
No d’ordre: 2009-ISAL-0036 Année 2009

THÈSE

présentée devant

L’Institut National des Sciences Appliquées de Lyon

pour obtenir

Le Grade de Docteur

Spécialité

Informatique

Ecole Doctorale: Informatique et Information pour la Société

par

Ieva Mitašiūnaitė

Mining String Data under

Similarity and Soft-Frequency Constraints:

Application to Promoter Sequence Analysis

Soutenue publiquement le 19 mai 2009 devant le jury:

Michael R. Berthold University of Konstanz, D Examinateur
Jean-Francois Boulicaut INSA Lyon, LIRIS UMR CNRS 5205 Directeur
Olivier Gandrillon UCBL, CGMC UMR CNRS 5534 Examinateur
Ross D. King University of Wales, UK Examinateur
Dominique Mouchiroud UCBL, LBBE UMR CNRS 5558 Examinateur
Arno Siebes Universiteit Utrecht, NL Rapporteur
Maguelonne Tesseire CEMAGREF, Montpellier Rapporteur

Acknowledgements

I would like to thank the members of the thesis committee Prof. Michael R. Berthold,
Dr. Olivier Gandrillon, Prof. Ross D. King, Dr. Dominique Mouchiroud, Prof. Arno
Siebes and Dr. Maguelonne Teisseire for their interest and the time dedicated to
evaluate this thesis. I also thank Prof. Arno Siebes and Dr. Maguelonne Teisseire for
their work and the attention put in writing the evaluation reports for this manuscript.

I would like to offer my very sincere thanks to my supervisor Prof. Jean-François
Boulicaut who made this PhD research very rewarding in a scientific point of view
and in human terms. I am grateful for the continuous care starting from the first
days I joined his research group as a Master intern student in September 2004.

The work of this thesis results from the close collaboration between the Turing
group directed by Prof. Jean-François Boulicaut and biologist partners. The context
of such interdisciplinary collaboration allowed me to learn a lot about biology (for
someone graduated in computer science). I would like to thank Dr. Sophie Rome from
the group Adaptations nutritionnelles et mécanismes de l’insulino-résistance group
in INSERM U870/ INRA 1235 laboratory for the patient and very comprehensive
answers to my numerous questions about gene regulation, for providing me with
books, for her enthusiasm and interest in my Master’s internship work. A large
part of this thesis work was built on the close collaboration with the group Bases
Moléculaires de l’Autorenouvellement et de ses Altérations, directed by Dr. Olivier
Gandrillon, in CGMC CNRS UMR 5534 laboratory at the University Lyon 1. The
application of our contribution to promoter sequence analysis is the fruit of the joint
work with Dr. Olivier Gandrillon, Dr. Christophe Rigotti, Laurène Meyniel and
Stéphane Schicklin. Last but not least I thank our IQ IST-FET FP6-516169 project
partner biologist and computer scientist Prof. Ross D. King from the University of
Wales for the enriching discussions, advising, care and the collaboration on mining
yeasts genomes.

Since my arrival in Lyon in 2004, the research group Data Mining and Inductive
Databases (which, starting on October 2006, became the Modeling and Knowledge
Discovery group, called Turing) became by “second home” for 4 years. During the
first 2 years I shared the office with the former PhD students and nowadays Doctors

i

Ruggero G. Pensa and Jérémy Besson. Ruggero and Jérémy, thank you a lot for
being friends and for a joyful and supportive daily presence. I would like to offer a
special thank to Dr. Christophe Rigotti for communicating the joy of the research
work, for patient explanations and collaboration, for the attention and presence in
a number of situations. I think of my colleagues Dr. Guillaum Beslon, Dr. Carole
Knibbe, Dr. Claire Leschi, Dr. Céline Robardet, Dr. Nazha Selmaoui, my colleagues
PhD students Loic Cerf, Antoine Coulon, Dominique Gay, Yolanda Sanchez-Dehesa,
my colleagues Master intern students Yann Letrillard, Stefania Loparco, Laurène
Meyniel, Stéphane Schicklin and Jana Schmitz – I learned from each of you and it is
also because of your presence, sharing and help that I arrived where I am now.

