
Looking for monotonicity properties of a similarity
constraint on sequences

Ieva Mitasiunaite
INSA Lyon, LIRIS CNRS UMR 5205

F-69621 Villeurbanne, France
Ieva.Mitasiunaite@insa-lyon.fr

Jean-François Boulicaut
INSA Lyon, LIRIS CNRS UMR 5205

F-69621 Villeurbanne, France
Jean-Francois.Boulicaut@insa-lyon.fr

ABSTRACT
Constraint-based mining techniques on sequence databases
have been studied extensively the last few years and ef-
ficient algorithms enable to compute complete collections
of patterns (e.g., sequences) which satisfy conjunctions of
monotonic and/or anti-monotonic constraints. Studying new
applications of these techniques, we believe that a primitive
constraint which enforces enough similarity w.r.t a given
reference sequence would be extremely useful and should
benefit from such a recent algorithmic breakthrough. A non
trivial similarity constraint is however neither monotonic nor
anti-monotonic. Therefore, we have studied its definition as
a conjunction of two constraints which satisfy the desired
monotonicity properties: a pattern is called similar to a ref-
erence pattern x when its longest common subsequence with
x (LCS) is large enough (i.e., a monotonic part) and when
the number of deletions such that it becomes the LCS is
small enough (i.e., an anti-monotonic part). We provide an
experimental validation which confirms the added value of
this approach on a biological database. Classical issues like
scalability and pruning efficiency are discussed.

1. INTRODUCTION
We strongly believe that the inductive database frame-

work can efficiently support complex knowledge discovery
(KDD) processes [14, 9, 4]. The so-called inductive queries
are declarative queries which express the constraints that
have to be satisfied by the solution patterns. Then, typical
challenges are (a) to identify useful primitive constraints for
various pattern domains (e.g., constraints to express the a
priori interestingness of patterns holding in sequence data-
bases), and (b) to be able to design efficient and (when pos-
sible) complete solvers for computing every pattern which
satisfies a combination of primitive constraints. When fea-
sible, completeness is an invaluable property for supporting
end-user driven KDD processes: the semantics of the ex-
tracted patterns is formally specified and this can be used
during the crucial interpretation phases.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

We are interested in sequence database analysis for vari-
ous application domains (e.g., genomic data analysis, seis-
mic data analysis, alarm data analysis, WWW usage min-
ing). Given potentially huge databases of sequences (i.e.,
temporal or 1-dimensional spatial data), our current goal is
to support the expression and the evaluation of quite gen-
eral inductive queries returning sequence (string) patterns.
The state-of-the-art is that efficient solvers are available for
specific conjunctions of primitive constraints. For instance,
many solvers have been designed for frequent sequential pat-
tern mining possibly combined with some more or less re-
stricted types of syntactic constraints [25, 17, 26, 12, 19].
Interesting results concern the efficient processing of regular
expression constraints (see, e.g., [11, 20, 1]) thanks to ad-hoc
optimization strategies. An alternative promising approach
has been developed by De Raedt and colleagues which tack-
les arbitrary Boolean combination of constraints which are
either monotonic or anti-monotonic [10, 7, 8]. Indeed, a key
issue for designing efficient solvers is to consider constraint
properties (like anti-monotonicity and its dual monotonicity
property) and their associated opportunities for search space
pruning. Many useful primitive constraints are monotonic
(e.g., maximal frequency in a data set, enforcing a given
sub-string occurrence) or anti-monotonic1 (e.g., minimal fre-
quency, avoiding a given sub-string occurrence).

Surprisingly, similarity constraints have been seldomly stu-
died by the data mining community while it is one of the core
algorithmic issues in bioinformatics. In this paper we con-
sider that a primitive constraint which would enforce enough
similarity w.r.t a given reference pattern would be extremely
useful across many application domains. The challenge is
then to combine such a constraint with other user-defined
constraints. For instance, it is interesting to look for se-
quences of actions on a WWW site which are frequent for
a given group of users, infrequent for another group and
which are are similar enough to an expected pattern spec-
ified by the WWW site designer. In other terms, we want
to add a primitive similarity constraint to the available effi-
cient solvers on the string pattern domain, e.g., FAVST [8].
The problem is that a non trivial similarity constraint is
neither monotonic nor anti-monotonic and can not benefit
from the recent algorithmic breakthrough. Therefore, our
technical contribution is to formalise a similarity constraint
as a conjunction of two constraints which satisfy the desired

1Some other classes have been studied like, e.g., succinct-
ness, which turns to be a conjunction of monotonic and
anti-monotonic constraints for which ad-hoc optimizations
can be defined.

546

monotonicity properties: a pattern is called similar to a ref-
erence pattern x when its Longest Common Subsequence
with x (LCS) is large enough (i.e., a monotonic constraint
which enforces similarity with x) and when the number of
deletions such that it becomes the LCS is small enough (i.e.,
an anti-monotonic constraint which prunes too dissimilar
candidates). Section 2 provides the needed definitions. Sec-
tion 3 formalises our similarity constraint. Section 4 is an
experimental validation which confirms the added value of
this approach on a biological database. Classical issues like
scalability and pruning efficiency are discussed. Section 5 is
a short conclusion.

