Zone de texte
Proceedings BIS 2010, Springer LNBIS 47, pp. 83-93.

2 Jérémy Besson et al.

Internet. However, the traditional approaches to portal design often ignore the
information needs, searching practices and personalities of users. As a result, the
corporate portals suffer from quality problems that prevent or inhibit their use
(for example, impossibility to find information, poor navigation or inappropriate
display of information). To overcome this problem, one not only need to consider
the structure of the portal in terms of web pages and their links between one
another, but also additional knowledge and information, e.g., what is the goal of
the user while navigating through a given path of the portal and what category
the user belongs to.

To allow automatic reasoning and verification on the indented usage and the
real usage, the system must be represented in a formal way. A formal represen-
tation of a system called Model must check certain Properties of the System
in order to reproduce its behavior under various conditions. Considerable work
has been done to develop methods of constructing such models. In most of these
approaches (e.g., [1], [2], [3]) properties are already known, i.e., they come from
literature and/or intuition and insights of the application domain experts. Much
less approaches in the domain of system modeling consider the issue of finding
out the Properties of the System, necessary to build a Model. Generally, knowl-
edge about the System is acquired by performing the Experiments on it, and
thereby it is the Experiments that inform on Properties. We suggest that there
is a place here for Data Mining - an art of finding knowledge (e.g., patterns and
Properties) from data (e.g., experimental data and experiments).

inform on
Properties

Experiments
have to be

checked by

\

|
“Mode/
Real system

in order to reproduce behaviour of

Fig. 1. Model - Properties - Experiments

We consider that the integration of the two issues, i.e., "Properties have to
be checked by the Model in order to reproduce the behavior of the real System”
and ”Experiments inform on Properties” into one cycle of ” Experiments or Ex-
perimental data inform on Properties that have to be checked by the Model in
order to reproduce the behavior of the real System” (see Figure 1) is a promising
research goal. This goal can be achieved by employing the same formalism to
express the properties, extracted from experimental data by data mining algo-
rithms, and to reason on/verify /learn models using these properties.

Intended and Real Usage 3

In our context, three different elements must be considered: the model, real
usage (Experiments) and intended usage (Properties). The model represents the
possible usages (behavior) of the system and can be seen as a set of local transi-
tions between states of the user browsing. A real usage is a sequence of transitions
in the model. An intended usage is a global constraint on the possible sequences
of transitions in the real system. In this context, we seek to be able to express
a web portal in terms of both local transitions and global behavior (intended
usage), and then to check if they are compatible, i.e., if the local transitions lead
to the intended global behavior. Intended usage are here considered as require-
ments and must be satisfied by the real usage. If it is not the case, then some
design decisions was spurious and must be modified, in order to converge toward
a web portal model that exhibits the needed global behavior.

We propose the use of linear temporal logic (LTL) and Kripke structure as
such a common formalism. It is widely used in many application domains and
well adapted to express dynamic properties of non-deterministic finite transition
systems. Examples of interesting properties of real systems, such as attainabil-
ity of a state or property, inevitability of a property, the invariants, chaining of
properties can be easily expressed in temporal logic.

The rest of the paper is organized as following. Section 2 presents the Linear
Temporal Logic and Kripke structure formalisms that are employed in this ar-
ticle. Section 3 presents the method of modeling a web portal, its intended and
real usages. Afterwards, in Section 4 we describe how intended and real usage
are compared. Finally, Section 5 concludes the work.

2 LTL Over a Kripke Structure as a Common Formalism

Temporal logic extends propositional logic (used for describing the states) with
operators for reasoning over time and non-determinism. Systems of temporal
logic are classified along a number of axes: propositional versus first order,
branching versus linear, points versus intervals, global versus compositional, and
past versus future tense [4]. Temporal logic was shown to be a powerful formalism
for expressing the dynamic properties of a system [5, 6], thus we consider LTL
(Linear Temporal Logic) as a convenient formalism to express intended usage.