My arrival to Lyon for the Research Master Mathématiques et informatique du
vivant studies with the specialisation Méthodes en bioinformatique moléculaire was
the first step towards this thesis. Many persons have contributed so that I could
pursue these bioinformatics studies in Lyon. I thank attaché of scientific, academic
and technical cooperation Christian Bonneville for his confidence to recommend to
attribute me the French Government scholarship. I also thank the assistant in the
Cooperation and Cultural Action Center in the French Embassy Giedrė Bernotaitė
for her availability and help concerning the administrative and practical issues. I
thank Dr. Donatas Kvedarauskas and Dr. Jolita Ralytė for the advices, availability
and help to prepare the documents of the candidature for this scholarship. I would
like to offer a sincere thank to the responsible of the Research Master Mathématiques
et informatique du vivant at INSA Lyon Dr. Hubert Charles for the attention and
confidence he witnessed being the first person who responded me in Lyon when I
was anonymously searching for the Master’s internship. I am equally grateful to the
responsible of that Master at the University Lyon 1 Dr. Sandrine Charles and the
responsible of my Master specialisation Méthodes en bioinformatique moléculaire Dr.
Dominique Mouchiroud for their care and disponibility when answering my questions.

This thesis is a result of the 4 years spent in Lyon, including not only the work
in the laboratory, but also the out-laboratory discussions, evenings and weekends. I
think of my flatmates Magdalena Mistak, Elodie Reynold, Valentina Pistoia, Aurore
Millet, Laetitia Catala, Alexandra Curien, Asta Krupavičiūtė, Iris Lobecke, Cathrin
Vetterlein, Tanja Schilling – thank you for daily sharing and support. I also thank
Gérard A. Sanchez for the enriching experience of 3 years of living in 28 rue Billon.
During 2 final years of my PhD studies I attended the weekly lessons of watercolours,
and I would like to say a special thank to Jean-Marc Brugeilles and my watercolours
colleagues Marie-Ange Andrianoely, Jean-Louis Andrieu, Nicole Gautier, Christiane
Heranney and Alain Perrot. I equally thank a former PhD student and nowadays
Doctor Romuald Thion and say a sincere farewell. My very special thanks goes to
Françoise Boulicaut.

The ground for Research Master studies in Lyon was set and, actually, possible
because of my previous Mâıtrise studies in the University of La Rochelle, which

I pursued thanks to Socrates-Erasmus scholarship and program. I would like to
thank Dr. Vilius Stakėnas who was responsible for the international relationships at
the Faculty of Mathematics and Computer Science in Vilnius University and Rima
Masiulienė who worked enthusiastically to launch and develop the academic relations
with France. I would like to offer a very sincere thank to my binome-colleague
Matthieu Guénégo whose patience while explaining French words in the exercises,
joyful presence and collaboration helped me a lot. My special thanks goes to Dr.
Arūnas Stočkus, to Manu and to my Mâıtrise internship supervisor at the University
of La Rochelle Dr. Frédéric Bertrand.

I thank my professor of Bio-cybernetics at Vilnius University Dr. Vygandas
Vanagas for supporting my interest in stydying the living systems and encouraging
to pursue my Master cursus in the domain of bioinformatics. The implementation
of the algorithms in C and C++ is an important part of the work of this thesis. I
would like to thank my professor of C and C++ Programming at Vilnius University
Viktoras Golubevas for communicating the pleasure of programming what initiated
me to develop an understanding and a self-confidence necessary to tackle the difficult
programming tasks.

Most of all, my gratitude goes to my family. First, to my parents Antanas and
Idalija, and my brother Jonas, who have been very supportive during the years that
I have spent abroad to pursue my studies. I sincerely thank Jérémy for the contin-
uous support, encouragement and help during all the year that took to write this
manuscript.