2. PROBLEM SETTING

Definition 1 (Basic notions on strings). Let Σ be
a finite alphabet, a string σ over Σ is a finite sequence of
symbols from Σ and Σ∗ denotes the set of all strings over Σ.
Σ∗ is our language of patterns L and we consider that the
mined data set denoted r is a multi-set2 of strings built on Σ.
|σ| denotes the length of a string σ and ε denotes the empty
string. We note σi the ith symbol of a string σ. A sub-string
σ′ of σ is a sequence of contiguous symbols in σ, and we note
σ′ � σ. σ is thus a super-string of σ′, and we note σ � σ′.
We assume that, given a pattern φ ∈ L, the supporting set
of sequences in r is denoted by ext(φ, r) = {σ ∈ r | φ � σ}.

Example 1. Let Σ = {a, c, g, t}. acct, acgct, ε are exam-
ples of strings over Σ. Examples of sub-strings for acgct are
a and gct. aacgctg is an example of a super-string of acgct.
If r is {acttc, agttca, ttacg}, ext(ttc, r) = {acttc, agttca}.

Definition 2 (Constraints/inductive queries). A
constraint is a predicate that defines a property of a pat-
tern and evaluates either to true or false. An inductive
query on L and r with parameters p is fully specified by a
constraint Q and its evaluation needs the computation of
{φ ∈ L | Q(φ, r, p) is true} [16]. In the general case, Q is a
Boolean combination of the so-called primitive constraints.

Definition 3 (Generalisation/specialisation). A
pattern φ is more general than a pattern ψ (denoted φ � ψ)
iff ∀r ext(φ, r) ⊇ ext(ψ, r). We also say that ψ is more
specific than φ (denoted ψ � φ). Two primitive constraints
can be defined: MoreGeneral(φ, ψ) is true iff φ � ψ and
MoreSpecific(φ, ψ) is true iff φ � ψ.

For strings, constraint SubString(φ, ψ) ≡ φ � ψ (resp.,
SuperString(φ, ψ) ≡ φ � ψ) are instances of MoreGeneral
(φ, ψ) (resp., MoreSpecific(φ, ψ)). In other terms, ∀φ, ψ ∈
L, φ � ψ iff φ � ψ.

Definition 4 (Some primitive constraints). Typic-
al syntactic constraints are MinLen(φ, len) ≡ |φ| ≥ len and
MaxLen(φ, len) ≡ |φ| ≤ len. Assume that Fr(φ, r) denotes
the number of strings in r that are super-strings of φ, i.e.,
|ext(φ, r)|. Given a threshold value f , MinFr(φ, r, f) ≡
Fr(φ, r) ≥ f (resp. MaxFr(φ, r, f) ≡ Fr(φ, r) ≤ f) de-
notes a minimal (resp. maximal) frequency constraint in r.

2Data may contain multiple occurrences of the same se-
quence.

Example 2. If r = {acg, act, gt, t, gt} and Σ = {a, c, g, t},
Fr(acg, r) = 1, Fr(gt, r) = 2, Fr(ag, r) = 0, and Fr(ε, r) =
5. MinFr(gt, r, 2), MaxFr(acg, r, 2), MoreGeneral(t, gt),
and MinLen(acg, 3) are examples of satisfied constraints.
Q ≡ MinFr(φ, r, 2) ∧ MaxFr(φ, r, 4) ∧ MinLen(φ, 2) is an
example of an inductive query whose solution set is {ac, gt}.

Definition 5 ((Anti-)monotonicity [10]). Let r be
a data set, L be the pattern language and p be parameters.
A constraint Q is anti-monotonic iff ∀r and ∀φ, ψ ∈ L,
φ � ψ ⇒ Q(ψ, r, p) → Q(φ, r, p). Dually, a constraint Q′

is monotonic iff φ � ψ ⇒ Q′(ψ, r, p) → Q′(φ, r, p). Note
that conjunctions and disjunctions of anti-monotonic (resp.
monotonic) constraints are anti-monotonic (resp. monotonic).

Example 3. SuperString, MinLen, and MaxFr are mo-
notonic constraints. SubString, MaxLen, and MinFr are
anti-monotonic ones.

In most of the application domains, the notion of sim-
ilarity between two objects o1 and o2 informally means a
”small difference“ between o1 and o2. We denote that re-
lation sim(o1, o2). Obviously, the property ”small differ-
ence“ should not be propagated too far, i.e., the relation
sim(o1, o2) should not be transitive.

Monotonicity properties and their associated efficient prun-
ing strategies exploit the generalisation relation property
(see Definition 3) which establishes a lattice structure on
the search space. We observe that a constraint establishing
a relation (e.g., a similarity constraint) is anti-monotonic
or monotonic if the associated relation is isomorphic to a
generalisation relation. Let us emphasize that a similarity
constraint establishing a non-transitive similarity relation
between two objects is fundamentally neither monotonic nor
anti-monotonic, since a non-transitive similarity relation can
not be isomorphic to a generalisation relation.