Several temporal operators are introduced in LTL: X ¢ means ¢ is true at
next transition, G ¢ means ¢ is always true, F ¢ means ¢ finally true, and ¢ U
1) means ¢ is always true until ¢ becomes true. A LTL formula is true if every
path of the Kripke structure, starting from a starting node, satisfies the LTL
formula.

With LTL one can express the interesting properties, such as reachability,
safety, mutual exclusion and responsiveness, thus it can typically be used to
express intended usage. In the following we give several examples. A state is
called reachable if there is a computation path from an initial state leading to a
state that satisfies a propositional expression P, what can be written in LTL as
F P. A system is called safe if one cannot reach a state for which an undesirable

4 Jérémy Besson et al.

property holds (!P), what can be written as G ! P. Mutual exclusion means that
a system is not allowed to hold two (or more) critical properties (P, and P»),
what can be written in LTL as G |(P1 A P»). A system is called responsive
if, when a property P1 holds, then there will be a given answer P2, what can
be written in LTL as G(P; — F(P,)). To express that P; must remain true
until the answer P, is given, one can use the formula G(Py, — P; |J P»). The
formula G(P, — (P, A P)J(IP1 A P;)) means that P; and P, must be
exclusive once P; holds.

Semantics of LTL formulas can be implemented on a Kripke Structure. A
Kripke structure is a finite-state automaton. A set of discrete variables are de-
fined (Boolean, enumeration, bounded integer [a...b]), such that an instantia-
tion of all the variables defines a state in the automaton. Then the transitions
between the variable instantiations (states) are defined. The semantics of the
Kripke structure is given by the set of its trajectories (also named paths or exe-
cutions), i.e., the set of sequences of states of the Kripke structure. For example,
two discrete variables named "B” and "E” can be defined in a Kripke structure
where ”"B” is a Boolean variable and "E” is an enumeration variable that can
take one of the two values: either "el” or ”e2”. Three states (S1, S2 and S3)
may be defined with the following instantiations: S1= (B=true,E=el), S2 =
(B=false,E=el) and S3 = (B=false,E=e2). Transitions in the Kripke structure
can be defined, e.g., from S1 to S2, from S2 to S3 and from S3 to S3. This Kripke
structure defines the model of the system for which one can check its dynamic
properties.

Interestingly, with such a formalism, we can at the same time (a) model a
(web portal) system with a set of discrete variables and a finite-state automaton
and (b) define LTL constraints over this model. For example, one can model a
web portal as a Kripke structure, where the set of states is the set of all tuples
of values denoting the set of characteristics of a web portal navigation. Then,
intended usage and real usage can be expressed with LTL formulas.

Here are examples of a priori interesting system properties that can be defined
in LTL over a Kripke structure:

— A user is of the category X;

— In the initial state, every user of the category X has some information, but
the users goal (i. e., what information he/she needs) is unknown;

— Each user of the category X has a goal to find definitions of some terms;

— Any reachable (from initial) state, in which the property p; is TRUE, has
a path from it on which the property ps is eventually TRUE, and until the
property p3 is TRUE;

— Any portal state should always be characterized as follows: no links to already
deleted documents.

Intended and Real Usage 5

3 Modeling a Web Portal to Verify Intended and Real
Usages

We seek to propose a tool that can answer the question: Are the frequent usages
of a web portal coherent w.r.t. the web portal model and the intended usage?
For doing that, we propose to model the intended usage, the real usage and the
web portal model with the same formalism. If succeeded, one could specify and
compare the intended and real usage in a unified way. Thereby, our approach is
qualitatively different from the ad-hoc methods that glue different applications
solving distinct parts of the problem. We also underline that a web portal analysis
is only one of the possible applications of the proposed method, and thus we seek
genericity.

In the process mining research domain, important work was realized on dis-
covery, conformance and extension of the models w.r.t. experimental data. The
main addressed problems are the following: "How to discover a model from the
real usage data?”, ”Is the model conform w.r.t. the real usage data?” and ”How
to extend the model w.r.t. to the real usage data?”. In these questions, two enti-
ties are considered: the model and the real usage data. We seek to add another
entity in our analysis: the intended usage. In our context, the model represents
all the possible usages of the system. The system-usage data is the concrete real
usage of the system (i.e., how the system behaves). The intended usage states
how the system should be used (i.e., what the expected behavior is).