Abstract

An inductive database is a database that contains not only data but also patterns.
Inductive databases are designed to support the KDD process. Recent advances in
inductive databases research have given rise to a generic solvers capable of solving in-
ductive queries that are arbitrary Boolean combinations of anti-monotonic and mono-
tonic constraints. They are designed to mine different types of pattern (i.e., patterns
from different pattern languages). An instance of such a generic solver exists that is
capable of mining string patterns from string data sets. In our main application, pro-
moter sequence analysis, there is a requirement to handle fault-tolerance, as the data
intrinsically contains errors, and the phenomenon we are trying to capture is funda-
mentally degenerate. Our research contribution to fault-tolerant pattern extraction
in string data sets is the use of a generic solver, based on a non-trivial formalisation of
fault-tolerant pattern extraction as a constraint-based mining task. We identified the
stages in the process of the extraction of such patterns where state-of-art strategies
can be applied to prune the search space. We then developed a fault-tolerant pattern
match function InsDels that generic constraint solving strategies can soundly tackle.
We also focused on making local patterns actionable. The bottleneck of most local
pattern extraction methods is the burden of spurious patterns. As the analysis of
patterns by the application domain experts is time consuming, we cannot afford to
present patterns without any objective clue about their relevancy. Therefore we have
developed two methods of computing the expected number of patterns extracted in
random data sets. If the number of extracted patterns is strongly different from the
expected number from random data sets, one can then state that the results exhibits
local associations that are a priori relevant because they are unexpected. Among
others applications, we have applied our approach to support the discovery of new
motifs in gene promoter sequences with promising results.

Key Words: Inductive databases, constraint-based pattern mining, string patterns,
fault-tolerance, patterns relevancy assessment, promoter sequence analysis.