Many approaches can be used to define similarity between
strings. It has been extensively studied in the bioinformatics
area (see, e.g., [6] for a survey). [24] has proposed the def-
inition of a reflexive, symmetric but not transitive relation
R on Σ s.t. two strings are said to be similar if their corre-
sponding symbols are in relation by R. Another approach is
to use one of the classical distances (e.g., Hamming [23] or
edit distance [15]) and to assume that two strings are similar
if the distance between them is at most some positive inte-
ger threshold. More sophisticated approaches are based on
words instead of single symbols. This is the typical approach
of the famous BLAST program [2]. Another approach to
similarity constraint is fault tolerant pattern mining, where
tolerance to exceptions (say noise) is achieved by means of
soft matching (see, e.g., [22, 21]). Expressing similarities by
means of regular expressions can be used as well. Mining se-
quences which are frequent and satisfy a regular expression
has been studied [11, 1]. Also, mining patterns satisfying a
minimal frequency constraint in conjunction with a symbol-
based similarity has been considered in [5]. These later con-
tributions are typical of data mining algorithmic research:
combining an anti-monotonic constraint like the minimal
frequency with others which are neither monotonic nor anti-
monotonic (e.g., regular expressions, similarity constraints)
can be tackled by means of ad-hoc techniques, often based
on relaxation strategies. Looking for generic strategies, an
important contribution concerns the efficient evaluation of
combinations of anti-monotonic and monotonic constraints

547

[10, 7] and it has been optimized for string mining [8]. To
the best of our knowledge, the associated FAVST algorithm
is one of the most advanced proposals for constraint-based
string mining. Therefore, instead of looking for ad-hoc relax-
ation strategies, our goal is to study how to design a natural
decomposition of a similarity constraint into a combination
of monotonic or anti-monotonic constraints. If possible, such
a decomposition might enable not only an efficient exploita-
tion of the primitive similarity constraint itself but also of
arbitrary combinations of such a similarity constraint with
other anti-monotonic and/or monotonic constraints.

3. DEFINITION OF A SIMILARITY CON-
STRAINT

Our goal is to formally define a semantics of a similarity
constraint Sim(φ, x) where x is the reference string pattern
and φ is a candidate string pattern. Let us assume that a
measure s(φ, x) is associated to such a constraint so that
Sim(φ, x) ≡ s(φ, x) ≤ t (resp. s(φ, x) ≥ t), where s(φ, x)
is a distance measure (resp. a similarity measure) and t is
an integer threshold. Typical measures are the edit and
Hamming distances, the episode distance, or the longest
common subsequence distance. Generally, distance func-
tions are dependent of the operation costs (e.g., insertion,
deletion, substitution, transposition) needed to convert one
string into another. We consider operations where ”errors“
on one string w.r.t the other are encountered. That notion
of error is convenient to interpret in different application
domains, e.g., data transmission, text editing, mutational
events on biological sequences. Thus, it makes sense to ex-
press a similarity constraint in terms of acceptable errors.

Given φ and x, the string editing problem consists of
transforming φ into x by performing series of weighted edit
operations on φ for an overall minimum cost. An edit oper-
ation on φ can be the deletion of a symbol, the substitution
of a symbol with another one, or the insertion of a symbol.

Example 4. Let Σ = {a, c, g, t} and assume a function
s(φ, x) based on an edit distance (i.e., the minimal num-
ber of insertions, deletions and substitutions to get identical
strings). Let x = aactcgc and t = 2, then Sim(φ, x) is true
with, e.g., φ1 = aactc, φ2 = actcg, φ3 = taactcgcc and
false with, e.g., φ4 = actc, φ5 = ct, φ6 = ataactcgcc. Note
that Sim(φ, x) is neither anti-monotonic (φ4 is more general
than φ1) nor monotonic (φ6 is more specific than φ1).

Definition 6 (Longest Common Subsequence). Let
x be a string over a finite alphabet Σ. A subsequence of
x is any string w that can be obtained from x by deleting
zero or more (not necessarily consecutive) symbols. More
formally, w is a subsequence of x if there exists integers
i1 < i2 < . . . < in s.t. w1 = xi1 , w2 = xi2 , . . . , wn = xin .
w is a Longest Common Subsequence (LCS) of x and φ if it
is a subsequence of x, a subsequence of φ, and its length is
maximal. We denote that |w| = lcs(φ, x) and, in general, w
is not unique.

A substitution can be always achieved by one deletion and
one insertion. If insertions and deletions have unit costs, and
if the cost of substitution is higher that 2, then an optimal
sequence of edit operations will always avoid substitutions
and produce x from φ only by means of insertions and dele-
tions. Then, the pairs of matching symbols in an optimal

editing script constitute a LCS of φ and x. Note that with
such an edit distance e, lcs(φ, x), |φ| and |x| are such that
e = |φ|+|x|−2×lcs(φ, x). A study concerning string editing
and longest common subsequences can be found in, e.g., [3].

It makes sense to evaluate the similarity between φ and
x in terms of their LCS [18]. One possible approach is to
consider the largest number of symbols of one sequence that
can be matched with those of a second sequence enabling
any interruption in both sequences, i.e., lcs(φ, x).

Lemma 1. Assume two strings x, φ ∈ L, φ′ � φ, w one
LCS of φ and x, and w′ one LCS of φ′ and x. We have
|w| = lcs(φ, x) ≥ lcs(φ′, x) = |w′|.

Definition 7 (Minimum LCS length constraint).
Let x be the reference pattern, φ be a candidate pattern from
L, and l be a threshold value. The minimum LCS length
constraint is defined as MinLCS(φ, x, l) ≡ lcs(φ, x) ≥ l.