We model a web portal as a set of discrete variables whose instantiations
form the states of the browsing process, and the possible transitions between
these states. Indeed, employing such a formalism, the model can be transformed
into a Kripke structure on which LTL formulas that represent intended and real
usage can be evaluated. The intended usage represents the correct usages of the
system, among the possible usages (where all possible usages make a web portal
model). By definition, the web portal cannot restrict the usage of the web portal
to only those of the intended usages.

Summing up, to compare intended and real usage, we propose the following
methodology:

— To specify a web portal model (see Section 3.1)

— To specify intended usage (see Section 3.2)

— To extract frequent usage employing frequent sequence pattern mining algo-
rithms (see Section 3.3)

— To transform the web portal model, intended usage and frequent usage pat-
terns into a Kripke structure and LTL formulas, and finally to apply a sym-
bolic model checker to verify the intended and real usage w.r.t. to a web portal
model (see Section 4)

3.1 Web Portal Model

To express the possible usages of a web portal, we propose to model web portals
by the means of a Kripke structure, i.e., a finite-state transition system. Kripke

6 Jérémy Besson et al.

structure contains discrete variables whose instantiations form the states of the
browsing process. Among these variables we distinguish a principal one that rep-
resents the current web page browsed by the user. However we need to consider
not only the web portal structure in terms of web pages and their links between
each other, but also additional information, such as the goal of the navigation
through a given path and his/her category. Other examples are period of the
day, day of the week, quality of services, and meta-data on the browsed pages.
All this additional information can be taken into account through additional
discrete variables in the Kripke structure.

Following are several examples of web portal possible usages that we seek to
represent:

— Ex1: From the page "P1”, a user can go to pages "P2”, ”P3” and "P4”.

— Ex2: When a user arrives to the web page "P1”, he/she should have the goal
named ”G”.

— Ex3: When a user sends an email and has the goal named ”G”, then it is
probable that the goal ”G” is reached.

— Ex4: When a user of the category ”C” goes to the page "P1”, he/she has the
goal "G2”.

— Ex5: The web pages "P1” and ”"P2” are pages of the same category ”C1”

Interestingly, all these usages can be defined in a Kripke structure. More gen-
erally, any information that can be expressed by the means of discrete variables
can be included in such a model.

Ezample 1. Figure 2 presents a web portal model with four web pages (P1, P2,
P3 and P4) and two user’s goals (G1 and G2) that can become new or reached
for some web pages (G1 is new in P1 and reached in P4 and G2 is new in P2 and
reached in P3). This web portal model can be formalized by a Kripke structure
with three state variables: page € {P1, P2, P3, P4, P5}, G1 € {True, False}
and G2 € {True, False} where ”True” means that the user has this goal and
”False” means that the goal is reached or that the user does not have this goal.
The Kripke structure is defined as following:

— start(page) = P1, P2, P3, P4 or P5

— start(G1) = False

— start(G2) = False

— next(page) = (P2 or P3) if page = P1, P4 if (page = P2 or page = P3), P2
if page = P4 or P5 if page = P2

— next(G1) = True if page = P1, False if page = P4 else G1

— next(G2) = True if page = P2, False if page = P3 else G2

The ”start” function gives the possible initial values of a state variable and
the "next” function provides the possible values of a state variable for the next
Kripke state.

Intended and Real Usage 7

New goal G2

New goal G1

Reach goal G2

Fig. 2. Example of a web portal model

3.2 Intended Usage

To express the intended usage, we use LTL formulas over the Kripke structure,
i.e., the web portal model. In general, because of design decisions and incom-
patible choices to fulfill the requirements and specifications, a model contains
navigational paths that do not satisfy the intended usage. Thus by intended us-
age we mean the constraints that must be satisfied by the frequent usage of the
portal.