v

Contents

Introduction 1

I State of Art 13

1 Inductive Databases and Inductive Queries 15

1.1 Objects and Data . 15

1.2 Patterns . 17

1.3 Constraints . 20

1.4 Inductive Databases . 23

1.5 Inductive Queries . 24

2 Constraint-Based Pattern Mining 29

2.1 Structure of the Pattern Space . 29

2.2 Constraint Types and Properties . 34

2.2.1 Constraint Types . 34

2.2.1.1 Data-dependent Constraints 34

2.2.1.2 Syntactic Constraints 35

2.2.1.3 Optimisation constraints 35

2.2.2 Constraint Properties . 36

2.2.2.1 Anti-monotonic and monotonic constraints 37

2.2.2.2 Succinct constraints 38

vii

2.2.2.3 Convertible constraints 39

2.2.2.4 Prefix-monotone constraints 40

2.3 Structure of the Solution Set . 41

2.3.1 Version Space . 42

2.3.2 Generalized Version Space . 43

3 Generic Solvers 45

3.1 Theoretical Framework . 45

3.2 Instance for String Patterns . 46

3.2.1 Version Space Tree . 46

3.2.2 Generic Solvers for Strings . 49

3.2.2.1 VST . 49

3.2.2.2 FAVST . 51

4 Fault-Tolerance Expressed by Constraints 57

Motivation . 57

4.1 Introduction . 57

4.2 Similarity Constraint . 59

4.2.1 Approximate String Matching 59

4.2.1.1 Hamming Distance Similarity Constraint 61

4.2.1.2 Edit Distance Similarity Constraint 62

4.2.1.3 Episode Distance Similarity Constraint 63

4.2.1.4 Longest Common Subsequence (LCS) Distance . . . 64

4.2.2 Regular Expression Constraint 65

4.2.3 Similarity Constraint Based On Edit Score 66

4.3 Fault-tolerant Patterns . 67

4.3.1 Fault-tolerant String Patterns 69

4.3.1.1 Soft-matching through Hamming Distance Similarity
Relation . 69

4.3.1.2 Soft-matching through Edit Distance Similarity Re-
lation . 70

4.3.1.3 Soft-matching through Word-based Similarity Relation 71

4.3.2 Clique Patterns . 72

4.3.3 Patterns that are Strings over Alphabet Subsets 74

4.3.3.1 String over Alphabet Cover Patterns 75

4.3.3.2 String over Weighted Combinatorial Cover Patterns . 76

4.3.4 Regular Expression Patterns 78

4.3.4.1 String with Wildcards Patterns 79

4.3.4.2 Generalized Regular Patterns 81

4.3.5 Structured Patterns . 83

II Contribution 87

5 Similarity and Soft-Frequency Constraints 89

5.1 Problem Setting . 89

Motivation . 89

Research Context . 90

Problem Statement . 91

5.2 Similarity Constraint . 91

5.2.1 LCS Similarity Constraint . 91

5.2.2 Marguerite-Sim Generic Solver 94

5.2.3 Experimental Validation . 97

5.2.3.1 Added Value of Pushing the LCS Similarity Constraint 97

5.2.3.2 Selectivity of the LCS Similarity Constraint 100

5.2.3.3 Empirical Validation 101

5.3 Soft-Frequency Constraint . 102

5.3.1 InsDels Similarity Relation . 104

5.3.2 Soft-matching through InsDels Similarity Relation 105

5.3.3 Marguerite-SoftFr Generic Solver 108

5.3.4 Case of a Differential Extraction 117

5.3.5 Pattern with Hamming Match Function Extraction 118

5.3.6 Experimental Validation . 119

5.3.6.1 Impact of the Similarity Parameters in InsDelsMatch
Function . 119

5.3.6.2 Selectivity of the Minimum InsDels Soft-Frequency
Constraint . 121

5.3.6.3 Empirical Assessment of Soft-Support Constraint . . 123

5.3.6.4 Time Efficiency . 125

5.4 Discussion . 127

6 Studying the Twilight Zone 129

6.1 Problem Setting . 129

Motivation . 129

Research Context . 131

Problem Statement . 132

6.2 Analytical Estimation . 132

6.2.1 Occurrences at a given position 133

6.2.2 Occurrences in a data string . 134

6.2.3 Minimum Hamming Soft-Frequency Constraint 134

6.2.4 Maximum Hamming Soft-Frequency Constraint 135

6.2.5 Frequency Constraints for Differential Extraction 135

6.2.6 Number of Expected Patterns and Twilight Zone Indicator . . 135

6.2.7 Experimental validation . 136

6.3 Estimation through Pattern Sampling 139

6.3.1 Expected Number of Patterns that Satisfy Constraints in a
Sample . 140

6.3.2 Experimental validation . 141

6.3.2.1 Empirical evaluation of the estimate 141

6.3.3 Application to Promoter Sequences Data Sets 146

6.4 Discussion . 147

III Application 151

7 Genomic Sequence Analysis 153

7.1 Promoter Sequence Analysis . 153

7.1.1 Background . 153

Application Context . 153

Research Context . 154

Motivation . 156

7.1.2 Finding Signature Motifs . 157

7.1.2.1 The Choice of The Solvers 157

7.1.2.2 Taking into Account Biological Information in Com-
binatorial Pattern Extraction 157

7.1.2.3 Selecting Patterns by a Measure of Twilight Zone In-
dicator . 159

7.1.2.4 Rising Patterns . 160

7.1.2.5 Workflow of the Motif-Discovery Process 163

7.1.3 Results . 167

7.1.3.1 Patterns that are Putative Binding Sites of TFs In-
volved in v-erbA Transforming Activity 167

7.1.3.2 Patterns that are Putative Binding Sites of TFs In-
volved in the Self-Renewal of Eryhroid Progenitors . . 170

7.1.4 Discussion . 171

7.2 Starting an Application to Comparative Genomics 172

7.2.1 Background . 172

7.2.2 Mining Yeasts Genomes . 172

7.2.2.1 Data . 173

7.2.2.2 Number of Patterns in ORFs and Intergenic Regions 173

7.2.2.3 Distribution of Locations of Patterns 174

7.2.3 Discussion . 180

IV Conclusions and Perspectives 183

Conclusions 185

Perspectives 189

Generic Solver to Mine the Structured Patterns 189

Tune for the Promoter Sequence Analysis 189

TZI to Evaluate the Cost of a Query Plan 191

A Résumé en Français 211

A.1 Contexte de recherche . 211

A.1.1 Bases de données inductives . 211