Proposition 1. MinLCS(φ, x, l) is a monotonic const-
raint.

Example 5. Assume x = tctggga. Patterns φ1 = gcggga
and φ2 = ctggaga satisfy MinLCS(φ, x, 5): lcs(φ1, x) =
|cggga| = 5 and lcs(φ2, x) = |ctggga| = 6. Pattern φ3 =
attagtgttttgggg also satisfies it: lcs(φ3, x) = |ttggg| = 5.

It illustrates that a constraint MinLCS(φ, x, l) enables
to specify a degree of similarity (i.e., a minimum number
of matching symbols), and thus to capture patterns which
are similar to the reference one. Let us notice however that
MinLCS(φ, x, l) does not restrict the dissimilarity of a can-
didate. Thus, we would like to add a second constraint that
would bound the number of ”errors“ within a candidate.

Definition 8 (Max Deletions constraint). If x is
the reference pattern, φ is a candidate pattern from L, and
d is a threshold value, we can get a subsequence of φ by
deleting from it a certain number of symbols (see Definition
6). The number of deletions applied on φ to get its LCS with
x is dels(φ, x) = |φ| − lcs(φ, x). The Maximum Deletions
constraint is defined as MaxDels(φ, x, d) ≡ dels(φ, x) ≤ d.

Proposition 2. MaxDels(φ, x, d) is an anti-monotonic
constraint.

Definition 9 (A Similarity Constraint). Our sim-
ilarity constraint for a pattern φ w.r.t. a reference pat-
tern x is defined as Csim(φ, x, l, d) ≡ MinLCS(φ, x, l) ∧
MaxDels(φ, x, d), where d and l are user-defined thresholds
whose value can be tuned according to |x|.

Example 6. Continuing Example 5, patterns φ1 and φ2

satisfy Csim(φ, x, 5, 1). Pattern φ4 = gcgggta satisfies Csim

(φ, x, 5, 2) since lcs(φ4, x) = |cggga| = 5. Pattern φ3 does
not satisfy neither Csim(φ, x, 5, 1) nor Csim(φ, x, 5, 2).

Remark 1. The length of a pattern φ satisfying Csim(φ, x,
l, d) is at least l and at most |x| + d. Note that even though
the maximal length of a pattern φ satisfying Csim(φ, x, l, d)
can be inferred from |x| and d, the fact that φ satisfies Min-
LCS(φ, x, l)∧MaxLen(φ, |x|+d) does not imply that it satis-
fies Csim(φ, x, l, d). Let x = agcgac, φ5 = gagataga, l = 4,
and d = 2. MinLCS(φ5, x, 4) ∧ MaxLen(φ5, 8) is satis-
fied but Csim(φ5, x, 4, 2) is not satisfied since lcs(φ5, x) =
|agga| = 4 and dels(φ5, x) = 4.

548

Remark 2. The constraint MaxDels(φ, x, d) enables to
prune candidate patterns φ that have already collected too
many ”errors“ and have no chance to become similar to x.
Consider pattern φ3 from Example 5, its sub-string φ′

3 =
attagt and Csim(φ, x, 5, 2) (see Example 6). The anti-mono-
tonic sub-constraint MaxDels(φ′

3, x, 2) is not satisfied, since
lcs(φ′

3, x) = |tta| = |ttg| = 3 and thus, dels(φ′
3, x) = 3, so

any further super-string of φ′
3 can be pruned.

4. EXPERIMENTS
The FAVST algorithm [8] is among the best algorithms for

mining strings which satisfy conjunctions of anti-monotonic
and monotonic constraints. It uses a Version Space Tree
(VST) [10] designed to index a version space of strings. VST
is based on a less compact form of a suffix tree, called a
suffix trie. A trie is a tree whose each edge is labelled with
a symbol from the alphabet Σ. The labels on every edge,
emerging from a parent node, must be unique. Each node
n in a trie uniquely represents a string δ(n) composed of
the symbols on the path from the root to node n. The root
represents the empty string ε. A suffix trie is a trie with the
following properties:

• For each node n and for each suffix t of δ(n), there is
also a node n′ representing t in the trie, i.e., t = δ(n′).

• Each node n has a suffix link suffix(n) = n′, where
δ(n′) represents the suffix of δ(n) obtained by dropping
its first symbol. As the root represents ε, having no
suffix, suffix(root) is defined to be equal to ⊥.

Figure 1: An example of a Version Space Tree

Example 7. Assume Σ = {a, c, g, t} and a database r =
{acg, gt, gt}. Figure 1 presents a VST for r, with frequency
values given inside each node. The dashed arrows indicate
the suffix links (the suffix links of root children are omitted).
The labels are stuck to the nodes. This VST is labelled for
Q ≡ MinFr(φ, r, 2). Here, the nodes labelled with � are left
for illustrative reasons, though the branches containing only
� nodes are to be pruned.

Compared to classical suffix tries, VST have some specific
properties:

• it is constructed from a set of strings, instead of a
single string;

• as an intermediate computation result, the counts of
occurrences of each substring δ(n) are stored in the
corresponding nodes n. In addition to this, each node
n is labelled with either ⊕, indicating that δ(n) sat-
isfies a constraint Q, or with �, indicating that δ(n)
does not satisfy a constraint Q.

