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Abstract. Knowledge discovery in databases (KDD) is an interactive process that can
be considered from a querying perspective. Within the inductive database framework,
an inductive query on a database is a query that might return generalizations about the
data e.g., frequent itemsets, association rules, data dependencies. To study evaluation
schemes of such queries, we focus on the simple case of (frequent) itemset mining and
consider the effective use of constraints (selection criteria for desired generalizations)
during the mining phase. Roughly speaking, levelwise algorithms that have been proved
effective for frequent itemset mining iterate on (a) candidate support count, (b) candi-
date generation, and (c) candidate safe pruning. Using a generic algorithm, we discuss
possibilities for “pushing” constraints into the discovery algorithm. If it is rather easy
for the so-called anti-monotone constraints (e.g., the frequency constraint), it becomes
harder for constraints that are not anti-monotone. We show an important tradeoff: push-
ing these latter constraints can avoid expensive anti-monotone constraint checking but
might lead to less effective pruning phases. As a consequence, a “generate and test”
strategy is sometimes better. Among others, we discuss the interesting case of monotone
constraints (negation of anti-monotone constraints). Formalizing the use of constraints
suggests new directions of research for a generic approach to inductive query evaluation.
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1 Introduction

Current technology makes it fairly easy to collect data, but data analysis tends to
be slow and expensive. Consequently, finding tools for data mining, i.e., semiau-
tomatic methods for locating interesting information in the masses of unanalyzed
or underanalyzed data, has become an important research area [6].

Considering a data mining process as a sequence of queries over the data but
also generalizations of the data, the so-called theory of the data, has been more or
less explicitly used for various mining tasks [8, 11]. Given a language L of patterns
(e.g., association rules, data dependencies), the theory of a database r with respect
to £ and a selection predicate ¢ is the set Th(r,L,q) = {¢ € L | q(r,d)}.
The predicate ¢ indicates whether a pattern ¢ is considered interesting (e.g., ¢
denotes a property that is “frequent” in r, or a “surprising” property w.r.t. some
unexpectedness objective measure). The selection predicate can be defined as a
conjunction of atomic constraints C that have to be satisfied by the patterns.
Some of its conjuncts refer to the “behavior” of a pattern in the data (e.g., its
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“frequency” in a given dataset is above a user-given threshold), some others define
syntactical restrictions on desired patterns (e.g., its “length” is below a user-given
threshold). During a KDD process, many related theories have to be computed.
Therefore, we need query languages that enable the user to select subsets of data
as well as tightly specified theories. This gave rise to the concept of inductive
databases, i.e., databases that contain intensionally defined theories in addition
to the usual data. This framework has been suggested in the seminal paper [8], a
rough formalization was proposed in [10] and has been refined in [4, 5].

In this paper, we consider inductive queries that return sets S C Items where
Items denotes a collection of attributes'.

Example 1. A simple mining task: assume one wants to find all frequents itemsets
that contain attribute A (where Items = {A,B,C,D,E}).

Many works have been done on mining constrained itemsets. One of the well-
studied constraint is the frequency constraint. Although an exponential search
space is concerned, it is known that frequent itemsets can be computed in real-
life large datasets thanks to the APRIORI trick that drastically reduces the search
space [1]. The APRIORI algorithm can be used for mining tasks such as the one
presented in example 1: first compute all frequent itemsets using APRIORI, then
remove itemsets that do not contain attribute A. We call this strategy “generate
and test”. However, this strategy can easily be improved. The constraint can be
“pushed” inside the APRIORI algorithm, i.e., perform APRIORI only on itemsets
that contain attribute A (counting the frequency of itemsets that do not contain
A can be avoided). In many cases, pushing constraints is very effective and many
papers present ways to “push” different kinds of constraint [15,9,7]. However,
none of them discuss the question: is it always profitable to “push” constraints?

We show in this paper that the answer is negative. Using a generic algo-
rithm, we discuss the effective use of arbitrary constraints i.e., how they can
be pushed into the discovery algorithm for optimization purposes. If it is rather
easy for the so-called anti-monotone constraints (e.g., the frequency constraint),
it becomes harder for constraints that are not anti-monotone. Pushing these lat-
ter constraints can avoid expensive anti-monotone constraint checking but might
lead to less effective pruning phases. Among others, we discuss the interesting
case of monotone constraints (negations of anti-monotone constraints).