A.1.2 Requêtes inductives . 213

A.1.3 Extraction sous-contraintes . 215

A.1.3.1 Structure de l’espace des motifs 215

A.1.3.2 Types de constraintes 216

A.1.3.3 Propriétés des contraintes 218

A.1.3.4 Structure de l’ensemble solution : Espace de version . 220

A.1.4 Un example de scénario ECD 221

A.1.5 Les séquences en biologie moléculaire 224

A.2 Contributions . 226

A.2.1 Tolérance aux fautes en extraction dans des chaines 226

A.2.2 Contrainte de similarité et de soft-fréquence 227

A.2.2.1 Contrainte de similarité 228

A.2.2.2 Contrainte de soft-fréquence 230

A.2.3 Twilight zone . 233

A.2.3.1 Motivation . 233

A.2.3.2 Estimation analytique d’une mesure d’intérêt des motifs236

A.3 Estimation par échantillonnage . 236

A.4 Application . 237

A.4.1 Background . 237

A.4.2 Les solveurs utilisés . 240

A.4.3 Résultats . 240

List of Figures

2.1 Partially ordered graph of LI4 that is a lattice 33

2.2 Partially ordered graph of LΣ4 . 34

3.1 Example of a Version Space Tree . 48

5.1 Selectivity of the minimum exact-frequency and minimum InsDels
soft-frequency constraints . 121

5.2 Number of soft-occurrences . 122

5.3 Time efficiency . 125

5.4 Number of candidates to soft-occurrences 126

5.5 Time efficiency of solving maximum InsDels soft-frequency constraint
in differential extraction . 127

6.1 Number of EMPs and SMPs . 138

6.2 Extracted and expected number of EMPs and SMPs under µD distri-
bution . 143

6.3 Extracted and expected number of EMPs and SMPs under µM distri-
bution . 144

6.4 Extracted and expected number of EMPs and SMPs under µE distri-
bution . 145

6.5 Extracted and expected number of SMPs in DNA sequences data . . . 148

7.1 Reduction in the number of patterns when using two data sets (positive
and negative) instead of using the positive one only 160

7.2 Number of rising patterns and number of expected random patterns . 162

xv

7.3 Diagram depicting the steps of the whole motif-discovery process . . . 164

7.4 Example of a cluster of SMPs and its consensus 166

7.5 Number of patterns common to all four yeasts genomes with different
soft-frequency thresholds . 174

7.6 Distribution of locations of patterns in ORF 175

7.7 Number of sequences that contain a given number of ORF intervals . . 176

7.8 Number of sequences that contain a given number of ORF intervals
that are present in at least 70% sequences 177

7.9 Number of locations present in a corresponding interval in ORF . . . 178

7.10 Distribution of locations of patterns in intergenic regions 179

7.11 Number of sequences that contain a given number of intergenic intervals179

7.12 Number of sequences that contains a number of intergenic intervals
that are present in at least 70% sequences 180

7.13 Number of locations present in a corresponding interval in the inter-
genic regions . 181

A.1 Graphe partiellement ordonné qui représente un treillis 217

List of Tables

5.1 Scalability of Memory Consumption 99

5.2 Scalability of Time Consumption . 100

5.3 Selectivity of the LCS Similarity Constraint 101

5.4 Frequency w.r.t. soft-frequency and the impact of the different InsDels
match function parameters . 120

5.5 Identification of templates . 123

5.6 Number of patterns for exact-support/soft-support intervals 125

7.1 Rising EMPs that are putative TFBSs bound by TFs involved in the
v-erbA transforming activity . 168

7.2 Consensus SMPs that are putative TFBSs bound by TFs involved in
the v-erbA transforming activity . 170

7.3 Rising EMPs that are putative TFBSs bound by TFs involved in the
self-renewal of normal erythroid progenitors. 171

7.4 S. cerevisiae, S. bayanus, S. mikatae and S. paradoxus genomes data
description . 173

xvii

Introduction

This manuscript presents a research on mining string data under similarity and soft-
frequency constraints and its application to promoter sequence analysis. It has been
the result of a tight collaboration between a group of computer scientists (TURING
group, LIRIS CNRS UMR 5205 at INSA Lyon), working on data mining methods,
supervised by Prof. Jean-François Boulicaut, and a group of biologists (BM2A1

group, CGMC CNRS UMR 5534 at University Lyon 1), working on molecular basis
of self-renewal, supervised by Dr. Olivier Gandrillon. This collaboration started 7
years ago. It was for the TURING group an occasion to confront their data mining
algorithms and tools to real data sets and to discover new valuable open research ques-
tions. The primary interest for biologists was to be able to extract relevant groups
of co-expressed genes in the data sets resulting from SAGE experiments [VEVK95].
Another concern was to take in account the additional information on gene regula-
tion mechanisms. The tight link between mathematical and algorithmical methods,
employed in the TURING group, and those that appear relevant in the regulation
mechanisms in molecular biology, acts as a remarkable catalyst. It is now clear
that new data mining tools can help biologists in their complex data analysis tasks.
However, while trying to answer specific needs driven by the application, we aim at
developing sound and complete generic algorithms. This manuscript will show, in
addition to obtained results, the enthusiasm and the curiosity which lead all of those
who participated to this research project.