Activity diagrams and use cases are documents commonly written while spec-
ifying a software system. They can be used as the basis of the intended usage.
Activity diagrams are used to model the behaviors of a system and the way
in which these behaviors are related in an overall flow of the system. Activity
diagrams are similar to flowcharts, but they allow the specification of concur-
rent parallel processing paths. Activity diagrams are used to model the behavior
of a system and the way in which these behaviors are related in an overall
flow of the system, while state machine diagrams illustrate how an element can
move between states classifying its behavior, according to transition triggers,
constraining guards, and so on.

In addition, behavioral constraints can be defined to specify the acceptable
behavior without considering the specific web portal. For example, each new
goal must be reachable, user can have only a maximum given number of goals
to reach, user should not go too many times to the same web page and any
browsing should contain a reached goal.

Ezxample 2. Referring to Example 1, following are examples of use cases:

— Use case "UC1”: User has the new goal G1, then has the new goal G2 then
reaches the goal G2 and finally reaches the goal G1

— Use case "UC2”: User has the new goal G1, then reaches the goal G1 and then
goes to the web page P5

One can define an intended usage in LTL that states that any browsing should
follow one of the two use cases ”UC1” or "UC2”: F(G1 = True ANF(G2 = TrueA

8 Jérémy Besson et al.

F(G2 = False NF(G1 = False))))V F(G1 = True A F(G1 = False A F(page =
P5))).

3.3 Frequent Usage Patterns Discovery Through Frequent
Sequential Pattern Mining

To extract frequent usage patterns from event files (log files), one can use sequen-
tial pattern mining algorithms. Indeed, event files can be transformed into sets
of sequences of nominal values. Each session can be seen as an ordered sequence
of pages (nominal values) that was browsed by the user during its session. Se-
quences of nominal values can be mined to extract patterns of different pattern
languages. Portal usages patterns can be revealed by extracting, e.g., episode
rules [7], frequent sub-strings (e.g., [10] and [12]) and frequent sub-sequences
([8]). For example, a pattern ”20% of users that reached the page P1 also go
to the page P2” can be used as a frequent real usage and compared with the
intended usage.

We propose to express the extracted frequent usage patterns using LTL. In
the following we provide examples of different sequential patterns and their cor-
responding LTL formulas. We consider that the event file being mined contains
three sequences {abaabch, baacba, cbaa}. In the LTL formulas we use the no-
tation S[1...n] that represents a pattern of n symbols where S[i] is its i-th symbol.

Frequent sub-string:

— Pattern to extract: all the strings (consecutive elements) that appear in at
least X% of the input sequences

— Examples: 7a”, ”b”, 7¢”, "aa”, "baa” and ”cb” appear in 100% of the input
sequences. "cba” appears in 2/3 of the input sequences.

— LTL formula of a frequent sub-string S[1...n]: F(page=S[1] A X(page=S[2] A
X(page=S[3] A X(...A X(page=Sn]))))).

Frequent sub-sequence:

— Pattern to extract: all the sequences (not necessary successive elements) that
appear in at least X% of the input sequences and such that the consecutive
elements of the extracted sequence appear in the input sequences within a
window of maximal size Y

— Example: "ca” appears in 2/3 of the input sequences with a maximal windows
size of 2.

— LTL formula of a frequent sub-sequence S[1...n]: F(page=S[1] A X F(page=S|[2]
A X F(page=S[3] A X F(...A X F(page=S[n])))))

Episode rules:

— Pattern to extract: all the couples of sequences (S1,52) such that if the se-
quence S1 is present then S2 is present afterwards with a confidence of at
least X% and it appears in at least Y% of input sequences

Intended and Real Usage 9

— Example: When ”"baa” is present then later there is ”cb” with a confidence of
at least 2/3 and it appears in at least 2/3 of input sequences

— LTL formula of an episode rule pattern (S1[1...n],52[1...n]): G (page=S1[1] A
X (page = S1[2] A ...A page = Sl[n] A X F(page = S2[1] A X (page =
S2[2] A ... A X(page = S2[m])))) V! (page=S1[1] A X (page=S1[2] A ... A
page=S1[n])))