The paper is organized as follows. Section 2 provides a simple formalization
of the kind of inductive query we have to process. In Section 3, using an abstract
presentation of the classical APRIORI algorithm, we introduce the problem of
frequent itemset discovery under constraints and we study the simple case of
anti-monotone constraints. In section 3, we use a simple taxonomy of constraints
and discuss evaluation schemes of inductive queries. Section 4 revisits the CLOSE
algorithm when considering its specific pruning criterion as a constraint checking
step. Finally, section 6 concludes.

! For instance, assuming the popular basket analysis task, Items denotes a collection of products that
belong or not to commercial transactions.



2 Inductive Databases and Inductive Queries

We consider the formalization of inductive databases [4] and the concept of in-
ductive query in our context.

Definition 1 (schema and instance). The schema of an inductive database
is a pair R = (R, (L,E,V)), where R is a database schema, L is a countable
collection of patterns, V is a set of result values, and £ is the evaluation function
that characterizes patterns. Given a database r over R and a pattern 0 € L, this
function maps (r,0) to an element of V. An instance (r,s) over R consists of a
database r over the schema R and a subset s C L.

A typical KDD process operates on both of the components of an inductive
database. Queries that concerns only the pattern part, called hereafter inductive
queries, specify mining tasks.

Definition 2 (inductive query). Given an inductive database instance (r,s)
whose schema is (R, (L,E,V)), an inductive query is denoted as o¢(s) and speci-
fies sentences from s which are interesting. C is a conjunction of constraints that
must be fulfilled by the desired patterns. Checking some of the conjuncts may need
for the evaluation of £ on r and involve data scans.

Example 2. Assume the minable view is trans (Tid, Items) i.e., a typical schema
of data for basket analysis. Figure 1 provides a toy dataset under a boolean matrix
format. For instance, if trans(2,A) and trans(2,C) define the transaction 2, row
2 contains true for columns A and C and false for column B, D and E.

In this paper, we always consider the database schema of example 1. In this
context we can now define the itemset mining task.

Definition 3 (itemset mining task). An itemset denotes a subset of Items.
Let F(S,r), the frequency of S, denotes the percentage of transactions that involve
each attribute in S. An itemset S is y-frequent in v if F(S,r) > ~. This con-
straint is denoted by Crreq. The pattern part of the associated inductive database
is (L£,E€,[0,1]) where L = 2™ and & returns the itemset frequency. The con-
strained itemset mining task (itemset mining task, for short) is the evaluation of
oc(2™) where C is a conjunction of constraints. Mining frequent constrained
itemsets means that C contains Cyreq.

Itemset Frequency

TID |[ABCDE Iy 0.67

T (11111 B o067

2 (10100 {c} 083

r= 3 [11110 (4,B} 05
4 101100 {a,c; 067

5 111100 {8,c}  0.67

6 00001 {c,0} = 0.33

{a,¢,0}  0.33

Fig. 1. A binary dataset r and the frequencies of some itemsets.



3 Formalizing the Use of Constraints

3.1 Preliminaries

An itemset S satisfies a constraint C iff C(.S) evaluates to true. If C is a constraint,
let SAT¢(Items) denotes the collection {S C Items, S satisfies C}, i.e., o¢(21%").

[ — 7

To avoid confusion, the constraints are sometimes defined by “=” instead of “=
(e.g., C(S) = |S| = 10 is a constraint whose value is true iff the size of the itemset
S is 10). Itemsy denotes the collection {S C Items, |S| = k} of the itemsets of
size k.

Ezample 3. Consider the dataset of figure 1 where Items={A,B,C,D,E}. If the
frequency constraint Cy,.., specifies that an itemset must be 0.6-frequent, the
inductive query oc, . (2'**") returns {A,B,C,AC,BC}. Assume that Cyi.(S) =
|S] < 3 and Cpiss(S) = {B,E} NS = (. The query oc,,..rc,... (21°") returns
{A,C,D,AC,AD,CD,ACD} while the query oc;,,, Ac,i.cACpiss (27°"°) returns {A,C,AC}.
Notice that we use a string notation (e.g., AC) to denote sets of attributes.

An anti-monotone constraint is a constraint C such that for all itemsets S, S':
(S" C S A S satisfies C) = S’ satisfies C.