Substring Pattern Mining

The TURING group of LIRIS mainly focus on constraint-based local pattern mining.
Informally, local patterns describe some properties of a subset of a data, on the
contrary to the global models, which characterize the entire data. Local patterns,
e.g., itemsets and substrings, are of descriptive nature, whereas global models, e.g.,
clusters and decision trees, are of predictive nature (for more details on local patterns
versus global models, see [Han02, HMS01b]).

1Bases Moléculaires de l’Autorenouvellement et de ses Altérations, fr.

1

2 Introduction

This work considers string data sets mining to find substring patterns that sat-
isfy the given constraints. String is a finite sequence of symbols from a finite al-
phabet. Substring is a sequence of contiguous symbols in a string. For example,
D = {actgcac, acttgcgac, gatagata, tgctgtgtg, gtcaacg} is a string data set, containing
five strings over an alphabet of four symbols {a, c, g, t}. The frequency of a string
pattern φ in a string data set is the number of data strings in D that contain the
substring φ. For example, in D, the frequencies of the substrings tgc, act and caac are
respectively 3, 2 and 1. The principal primitive constraints, which we use to spec-
ify the string mining tasks, are the minimum frequency, maximum frequency, and
syntactic constraints. Patterns, satisfying the minimal (resp. maximal) frequency
constraint, have a frequency that is higher (resp. lower) than a given threshold. A
syntactic constraint restricts the form of a pattern and is not related to a data set.
For example in D, we may look for the set of string patterns whose the frequency is
higher than 1 (minimum frequency constraint), but lower than 4 (maximum frequency
constraint) and that contain the symbol ”c“ (a syntactic constraint). The substring
patterns tgc, act satisfy this constraint. The pattern caac does not satisfy the con-
straint, because only one data string contains its occurrence. On the other hand, the
pattern a is too frequent and do not respect the maximum frequency constraint. As
we will see, constraints are the pillars of local pattern mining techniques.

The extraction of substring patterns is by nature highly combinatorial. A string of
length L over an alphabet of n symbols contains up to

∑L
i=1 n

i different substrings.
In practice, the data sets, we are interested in, may contain thousands or tens of
thousands of patterns. Both search-space and solution set can be huge. The solution
space is commonly a small portion of the search space. One of the main difference
with the problems, tackled in the domain of artificial intelligence, is that the access
time to the data set is taken into account in data mining, and makes part one of
the main problem, altogether with the size of the search-space. Reducing the cost of
data access generally leads to more efficient algorithms. The first concern of the data
mining algorithm is to make the extractions tractable in most real-life situations. The
second (main) concern is to provide not just patterns, but only the relevant patterns
to the data analyst. Indeed, the analysis and the assessment of the extracted patterns
is difficult, and the a priori irrelevant patterns must be avoided. Indeed, actionable
patterns are quite often hidden amongst many irrelevant ones. The bottleneck of most
local pattern extraction methods is the burden of these spurious patterns. Irrelevancy
must be understood in terms of both objective and subjective interestingness.

That is where constraints become so crucial. Extraction tasks can be defined
in a declarative manner, by specifying the pattern type, the constraints that the
patterns must satisfy and the data set being analyzed. The role of constraints is
multiple: (1) they enable to reduce the search-space by discarding uninteresting
regions, and thereby lead to much more efficient extractions, while keeping the result
sound and complete, (2) they reduce the size of the solution set and (3) they improve
the relevancy of the extracted patterns w.r.t. to data analyst expectations. It looks

Introduction 3

like a silver bullet: the pattern relevancy is increased, whereas the extraction time is
reduced. The difficulty is that this generally applies to a limited set of constraints
that exhibits the (anti-)monotonicity or the associated properties. A constraint is
said anti-monotonic (resp. monotonic) w.r.t. a partial relation order on pattern
space, if when a pattern does not satisfy the constraint then every ”smaller“ (resp.
”larger“) pattern than it does not satisfy it either. It is a simple, but very powerful
technique to safely prune search spaces.