• chains of nodes with only one out-going edge are not
coalesced into a single edge label, since the frequency
counts and the labels need to be stored for each sub-
string represented by VST.

Note that a memory needed for a VST is not directly de-
pendent on the size of a database but rather on the number
of the different string patterns occurring in a database.

To provide an empirical evaluation of our similarity con-
straint Csim(φ, x, l, d), we have implemented FAVST in C.
We have processed databases of human promoter sequences3

on a Pentium(R) 4CPU 3.00GHz processor and 1GB main
memory.

4.1 Pushing Csim(φ, x, l, d)

Since our similarity constraint is expressed as a conjunc-
tion of anti-monotonic and monotonic sub-constraints, it is
possible to push it deeply into the extraction phase. The
objective of this section is to assess the added value w.r.t.
resolving a similarity constraint by post-processing a com-
plete solution set calculated beforehand. We have performed
experiments to compare a similarity based pruning and a
similarity post-processing. Upstream promoter sequences of
the human genome (20647 sequences of length 5000, 101MB)
have been processed. Various extractions have been per-
formed using the reference patterns x of different lengths and
the more or less selective similarity constraints Csim(φ, x, l, d)
(see first four columns of Table 1). The smaller the parame-
ter l and the larger the parameter d, the less selective is the
similarity constraint. We have started with a reference pat-
tern of length 6 (this was identified as a preferred minimal
length for the ongoing biological application). We have aug-
mented the reference pattern’s length until the extraction
became unfeasible.

The space of investigated d and l values is limited by se-
mantical issues. Firstly, a similarity constraint is intended to
enforce enough similarity, and large d and small l values do
not imply a similarity anymore. Secondly, the parameters l
and d are related (see Definition 8). Enforcing dels(φ, x) ≤ d
also means that at least (|x| − d) symbols of φ constitute a
lcs(φ, x). Thus, d specifies a lower bound for lcs(φ, x) which
can be raised by a larger l in MinLCS(φ, x, l). Thirdly, note
that the meaning of “large” and “small” parameter value is
|x| dependent. Hence, we consider that it is illustrative to
present the results of experiments by means of a table for l
and d values enabling to capture a similarity. The behaviour
for other parameter sets can be induced, e.g., large |x| and
small l values would result in a huge (unless pattern length is
limited by a rather small d) set of solutions, as almost every
pattern becomes similar to x, especially when an alphabet
is small.

A similarity constraint expressed as a conjunction of a
monotonic and an anti-monotonic one can by resolved by the
FAVST algorithm. The anti-monotonic MaxDels(φ, x, d)
can be pushed during the VST construction phase, and the
monotonic MinLCS(φ, x, l) is exploited afterwards. Push-
ing the MaxDels(φ, x, d) is handled similarly to the Max-
Len(φ, len) constraint in [8]. Minor algorithmical changes
comes to the fact that if the current node represents a pat-
tern φ = φ1φ2 . . . φn satisfying a constraint MaxDels(φ, x, d),

and if an extension φ̃ = φ1φ2 . . . φnφn+1 does not satisfy

3Available from http://hgdownload.cse.ucsc.edu/goldenPath
/hg17/bigZips/

549

Table 1: Scalability study
Csim |x| d l len Number of nodes Time

VST for p.p. VST for Csim VST for p.p. VST for Csim

C1sim 6 1 4 7 21844 527 23s 1min 40s
C2sim 7 1 5 8 87380 642 53s 1min 49s
C3sim 7 2 5 9 349524 5280 1min 17s 2min 17s
C4sim 10 1 8 11 5386756 5836 1min 59s 2min 50s
C5sim 10 2 8 12 18143975 54524 2min 36s 3min 42s
C6sim 10 3 8 13 - 406623 - 4min 47s
C7sim 15 1 13 16 - 106455 - 5min 07s
C8sim 15 2 12 17 - 1024215 - 6min 48s
C9sim 20 1 18 21 - 1861901 - 8min 16s
C10sim 25 1 23 26 - 1027140 - 12min 55s
C11sim 30 1 28 31 - - - -

that constraint, its immediate suffix φ2 . . . φnφn+1 does not
necessarily satisfy MaxDels(φ, x, d) (though any prefix of φ̃
does).

To accomplish a post-processing approach we have em-
ployed the FAVST to extract all patterns satisfying MaxLen
(φ, len = |x|+d) (since Csim(φ, x, l, d) implies |φ| ≤ |x|+d).