Example 4. Cpreq, C(S) =A ¢ S, S C {A,B,C} and SN {A,B,C} are examples of
anti-monotone constraints. Many other anti-monotone constraints are presented
in [13].

It is clear that a disjunction or a conjunction of anti-monotone constraints is
an anti-monotone constraint. A useful concept that enables reasoning on frequent
itemset mining algorithms is the concept of (negative or positive) border [12].
If C4pn denotes an anti-monotone constraint and T C 2™, Bd, (T) is the
collection of the minimal (w.r.t. the set inclusion) itemsets of 7" that do not
satisfy Cym. Bdg (T) is the collection of the maximal (w.r.t. the set inclusion)
itemsets of T that satisfy Cop. Finally, we assume Bdj = Bdf (2"°") and
B, = B, (%),

Given a constraint C, our problem is now to find an algorithm that performs
the itemset mining task (i.e., that computes oc(Items) = SAT,(Items)). Given
an algorithm A, we call Test 4(C) the set of the itemsets that are tested against
the constraint C by A. For example, it is well known that, in the case of the
APRIORI algorithm, Testapriori(Cfreq) = SATe;,,, U Bdgfm [12]. The selectivity
of a constraint in an algorithm A is the number of itemsets S in Test 4(C) such
that C(S) is false (i.e., the number of rejected itemsets).

3.2 A Simple Case: Testing Anti-monotone Constraints

We consider an abstract definition of the APRIORI algorithm [1] to support our
discussion on the effective use of constraints. This algorithm performs the frequent
itemset mining task when C = Cy.q.



APRIORI algorithm

Cy := Items,
k:=1
while C # () do
Phase 1 - frequency constraint is enforced - it needs a data scan
Ek = SAchTEq N Ck
5. Phase 2 - candidate generation for level k+1
Ciy1 = generate,, (L)
6. Phase 3 - candidate safe pruning
C+1 := safe-pruning-on(CY,,)
7. k:=k+1
od
8. output | £;

==

In the classical APRIORI algorithm, generate,,.;,;(Lx) provides the candi-
dates by fusion of two elements from L; that share the same k — 1 first items:
generate, .,..(Lx)={A U B, where A, B € L, A and B share the k — 1 first
items (in lexicographic order)}. Furthermore, in its standard presentation, phase
2 and 3 are merged. safe-pruning-on(CY, ) eliminates the candidates for which
a subset of length £ is not frequent. This can be justified by the APRIORI trick:
if S is not frequent, every superset of S is not frequent.

Example 5. If Lo = {AB, AC,BC, AD, CD}, phase 2 provides the collection of candi-
dates C§ = {ABC,ABD,ACD} (BCD is not generated, generate,,,,; already per-
forms some pruning). Phase 3 provides C3 = {ABC,ACD} since BD ¢ L.

This trick uses only the anti-monotonicity of Cf,., and can be generalized.
Let C = C,mn be an anti-monotone constraint eventually including Cpyeq: if S
does not satisfy C,,, every superset of S does not satisfy Cgp,. It is therefore
straightforward to use the APRIORI algorithm with any anti-monotone constraint.
We are now able to find a strategy to perform the itemset mining task for a
constraint C = C,,, A C, that is the conjunction of an anti-monotone constraint
and another constraint.

Definition 4 (generate and test strategy). Assume we want to perform the
itemset mining task with the constraint C = Cun A C,. The generate and test
strategy consist of two steps. First, compute SATe,, ~—with APRIORI algorithm.
Second, test each itemset from the result of the first step against the constraint

Co-

Assume now that C is the conjunction of two anti-monotone constraints C,,,
and C/,,. The optimization problem is to know whether it is more efficient (strat-
egy push) to use the APRIORI algorithm with the constraint C = C,y, A CL,, (to
evaluate C(S), Com(S) is evaluated and then C! (S) if Com(S) is true), or (strat-
egy g&t) to use the “generate and test” strategy, i.e., to first generate SATg,
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with APRIORI and then to test each S € SAT;,  against the constraint C, .
Under these hypotheses, we have the following theorem.

Theorem 1. TeStpusn(Com) C Testygs(Cam) and Testousn(Cl,,) C Testee:(Cl,),
where Testpusn corresponds to strategy push and Testgyy to strategy glt.