If constraint-based data mining is our answer, we have to specify the constraints
that define the extraction task. This is not a trivial task. There is often a trade-
off between the constraint expressiveness, which is necessary to support subjective
interestingness specification, and the possibility to solve that constraint efficiently,
e.g., by exploiting the associated (anti-)monotonicity properties to prune the search
space. One can search how to express (possibly approximately) these difficult con-
straints through combinations of constraints that have these good properties. This is
the approach we adopted in our doctoral research to tackle the extractions of string
patterns under similarity and soft-frequency constraints.

Inductive Databases

In recent years, the data mining research community put considerable effort to de-
velop efficient algorithms to extract various types of patterns in different kinds of
large collections of data. However, the data mining step in the Knowledge Dis-
covery in Database (KDD) process [PSF91] is not limited to the application of an
algorithm to produce a collection of local patterns or to construct a global model.
The process of finding knowledge in data is composed of various steps, and among
them one can distinguish the collection of data, data selection and transformation,
pattern extractions and/or model construction, result visualisation, selection and
assessment. It is an iterative process, rather than a strict sequential one. In addi-
tion, it can involve different kinds of data and also different types of local patterns
and/or global model. The underlying idea of the inductive databases (IDB) frame-
work [IM96, BKM98, BKM99, MT97] is that the tasks of selecting, manipulating and
querying data and patterns can be considered as queries, and consequently the whole
KDD process can be considered as a process of querying. Concerning patterns, the
idea is to see an extraction task as an inductive query that declaratively specifies the
properties of patterns we are looking for in an intentionally defined pattern space
(i.e., generally not materialized).

The pattern extraction task can be formalized as a task of computing the set,
denoted Th(L,D, C) = {φ ∈ L | Cφ(D)}, i.e., finding the patterns φ in a pattern
space L such that φ satisfies the constraint C [MT97]. Thus, the constraint C is
a declarative specification of the desired properties on the searched patterns. A
task of computing Th(L,D, C) = {φ ∈ L | Cφ(D)} is called a task of solving an

4 Introduction

inductive query with the constraint C. As declarative queries are often formulated
using constraints, inductive querying is closely related to constraint-based data mining
[Bay02].

The promise of modeling data mining tasks as inductive queries is to identify sim-
ple primitive operations, such that through their combinations high expressiveness
can be achieved. This was the case in the field of database systems, where Codd’s
relational algebra [Cod70] provides a set of simple primitives that allow to express
highly complicated tasks. By unifying various data mining tasks under a single the-
oretical framework and braking them down into common primitives, research efforts
can be concentrated to optimize the solvers of the primitives, instead of develop-
ing new solvers for each new task and application. The design of efficient solvers is
particularly important, because in general, the pattern space L, which is indeed the
search space, is very large (and possibly infinite), and the collections of data can also
be very large, what means that the cost of solving the constraints, whose evaluation
needs to access the data, can be very high.

The complete scope of IDBs is still a research topic and will more likely depend
on how all the known and future Data Mining techniques will manage to be incorpo-
rated together in a natural and practical way. In past years, significant progress on
inductive databases was made within the cInQ project (consortium on knowledge
discovery by Inductive Queries) funded by the EU under the FET open branch of
IST [BDM06]. This thesis manuscript presents a work made within the (IQ) project
(Inductive Queries for Mining Patterns and Models) which was a follow-up of cInQ
funded by the FET open branch of IST as well. As stated in its Technical Annex,
the overall goal of the IQ project was to develop a theoretical understanding of in-
ductive querying by (1) developing the applications in the area of bioinformatics,
and, (2) further developing the required theory, representations and primitives for
local pattern and global model mining, and integrating these into expressive induc-
tive query languages that enable one to discover new knowledge from data in real-life
applications.