We focus on a VST construction phase for this is the
most expensive and crucial for the FAVST. Once a VST
is available, it can always be further pruned using any anti-
monotonic or monotonic constraint by a simple tree traver-
sal. The scalability study of both approaches is presented
on the last four columns of the Table 1. The columns la-
belled ”VST for p.p.“ correspond to a VST construction
when only MaxLen(φ, len) is used. The patterns stored
in this VST are destined for a subsequent similarity post-
processing. The columns labelled ”VST for Csim“ corre-
spond to a VST construction when exploiting MaxDels(φ,
x, d). This VST is intended to be pruned by the monotonic
MinLCS(φ, x, l) to get every pattern φ which satisfies Csim

(φ, x, l, d).
The power of our anti-monotonic similarity sub-constraint

pruning is promising. It scales much better on a size of a
VST, when |x| and d of Csim(φ, x, l, d) increase. Moreover, it
enables to go far away beyond the limits of a post-processing
approach. Starting from C6sim , a VST construction while
exploiting only MaxLen(φ, len) pruning is no longer possi-
ble on our machine (needed memory exceeds 1GB), whereas
exploiting MaxDels(φ, x, d) reduces a size of VST to 406623
nodes such that it requires approximately 20MB of memory.
For C11sim , a VST construction turned out to be impossi-
ble even with our anti-monotonic similarity sub-constraint
pruning. These experiments were performed on a rather
large database. Solving C11sim for promoters of chromo-
somes X and Y only (1004 sequences of length 5000) is feasi-
ble (3843999 nodes, 58s) when employing MaxDels(φ, x, d)
pruning. Yet, it failed with similarity post-processing ap-
proach since memory required still exceeds 1GB. VST con-
struction using MaxDels(φ, x, d) pruning takes more time
due to a LCS computation. We have employed a classical
dynamic programming approach of time complexity O(nm)
[13]. There is clearly a room for improvements on such a
computation (see, e.g., [3] for a survey). To summarize, the
time needed for pushing MaxDels(φ, x, d) is acceptable on
even large databases since it enables extractions that would
have been impossible otherwise.

4.2 Selectivity of Csim(φ, x, l, d) and impact of
MinFr(φ, r, f) pruning

Pushing the Csim(φ, x, l, d) efficiently prunes the search
space, and we study further its selectivity. Csim(φ, x, l, d)
intrinsically specifies the lower and upper bounds for length
of patterns belonging to a solution. Thus, it makes sense to
investigate the selectivity of Csim(φ, x, l, d) by comparing it
with the selectivity of Clen = MinLen(φ, l)∧MaxLen(φ, |x|
+ d). The results of corresponding experiments are pre-
sented in three first columns of Table 2. The 1st column
gives a similarity constraint (see the first four columns of
Table 1). The 2nd column gives the number of patterns
satisfying Csim(φ, x, l, d). The 3rd column gives the num-
ber of patterns satisfying a corresponding Clen. Clearly,
Csim(φ, x, l, d) is quite selective, and much more powerful
than just length’s limitations it induces. Observe that the
selectivity of Csim(φ, x, l, d) is not linearly related to its
pruning capacity, i.e., a larger solution set can be stored in
a smaller VST (see the 7th column of Table 1 and the 2nd
column of Table 2 for C3sim and C4sim or C5sim and C7sim ,
knowing that C7sim gave 598 patterns). Large |x| and small
d can require many nodes to store a quite restricted solution
set (think about combinatorial issues, number and length of
branches in a VST).

It is interesting to consider also a frequency based prun-
ing which is known to be quite efficient. Altogether with
MaxLen(φ, |x|+d) it could render the similarity post-proce-
ssing approach feasible. We have performed experiments to
evaluate MinFr(φ, r, f) impact when extracting patterns
for a post-processing approach and having combined with
Csim(φ, x, l, d). The 4th column of Table 2 gives a per-
cent and an absolute value of a minimum frequency thresh-
old. The 5th (resp. 6th) column gives the number of pat-
terns satisfying Csim(φ, x, l, d) (resp. Clen = MinLen(φ, l)∧
MaxLen(φ, |x| + d)) extracted with MinFr(φ, r, f) prun-
ing, and also its percentage of the corresponding solution
without MinFr(φ, r, f) pruning. The 7th column gives the
number of nodes in a VST pruned by MaxLen(φ, len) and
MinFr(φ, r, f) (thus, intended for a similarity post-process-
ing) and the percentage it constitutes of a corresponding
VST without MinFr(φ, r, f) pruning.

MinFr(φ, r, f) prunes quite efficiently (7th and 6th colum-
ns of Table 2 and 6th column of Table 1), especially when |x|
becomes large. Thus, pushing a MinFr(φ, r, f) to an extrac-
tion for post-processing would enable it to go further, as it is

550

Table 2: Selectivity of Csim and impact of MinFr(φ, r, f) pruning
Csim Nb of patterns Nb of patterns fr Nb of patterns Nb of patterns Nb of nodes in VST

Csim Clen Csim & MinFr Clen & MinFr for p.p with MinFr

C3sim 3196 349184 0.05% = 10 3196 = 100% 348259 = 99.7% 348599 = 99.7%
1% = 206 3042 = 95.2% 235575 = 67.5% 235915 = 67.5%

5% = 1032 2245 = 70.2% 67052 = 19.2% 67392 = 19.3%
C4sim 1132 5364912 0.05% = 10 1124 = 99.2% 3688030 = 68.7% 3709874 = 68.9%

1% = 206 635 = 56.1% 325866 = 6.1% 347695 = 6.5%
5% = 1032 44 = 3.9% 53086 = 1% 73090 = 1.4%

C5sim 15965 18122131 0.05% = 10 13765 = 86% 6579752 = 36.3% 6601596 = 36.4%
1% = 206 1133 = 7% 337960 = 1.9% 359789 = 2%

5% = 1032 74 = 0.5% 55316 = 0.3% 75320 = 0.4%

exactly with large |x| where a post-processing approach en-
countered its limits. But note that efficient MinFr(φ, r, f)
pruning also means removing a great number of patterns
from a solution set (see 2nd and 5th columns). This is the
intended behaviour in many data mining applications. Our
goal here is however to capture fault-tolerant patterns in
the data w.r.t. a reference pattern and, clearly, even in-
frequent occurrences can be interesting. In other words,
pushing MinFr(φ, r, f) might enable to perform a similar-
ity post-processing, but the price to pay can be the loss of
many relevant patterns.