Proof of theorem 1.

Strategy g&t: it is the APRIORI algorithm with Cy,, (S) therefore Testggt(Com) =
SATe,,, UBd; —and C,, is tested on the result of this algorithm, Testgg+(Cy,,) =
SATcam.

Strategy push: due to the order in which C,,, and C,,, are tested, Testpysn(Com) =
SATCam/\C(Ilm UBdEamAC’ and Testpush(C;m) = SATCamAC&mU(BdEamAC’ ﬂSATcam).
The second statement of the theorem follows. For the first one, we must prove
that SATCam/\Cflm U Bdgam/\cflm g SATcam U Bdc_ami It is clear that SATCam/\Cflm g
SATe,, Let T € Bdg, o VS CT, Com(S) ACip(S) is true, 50 Cop (S) is true.
Therefore if Com (1)) is false, T' € Bd, . If Com(T) is true, T' € SATg,,,. In either
case, T' € SATe,, UBd, and the theorem is true.

This theorem states that strategy push leads to fewer constraint checking than
strategy g&t. So, it is always profitable to push anti-monotone constraints (the
generate and test strategy is less efficient for anti-monotone constraints).

4 Optimizing Constraint Checking

4.1 Testing non Anti-monotone Constraints

Assume C is a conjunction of atomic constraints C; A ... A C,, some of which are
anti-monotone (e.g., Cfreq) and some others are not. Let the conjunction of all
anti-monotone constraints from C; A...AC, be denoted C,,, and the conjunction
of other constraints be denoted C,.

In the previous section, we show that it is interesting to push every anti-
monotone constraint checking during the search space exploration. Therefore, it
is natural to try to push constraints that are not anti-monotone.

The motivation is that testing some anti-monotone constraints is very expen-
sive, e.g., those like Cf,, that need to scan the data. One solution is to remove
as soon as possible some candidates by pushing non anti-monotone constraints
during the search space exploration. A particular case is when it is possible to
push the constraint at the candidate generation step: for example, using the con-
straint A € S avoids the generation of the candidates that do not contain A, and
therefore minimize the constraint testing (the frequencies of the itemsets that do
not contain A do not have to be computed).

However, pushing non anti-monotone constraints leads to less effective prun-
ing. Pruning, in the case of anti-monotone constraints, is based on the fact that,
if an itemset S does not satisfy the anti-monotone constraint C,,, then every
superset, of S do not satisfy it either. However, if S has been removed from the
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set of the candidates before the test of C,,, because it does not verify some non
anti-monotone constraint, Cq,(S) is unknown. Then, it is not possible to prune
the supersets of S.

The tradeoff is as follows: when a non anti-monotone constraint is pushed, it
might save tests on more costly anti-monotone constraints. However, the results
of these tests could have lead to more effective pruning. The following example
shows that the “generate and test” strategy is sometimes more efficient.

Ezample 6. Assume the constraint C(S) = |S| = 10 A Cjp¢q(S5), i.e., S contains
exactly 10 items and S is frequent. If the constraint |S| = 10 is pushed into the
candidate generation step, no candidate of size lower than 10 is generated. Every
candidate of size 10 is generated and its frequency is tested in one database pass.
It is clear that no pruning is possible. This leads to (ﬁ)) candidates and, as soon
as n is large, this turns to be intractable for any frequency threshold.

A “generate and test” strategy computes every frequent itemset and needs
several passes over the database. Then all itemsets whose size is not 10 are re-
moved. This strategy remains tractable for a reasonable frequency threshold even

for a large n.

This example is one of the most important of the paper. It shows that pushing
non anti-monotone constraints can be a mistake. Previous works on this subject
never point out this tradeoff. This motivates our general study about pushing
non anti-monotone constraints.

4.2 A Generic Algorithm

If one wants to push an non anti-monotone constraint in the loop of the APRI-
ORI algorithm, there are several possibilities (e.g., the constraint can be pushed
between phase 1 and phase 2 or between phase 2 and phase 3, etc.). To study
these possibilities, we propose a generic algorithm G that generalizes APRIORI
and that allows to push non anti-monotone constraints at several places in the
loop. In this algorithm and in the whole section, k£ denotes the size of the itemsets
at the current level, £ denotes the set of itemsets of size k that are generated in
step 4 and that pass all the tests of steps 5 through 9.