Ezample 3. Referring to Example 1, following are examples of user browsing that
can be obtained from the log file of the web portal:

~ P1, P3, P4, P2, P5
~ P1, P2, P4, P2

- P1,P2, P5

~ P1, P2, P5

{P1, P4, P2} and {P1, P2, P5} are examples of frequent usage patterns in user
browsing with a frequency threshold of 50% that can be transformed into LTL
formulas: F(page = P1 A XF(page = P4 A X(page = P2))) and F(page =
P1 A X (page = P2 A X (page = P5))).

4 Comparing Real Usage and Intended Usage

To verify the extracted frequent usage patterns w.r.t. the intended usage from a
web portal model, we check if it exists a path in the Kripke structure that satisfies
all the intended usages and the LTL formulas obtained from the frequent usage
patterns. Thereby one can verify if the frequent usage patterns are coherent
w.r.t. the intended usage.

Let C1, C2, ..., Cn be the LTL formulas specifying the intended usage, and
Cp be the LTL formula obtained from a frequent usage pattern. To verify the
intended usage w.r.t. the frequent usage we generate the following LTL formula
"I'(CLAC2A...ACn A Cp)”. It is important to notice that a LTL formula is
true if it is true in all initial states and for all the paths of the Kripke structure.
But our objective is to check only if it exists one path that satisfies the LTL
formula. Note that a LTL formula A holds on some computation path if and
only if it is not true that formula !A holds on all computation paths. Vice versa,
A holds on all computation paths if and only if it is not true that formula !A
holds on some computation path. Thus we will check if 7! (CIA C2 A ... A Cn
A Cp)” is false, i.e., if it is not true that the formula is true for all paths, what
is equivalent to check if it exists a path such that the formula (C1 A C2 A ... A
Cn A Cp) is true.

This LTL formula, generated from the intended usage and frequent usage,
expresses the following ”Does it exist a path in the Kripke structure model of a
web portal that satisfies the intended usage and that follows the frequent usage
pattern?”. To be more concrete, we do not want to check if it exists a real
usage (extracted from the event file) that satisfies the generated LTL formula,
because the paths that satisfy the LTL formula may not be present in the event

10 Jérémy Besson et al.

files. On the contrary, we want to check whether a frequent usage pattern leads
to coherent or incoherent paths w.r.t. the intended usage. A frequent usage
pattern is incoherent w.r.t. the intended usage, if no path can follow the frequent
usage pattern while satisfying the intended usage. The frequent usage pattern
is incoherent w.r.t. the intended usage, if the generated LTL formula is true.
To check whether the generated LTL formula is true over the Kripke structure
model of a web portal we use the NuSMV symbolic model checker.

Ezxample 4. Referring to the web portal model of Example 1, the intended usage
of Example 2 (F(G1 = True AN F(G2 = True A F(G2 = False N F(G1 =
False))))VF(G1 = TrueANF(G1 = False AF(page = P5)))) and of the frequent
usage patterns of Example 3 (F(page = P1 A X F(page = P4 A X (page = P2)))
and F(page = P1 A X(page = P2 A X (page = P5)))), one can check if the real
usage and the intended usage are compatible. Using our method, we can verify
that the frequent usage patternF'(page = P1AX F(page = PAAX (page = P2)))
satisfies the intended usage. Indeed, the path (P1, P2, P4, P2, P5) follows the
frequent usage pattern and satisfies the intended usage. The pattern F(page =
P1AX (page = P2AX (page = P5))) does not satisfy the intended usage. Indeed,
it cannot reach any goal and then does not follow neither ”UC1” nor "UC2”.