Finally, observe the 7th column of Table 1 and the 5th
and 7th columns of Table 2. Let us emphasize that even
having enabled large frequency thresholds (e.g., 5%) that
prune lots of patterns similar to a reference one (e.g., 99.5%
for C5sim), the number of nodes in a VST for post-processing
is still greater than in a VST we get without MinFr(φ, r, f),
but with MaxDels(φ, x, d) pruning through a deep push of
a Csim(φ, x, l, d).

4.3 Empirical validation
We have defined a similarity constraint as a conjunction of

two sub-constraints that enables efficient pruning, and, what
is equally important, can be arbitrary combined with other
(anti-)monotonic constraints and solved by a generic solver
(e.g., FAVST). Such a definition is, however, only valuable
if it captures a useful and intuitive similarity measure. To
study this empirically, we have stated that after having per-
turbed data by some noise, a pertinent similarity constraint
should enable to find the perturbed regularities that held in
the data initially.

For experiments we have used the chrXchrY promoter
sequences of chromosomes X and Y (1004 sequences of 1000
nucleotides). Introducing z% of noise means that each sym-
bol undergoes an error with a probability z/100. In case of
an error event, we assume that a deletion of a symbol, its
substitution by a different one, or an insertion of a supple-
mentary symbol are equally possible. Also, in a case of an
insertion or a substitution, any other symbol has an equal
probability to be chosen.

We have considered a pattern of length 10 that is present
on 25 sequences of chrXchrY , once on each of them. That
pattern is used as a reference pattern x for the Csim(φ, x, l, d).
Then, we introduced 5% noise on the data to get noisedchr-
XchrY . In noisedchrXchrY , pattern x occurs on 15 se-
quences where it occurs in chrXchrY , and on one sequence
which does not contain it in chrXchrY . We consider that

x occurs if it occurs on the same sequence, but we en-
abled a relatively small shift in the position, given insertions
and deletions. Among patterns satisfying Csim(φ, x, 9, 1) in
noisedchrXchrY , there are all 25 (possibly shifted) occur-
rences of x where it was present in chrXchrY , and 57 other
patterns. It is encouraging that Csim(φ, x, l, d) enables to
recover all patterns. Yet, the number of false positives is
quite large. Notice however that the problem of discrimi-
nating between patterns that are perturbed occurrences of
a reference pattern, patterns that are perturbed or not per-
turbed occurrences of those that were similar to a reference
pattern in the original data, and patterns that have become
similar to the reference pattern due to a noise, is different
from our current goal, i.e., designing a constraint which cap-
tures a similarity.

An important application of Csim(φ, x, l, d) is the discov-
ery of putative transcription factor binding sites in promot-
ers. For instance, it is interesting to know the binding sites
that are frequent in the promoter sequences r1 of one set
of genes and unfrequent in the promoter sequences r2 of
another set of genes4. The solution to the inductive query
Q ≡ MinFr(µ, r1, f1) ∧ MaxFr(µ, r2, f2) contains a priori
interesting patterns µ, i.e. putative binding sites, for fur-
ther investigation. There is a sequence variability among
the binding sites of a given transcription factor F , i.e., some
errors are tolerated. To know whether binding sites for F
are really over-represented in r1 and under-represented in
r2, we need to find patterns ”similar“ to µ (i.e., those that
are still recognized by F). In a case where µ is an unknown
(or not well annotated) binding site, we do not know which
errors are tolerated. Given widely accepted biological hy-
pothesis that sequence elements having some functional role
are conserved, it makes sense to employ the Csim(φ, µ, l, d).
By MinLCS(φ, µ, l) sub-constraint one specifies a number
of symbols that must be matched allowing all possible inter-
ruptions in either of the strings. MinLCS(φ, µ, l) limits the
number of deletions and substitutions and MaxDels(φ, µ, d)
limits the number of insertions performed on the candidate.

5. CONCLUSION
Constraint-based mining techniques on sequence databases

is an important step towards inductive databases for many
application domains (molecular biology, WWW usage min-
ing, data stream mining). The idea is that expert data-

4This can be used to understand regulation differences in
front of some diseases or stress.

551

owners can express declarative queries (combinations of con-
straints) on sequential patterns holding in their data: solvers
are then used to compute, when feasible, the whole solution
set. While many ad-hoc approaches have been proposed
for exploiting similarity constraints, the fundamental lack
of monotonicity property of such constraints prevents from
the design of generic but also efficient solvers which could
process arbitrary combinations of constraints involving sim-
ilarity ones. Based on the generic solver FAVST which com-
putes complete collections of strings satisfying conjunctions
of monotonic and/or anti-monotonic constraints, we have
proposed a definition of a similarity constraint w.r.t a given
reference pattern as a conjunction of two constraints which
satisfy the desired monotonicity properties. We provided
a preliminary experimental validation which confirms the
added value of this approach on a biological database. A
real-world application for understanding the action of insulin
on human gene regulation by means of inductive queries on
regulated gene promotor sequences is ongoing.