Steps 3 to 10 define the loop of the algorithm. C,, Cy, C. and C4 are conjunctions
of atomic constraints from C = C; A...AC,. Cas is the conjunction of the atomic
constraints that need a database pass to be tested (e.g., Crreq). There are several
steps where an atomic constraint C; can be tested. First, it can be pushed at the
candidate generation step (step 4) if it is possible to have a generation procedure
that makes use of the constraint (e.g., C;(S) = A € S). This is discussed in the
paragraph about candidate generation. Second, it is possible to test it on steps
5,7, 8,9 and 12. Step 12 corresponds to a “generate and test” strategy: the
constraint is not pushed into the search space exploration.

The safe pruning step (step 6) can be seen as a constraint checking step too.
Pruning means exactly removing itemsets S that cannot verify the anti-monotone
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Algorithm G

1. k=1
2. £0 = {@}
3. repeat
# Candidate generation for level k
4. C) := generate(L; ;)
5. Cl = )N SAT, # Test C,
6. # Safe pruning of C} using anti-monotone constraints
C? := safe-pruning-on(C})
7. C} = C}N SAT;, # Test Cy
#Test constraints which need a database scan
8. Cp:=CnSATc,,
9. Ly, = CpNSATe, # Test C.
10. k:=k+1

11. until there is no more candidates
# Test constraint Cy on extracted itemsets
12. return UF"'L; N SAT,

constraint C,,, because we already know (from a previous iteration) that a subset
of S does not verify it. Implementing this constraint is discussed in a specific
paragraph. Step 6 can be rewritten C? := C’,% NSAT,,.,.,., where Cprune(S) is true
iff S cannot be pruned.

Finally, each of the steps of the generic algorithm can be seen as a constraint
checking step. This means that we can rewrite the loop of the algorithm G as:

repeat
C} := generate(L;_1)
Cy == CQ N SATe # Test C]
Cp == O} N SATy; # Test C,

Ly = C’,Z”_l N SATe # Test C),
k=k+1
until there is no more candidates

where each atomic constraint C;, 1 < i < m, is either one of the C;, 1 < j <,
or the pruning constraint Cprune (p denotes the index such that Cprune = C)).
Reciprocally, each of the atomic constraints C;, 1 < j < n is either one of the C;,
1 < < m, or in the compound constraint C; (and outside the loop).

It is straightforward to see that the algorithm G is correct (i.e., it returns a
subset of SAT¢). The completeness of G depends of the generation and pruning
steps. The generation step must be complete, i.e., the candidate set C} must be
a superset of SATy N Items,. The pruning step must be correct, i.e., it must not
remove any itemset that is in SATg.



Theorem 2. Provided that the generation step is complete and the pruning step
s correct, the generic algorithm G is correct and complete, i.e., it returns SAT¢.

Ordering the Constraints in the Loop Pushing an atomic constraint C' from
step 12 to the last step of the loop of the generic algorithm G will not change
Test(C') or Test(C}) for any 1 < i < m. However, once C’ is inside the loop, the
constraints can be reordered.

Two parameters influence the search for a good ordering: the selectivity of the
constraints and their evaluation cost. Selective constraints avoid a lot of checking
steps for the constraints that follow. However, it is generally not possible to have
a clear idea of the selectivity of a constraint.

Ezample 7. Consider the constraint C(S) = Cjreq(S) NS C {A,C,E}. If every
itemset is frequent, S C {A,C,E} has a high selectivity. On the other hand, if A,
C and E are the only frequent attributes, its selectivity is nil.

However, it is possible to provide a few remarks about constraint ordering.

— If a non anti-monotone constraint is tested before an anti-monotone one, it
implies less pruning. This is valuable only if it avoids checking some other
more expensive constraints (e.g., frequency constraint checking).

— In the generic algorithm G, there is only one step (step 8) during which a
database pass is performed. It is theoretically possible to have several such
steps (there can be several constraints that need data scans). However, several
steps with a database access mean several database passes. For very large
datasets, it can be highly desirable to have at most one database pass per
level.

— If an anti-monotone constraint is tested before the pruning constraint Cpryne,
it does not take any profit from the pruning phase.