5 The Whole Process

Figure 3 presents a global picture of our tool for comparing real usage and
intended usage for a web portal. The web portal model is specified by the web
portal designer/administrator. Then the intended usage is defined. Afterwards,
the event file of the web portal is retrieved and pre-processed (session detection,
transformation of pages into categories, removing robots, format transformation,
etc). Frequent patterns are extracted from the event file and transformed into
LTL formulas. Then, we use the Nusmv symbolic model checker to verify if a
real usage fits with the intended usage of a web portal model. To accomplish
this, we transform the web portal model, the intended usages and the extracted
frequent usage patterns into a NuSMYV files (input format of Nusmv).

6 Conclusion

We present a method to compare intended usage and real usage in web portal
employing the same unifying formalism: LTL and Kripke structure. We also em-
ploy Data Mining techniques to extract frequent usage patterns from event files
(system usage data). This method is valid not only for web portal re-engineering
but also for the analysis of other software systems.

Acknowledgment: This work is funded by the Lithuanian State Science
and Studies Foundation under the grand V-09059 and by the French-Lithuanian
bilateral program EGIDE PHC ”Gilibert” under the grant 19976 RM

Intended and Real Usage 11

Log files of

ﬂ\ the Web portal
AN
A T ~%,
6-@ f@
o
LOge G,

)
« N

Web portal model Intended usage Data Mining algorithm

Frequent patterns

Frequent usage patterns
|
Specification

generator - = e = =
Nusmv |Does it satisfy the |
model checker | specifications? |

Nusmy file

O

Fig. 3. Comparing intended usage and real usage

References

9.

. Alexander Bockmayr and Arnaud Courtois, Using Hybrid Concurrent Constraint

Programming to Model Dynamic Biological Systems, ICLP ’02: Proceedings of the
18th International Conference on Logic Programming, pages 85-99, Springer-Verlag,
2002

Aviv Regev, William Silverman and Ehud Shapiro, Representation and simulation
of biochemical processes using the pi-calculus process algebra, Proceedings of the
6th Pacific Symposium on Biocomputing, pages 459-470, 2001

Gilles Bernot, Jean-Paul Comet, Adrien Richard and Janine Guespin, Application of
formal methods to biological regulatory networks: extending Thomas’ asynchronous
logical approach with temporal logic, Journal of theoretical biology, pages 339-
347(229-3), 2004

. E.A. Emerson, Temporal and Modal Logic, Formal Models and Semantics, pages

995-1072, North-Holland Pub. Co./MIT Press, 1990

A. Pnueli, System specification and refinement in temporal logic, Proceedings of
Foundations of Software Technology and Theoretical Computer Science, pages 1-
38, Springer, 1992

C. Dixon, M. Fisher, B. Konev, and A. Lisitsa, Efficient first-order temporal logic
for infinite-state systems, Computing Research Repository, Cornell University, 2007
Nicolas Méger and Christophe Rigotti, Constraint-Based Mining of Episode Rules
and Optimal Window Sizes, PKDD, pages 313-324, 2004

Agrawal, Rakesh and Srikant, Ramakrishnan, Mining Sequential Patterns, ICDE
’95: Proceedings of the Eleventh International Conference on Data Engineering,
pages 3-14, IEEE Computer Society, 1995

S. Dan Lee and L. De Raedt, An Efficient Algorithm for Mining String Databases
Under Constraints, Proceedings KDID’04, page 108-129, Springer-Verlag, 2004

10. L. De Raedt, M. Jaeger, S. Dan Lee and H. Mannila, A Theory of Inductive Query

Answering, Proceedings IEEE ICDM’02, page 123-130, 2002

12 Jérémy Besson et al.

11. H. Mannila and H. Toivonen, Levelwise search and borders of theories in knowl-
edge discovery, Data Mining and Knowledge Discovery, page 241-258 (1-3), Kluwer
Academic Publishers, 1997

12. S. Dan Lee and L. De Raedt, An Efficient Algorithm for Mining String Databases
Under Constraints, Proceedings KDID’04, page 108-129, Springer-Verlag, 2004

13. H. Albert-Lorincz and J.-F. Boulicaut, Mining frequent sequential patterns under
regular expressions: a highly adaptative strategy for pushing constraints, Proceed-
ings 3rd STAM SDM’03, page 316-320, 2003