Acknowledgements. The authors thank Sophie Rome for
stimulating discussions on biological applications of our pro-
posal. This research is partly funded by ACI CNRS MD 46
Bingo and by EU contract IST-FET IQ FP6-516169 (FET
arm of the IST programme).

6. REFERENCES
[1] H. Albert-Lorincz and J.-F. Boulicaut. Mining

frequent sequential patterns under regular expressions:
a highly adaptive strategy for pushing constraints. In
Proceedings SIAM DM 2003, pages 316–320, 2003.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. Basic local alignment search tool. J.
Mol. Biol., 215:403–410, 1990.

[3] A. Apostolico. String editing and longest common
subsequences. In Handbook of Formal Languages,
volume 2 Linear Modeling: Background and
Application, pages 361–398. Springer-Verlag, 1997.

[4] J.-F. Boulicaut. Inductive databases and multiple uses
of frequent itemsets: the cInQ approach. In Database
Technologies for Data Mining - Discovering
Knowledge with Inductive Queries, pages 1–23.
Springer-Verlag, 2004.

[5] M. Capelle, J.-F. Boulicaut, and C. Masson. Mining
frequent sequential patterns under a similarity
constraint. In Proceedings IDEAL’02, pages 1–6.
Springer-Verlag, 2002.

[6] M. Crochemore and M.-F. Sagot. Motifs in sequences:
Localization and extraction. In Handbook of
Computational Chemistry, pages 47–97. Marcel
Dekker, New York, 2004.

[7] S. Dan Lee and L. De Raedt. An algebra for inductive
query evaluation. In Proceedings IEEE ICDM’03,
pages 147–154, 2003.

[8] S. Dan Lee and L. De Raedt. An efficient algorithm
for mining string databases under constraints. In
Proceedings KDID’04, pages 108–129. Springer-Verlag,
2004.

[9] L. De Raedt. A perspective on inductive databases.
SIGKDD Explorations, 4(2):69–77, 2003.

[10] L. De Raedt, M. Jaeger, S. Dan Lee, and H. Mannila.
A theory of inductive query answering. In Proceedings
IEEE ICDM’02, pages 123–130, 2002.

[11] M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit:
Sequential pattern mining with regular expression
constraints. In Proceedings VLDB ’99, pages 223–234.
Morgan Kaufmann Publishers Inc., 1999.

[12] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal,
and M.-C. Hsu. Freespan: frequent pattern-projected
sequential pattern mining. In Proceedings ACM
SIGKDD’00, pages 355–359, 2000.

[13] D. S. Hirschberg. A linear space algorithm for
computing maximal common subsequences. CACM,
18(6):341–343, 1975.

[14] T. Imielinski and H. Mannila. A database perspective
on knowledge discovery. CACM, 39(11):58–64, 1996.

[15] V. Levenshtein. Binary codes capable of corresting
spurious insertions and deletions of ones. Probl. Inf.
Transmission, 1:8–17, 1965.

[16] H. Mannila and H. Toivonen. Levelwise search and
borders of theories in knowledge discovery. Data
Mining and Knowledge Discovery, 1(3):241–258, 1997.

[17] F. Masseglia, F. Cathala, and P. Poncelet. The PSP
approach for mining sequential patterns. In
Proceedings PKDD’98, pages 176–184.
Springer-Verlag, 1998.

[18] S. B. Needleman and C. D. Wunsch. A general
method applicable to the search for similarities in the
amino acid sequence of two proteins. J. Mol. Biol.,
48(3):443–453, March 1970.

[19] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. Prefixspan: Mining
sequential patterns by prefix-projected growth. In
Proceedings IEEE ICDE’01, pages 215–224, 2001.

[20] M. Pei, J. Han, and W. Wang. Mining sequential
patterns with constraints in large databases. In
Proceedings ACM CIKM’02, pages 18–25, 2002.

[21] M.-F. Sagot and A. Viari. A double combinatorial
approach to discovering patterns in biological
sequences. In Proceedings CPM ’96, pages 186–208.
Springer-Verlag, 1996.

[22] M.-F. Sagot, A. Viari, and H. Soldano. A
distance-based block searching algorithm. In
Proceedings ISMB’95, pages 322–331, 1995.

[23] D. Sankoff and J. Kruskal. Time Warps, String Edits,
and Macromolecules: The Theory and Practice of
Sequence Comparison. Reading, Mass.
Addison-Wesley, 1983.

[24] H. Soldano, A. Viari, and M. Champesme. Searching
for flexible repeated patterns using a non-transitive
similarity relation. Pattern Recognition Letters,
16(3):233–246, 1995.

[25] R. Srikant and R. Agrawal. Mining sequential
patterns: Generalizations and performance
improvements. In Proceedings EDBT ’96, pages 3–17.
Springer-Verlag, 1996.

[26] M. J. Zaki. Spade: An efficient algorithm for mining
frequent sequences. Machine Learning, 42(1-2):31–60,
2001.

552