Candidate Generation Naive generation leads to (Z) candidates and is clearly

intractable. It is mandatory to design a candidate generation algorithm that is
complete (a superset of SAT; NItems), has to be generated) and effective (Ug>1C}
must be as small as possible).

In the general case, C = Cyn A C, and the only information available is that
there is no need to generate itemsets that are supersets of itemsets that do not
verify C,,,. Let Ry denote the set of itemsets S of size k for which we have found
that Cum(S) is false (Ry is a subset of C — L), N, = Uj<xR; and N7 = {S C
Items, 35" € Ny s.t. S € S}. We have the following theorem.

Theorem 3. The candidate generation step is complete with any constraint C =
Cam N Co only if CP., is a superset of Ttems, 1 — N, and C§ = Items.

As a consequence, the classical candidate generation step of the APRIORI al-
gorithm, generate,, ;,.;, does not work for general constraints (because it makes
the assumption that all itemsets that verify Cy, are in Ly).

9



We do not know an efficient algorithm to enumerate Items;; — N, (without
the obvious intractable generation of Items ). Such an algorithm would be very
valuable: pruning step would no longer be necessary.

Pruning The goal of the pruning step is to remove from the set of candi-
dates C’,f; the itemsets of N,". The classical APRIORI candidate generation
(generate generates a superset of Itemsy,; — N,j. A subsequent prun-
ing step is necessary to remove all itemsets of N\ from the set of candidates
Ck+1. The APRIORI algorithm uses the following pruning algorithm:

apriori)

Pruning: algorithm P
for all S € Cy; and for all S” C S such that |S'| =k
do if S’ € L; then delete S from Cj,; od

Remember that Ly is the set of itemsets of size k that verify all the constraints
pushed in the loop (if all the constraints are pushed, £, = SAT: N Itemsy). The
important property for a pruning algorithm is its correctness. It ensures that no
itemset which verifies the constraints is pruned. The following proposition is a
straightforward characterization of the itemsets that can be safely pruned.

Proposition 1. A pruning algorithm is correct if at level k+1, S is pruned only
if S e N/

The pruning algorithm P is correct for anti-monotone constraints only, i.e., if
C is an anti-monotone constraint. In the general case, C = C,,, A C, and C, is not
anti-monotone. It can be so that S" & L, because C,(S5’) is false while C,,,(5’) is
true. In such a case, the algorithm would prune S O S" while C,(S) A Con(S) is
true (incorrectness). Let us propose a correct pruning algorithm.

Pruning: algorithm P’
for all S € Cyy; and for all S” C S such that |S"| =k
do if S' ¢ L} and C,(S’) then delete S from Cj; od

Proposition 2. P’ is correct for all types of constraints C

If " ¢ Ly, and C(S") is true then C,,,(5’) is false. It follows that, due to the
anti-monotonicity, if S” C S then C,,,(S) is false and the candidate S can be
pruned safely. We discuss now the completeness of the algorithm P’.

Definition 5 (complete pruning algorithm). A pruning algorithm is com-
plete if at level k+1, S € N;" = S is pruned.

Proposition 3. P’ is not complete.

Ezample 8. In this example, Items = {A,B,C,D}. Assume all itemsets are fre-
quent, except CD and its supersets (BCD, ACD and ABCD). Assume the constraint is
C = Creq N C, where Co(S) = (|S] > 3 = {A,B} C S), i.e., the itemsets that do
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not satisfy C, are ACD and BCD. At level 3, £3 = {ABC,BCD}. At level 4, ABCD is
generated (from ABC and BCD) and is not pruned by P’ since for all S’ C ABCD
such that |S'| = 3 and S" &€ L3, C,(S") is false. However, at level 2 the algorithm
finds that CD is not frequent, so ABCD should be pruned since it is a superset of
CD. P’ is therefore not complete.

Another problem with the algorithm P’ is that it can be costly to test C,(S")
for each subset of the itemsets of Cj.

A correct and complete pruning algorithm needs to remove each itemset of
C1 that is the superset of an itemset from Ny. This can be done easily if itemsets
of N are stored, however this can be expensive.

4.3 Testing Monotone Constraints

In previous sections, we have seen that it is difficult to tackle the problem of the
candidate generation step with general constraints. Anti-monotone constraints
provide information on itemsets that cannot satisfy the constraints. We need also
information to find a superset of the itemsets that verify the constraints to have a
correct and efficient candidate generation algorithm. It seems natural to consider
the negation of anti-monotone constraints.

In this section, we focus on conjunctions of anti-monotone and monotone
constraints, i.e., C = Cypn A Cy. A monotone constraint C,, is simply the negation
of an anti-monotone constraint. If C,, is a monotone constraint, we note C,,(S) =
=C! (S). The main property of a monotone constraint is: S C Items, Cn,(S) is
true = VS’ O S, C,,(9') is true.

Ezample 9. Continuing our running example, {A,B,C,D} C S and SN{A,B,C} #
() are monotone constraints on S.

Anti-monotone constraints give us the possibility to prune some candidates.
Monotone constraints provide a candidate generation strategy:

Proposition 4. If C(S) = Cun(S) A =CL,,(S) is true then exactly one of these
properties s true:

— S e Bdg,

— 35" c S, = |S| — 1 and C(S") is true.

This property provides a superset of the candidate set: if generate,(Ly) =
{AU B, where A € Ly, B € F), and B ¢ A}, (Fy is SAT¢,, N Items;) then
Cl41 = generate, (L) U (Bd;, N Itemsyy) is a correct candidate set for level
k+1. The remaining problem is the generation of Bd,, .Itisnot a trivial problem.
However several methods are available, e.g., one can use APRIORI with constraint
C.,, to find Bd, .

Let us now consider another generating procedure, close to the APRIORI’s
original one: generate,(L;) = {AU B, where A, B € L;}. A naive algorithm to
compute generate, will produce many duplicates (see [7]).
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Theorem 4. Assume ms = Max g g, |S|. If C1 = Bd, N Items; and, for
C, am

k > 1, the candidate set Cyyq is defined ?)Z

if k < ms, Cyy1 = generate, (L) U (Bd; N Itemsyyq);

if k =ms, Cyy1 = generate, (Ly); -

if k > ms, Cy11 = generate,(Ly);

then this candidate generation procedure is complete and ensures that every can-
didate itemset verifies = Cl,, = Cp,.

The generic algorithm with the generation step given by this theorem is there-
fore correct and complete. The fact that every candidate itemset verify C,, makes
useless any verification of this constraint after the candidate generation step.

In the previous section we saw that pruning algorithm P’ is correct.

Proposition 5. If C = Cyy A Cyy then pruning algorithm P’ is complete.

5 Revisiting the CLOSE Algorithm

It is now interesting to revisit the algorithm CLOSE [14] [3]. This algorithm make
the frequent itemset discovery possible in highly-correlated data where APRIORI is
generally intractable. We can see this algorithm as an instantiation of the generic
algorithm with an anti-monotone constraint Cfreq A Cciose and with the same
candidate generation and pruning algorithms as that of APRIORI (generate
candidate generation algorithm and pruning algorithm P).

apriori

Definition 6 (new constraint for CLOSE). Copse(S) = 5" € S = S ¢
closure(S’) where closure(S) is the mazimal (for the set inclusion) superset
of S which has the same frequency as S.

An important property of the CLOSE algorithm is its completeness: it is pos-
sible to compute SATg, and the frequency of each frequent itemset knowing
CLOSE’s output. Indeed, CLOSE provides also the closures of the itemsets from
SATee1peenC ey The demonstration of completeness is done in [14].

Ezample 10. Let us find closure(AB) on our running example. Items A and B
are simultaneously present in rows 1, 3 and 5. We notice that item C is the only
other item that is also present in these three rows, thus closure(AB) = ABC. We
also have closure(A) = AC and closure(B) = BC, so AB Z closure(A) and AB ¢
closure(B). Therefore Ceyose(AB) is true. If the frequency threshold is v = 1/3,
the inductive query oc;,.. rccin. (27°°") returns Sol = {A%, B, C,D**°, E, AB®} where
the notation AB® means that Ccese(AB) is true and that closure(AB) = ABC (this
closure is returned by the CLOSE algorithm together with AB and its frequency).
We are then able to find all the frequent itemsets and their frequencies.

Proposition 6. The Ccjpse constraint is anti-monotone.
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This constraint is another example of an anti-monotone constraint which needs
a database pass to be checked (one needs a database pass to compute the closure
of an itemset). However, checking this constraint seems expensive if the closure
of every subset of S has to be computed. We can use an equivalent constraint

Crose(S) = (S C SA|S'|=|S]—1) = S & closure(S’). The equivalence means
that Ceppse(S) is true iff Cg, . (S) is true.

So we only need the closure of every subset of S of size |S| — 1. We are now
able to test the constraint on S € L q: for each S” C S such that |S"| = |S|—1 we
must know closure(S’). In the original paper [14], the closure of each candidate
itemset of size k and its frequency are computed during the database pass at
level k. If the closure of S’ was not computed, it would mean that S’ does not
verify Cprreq A Cciose (i-€., an anti-monotone constraint) and therefore S cannot
verify Cpreq A Cciose- Finally, either the closure of S’ is known and we can check
if S C closure(S’) or it is not known and it means that Cpeq(S) A Cerose(S) is
false. This strategy which uses the anti-monotonicity of C¢se enables to test the
constraint with only a little extra cost during the database pass.

Now, it seems straightforward to search for itemsets which verify a constraint
C = Cciose N C' using the generic algorithm G. If C' is anti-monotone, there is no
problem: it is only a replacement of C¢,., with another anti-monotone constraint
(we have only used the anti-monotonicity of Ce, so far). Assume now the con-
straint is C = Ccyose N Cam N C, where C, is not anti-monotone. There are two
problems. First, if we push C,, the closures of some candidates of level k£ will not
be computed thus making the Ccyose checking impossible at level £ + 1 when us-
ing the same strategy as in CLOSE. Second, we loose the completeness of CLOSE:
SATe.,,.. ACamnc, Will n0 longer enables to compute SATe, ac, -

Assume we replace Cepose With Coppsenc, (S) = (8" € S AC(S") = S ¢
closure(S’) and Cg,,, With: Chypeenc, (S) = (8" T SA[S'| = [S| =1 ACo(S")) =
S & closure(S’)

With these new constraints (and provided that they are equivalent which is
false in the general case) the first problem is clearly solved: we only need the
closure of itemsets that verify C,. The second one is also solved (the proof is
omitted but is very similar to the completeness proof in [14]). However, Ccosenc,
is no longer anti-monotone in the general case and the anti-monotonicity of Cciose
is the key point of the efficient strategy used to test Ccjose and of the efficiency
of the whole CLOSE algorithm.

Fortunately, we can show that Cciosenc, is equivalent to Cypeene, and that they
are anti-monotone if C, is monotone.

Theorem 5. If C, is monotone then the constraints Cciosenc, and C’Close/\co are
equivalent and anti-monotone. The generic algorithm G with constraint C = Cgp A
Co ACciosenc, s complete in the sense that SATe,, ac, can be computed from SATg
and the closures of the itemsets in SATe (as in the original CLOSE algorithm).

It means that the CLOSE algorithm can be extended to find frequent itemsets
that verify conjunctions of anti-monotone and monotone constraints.
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FEzample 11. Assume the frequency threshold v = 1/3, the result of the query
OCot0se NCrregnc(27°°™2) where C(S) = A € S on our running example is {A, AB}.

6 Conclusion

We investigate the problem of optimizing the discovery of constrained itemsets.
Unlike previous works that present how to push constraints during the search
space exploration, we pointed out a tradeoff between pushing all the constraints
and using a “generate and test” approach for some of the constraints.

Theorem 1 answers the problem for anti-monotone constraints and example 6
shows that a carefull study is necessary for non anti-monotone constraints. This
is one obvious result of this paper and we gave some clues for the optimization of
inductive queries. We focus on the case when the constraint is a conjunction of an
anti-monotone constraint and a monotone one. Finally, we show how our frame-
work can integrate the CLOSE algorithm and allow the discovery of constrained
closed itemsets. Our framework is generic and can be used for other classes of
patterns. For instance, we are currently working on its application to inclusion
dependency discovery.

Furthermore, frequent itemsets discovery, and more generally data mining, is
not limited to independent (inductive) queries. Knowledge discovery in databases
is an iterative process and there are still a lot of work to do to optimize sequences
of queries. There is a major tradeoff between fully optimizing each individual
query and finding a strategy that makes use of previous mined patterns [7,2].
This strategy may be less effective for the first queries but may win for long
sequences of related queries, i.e., the way people actually proceed.
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