Generic Solvers

By a generic solver we mean a solver capable to evaluate the inductive queries that
are arbitrary Boolean compositions of constraints, i.e., arbitrary expressions over con-
straints using Boolean algebra operations: conjunction, disjunction and negation. On
the contrary, an ad-hoc solver is a solver, designed to evaluate a particular composi-
tion of constraints (e.g., a minimum frequency constraint, a conjunction of minimum
frequency constraint with other application specific constraints) on a particular pat-
tern space (e.g., itemset pattern space, string patterns).

The inductive database framework provides a basis to study the properties of

Introduction 5

different pattern languages, constraints and their different compositions, as well as
different types of data sets. Thereby it provides a framework to design efficient generic
algorithms that solve inductive queries. A key issue for designing efficient though cor-
rect and complete solvers is to exploit the structure of the pattern space, the structure
of the solution set and the constraint properties to compute the solution set without
exploring the whole search space. Extensive studies of the anti-monotonicity and
monotonicity properties have given rise to a general theory [DJDM02, DD03] for
mining quite general patterns (i.e., patterns from different pattern language), sat-
isfying an inductive query with the constraint C that is a Boolean combination of
anti-monotonic and monotonic primitive constraints. It is based on characterizing the
solution set by means of version spaces [Hir91, Hir94, Mit82] and border representa-
tions [MT97]. More specifically, this theory concerns the decomposition of such con-
straint C into a set of sub-constraints Ci, such that Th(L,D, C) =

⋃k
i=1 Th(L,D, Ci),

where k is minimal and each Th(L,D, Ci) can be represented using a single version
space, i.e., Ci = A ∧M, where A denotes an anti-monotonic constraint and M de-
notes a monotonic constraint. Such solution set that is a union of version spaces
is known as generalized version space [DD03]. This results in an operational proce-
dure for solving arbitrary Boolean inductive queries, since once each Ci is computed,
the resulting solution sets can be combined using the set manipulation operations
to obtain the solution Th(L,D, C) [DD03]. While the latter can be done efficiently,
the step of computing Ci = A ∧M is not trivial. The general theoretical frame-
work was instantiated to answer inductive queries on patterns from string pattern
language [DJDM02]. One of the key elements of this instance is the algorithm VST
to efficiently compute patterns, satisfying an arbitrary conjunction of anti-monotonic
and monotonic constraints. The algorithm FAVST [DD04] efficiently solves the same
problem in a distributed environment where a data set access is slow (e.g. over the
Internet or an external disk). Our contribution to fault-tolerant pattern extraction
is build on the generic solver FAVST.

Fault-Tolerance when Mining Strings

It is common that real life data contains errors due to technological issues concerning
data collection, storage and transmission. In some application domains they may
be also due to somewhat exploratory alphabet design. Also, data representing real
world phenomenon is often intrinsically degenerated (in a sense of ability of elements
that are structurally different to perform the same function or yield the same out-
put [EG01]). For example, many variants of string patterns in DNA sequences can
be binding sites for the same transcription factor or many web site browsing se-
quences can lead to the accomplishment of the same task. To capture knowledge
when working with such data, a fault-tolerance is needed.

A motivation for fault-tolerance came from many application domains, the princi-

6 Introduction

pal ones being signal processing, error correction, text and information retrieval. One
of the largest application areas remains computational biology. Biological sequences
can be considered as strings over specific alphabets, e.g., DNA sequences can be seen
as strings over four letter nucleotide alphabet and protein sequences can be seen as
strings over twenty letter amino acids alphabet. Exact matching is rarely convenient
when analyzing biological sequences, since they typically contains errors due to se-
quencing technologies and, in addition to this, they are known to be intrinsically
degenerated.

The approaches to the needed fault-tolerance when searching for regularities in
strings come from different research domains, such as approximate string matching,
bioinformatics and data mining. They are formulated and presented in a domain spe-
cific manner and terms. This presents a serious impediment to knowledge transfer and
exchange, and prohibits the cross-fertilisation among these domains. Our contribu-
tion consists of formalizing the different approaches to fault-tolerance in the unified
constraint-based mining terms thereby putting them into the inductive databases
framework.

From a constraint-based data mining point of view, the notion of fault-tolerance
when mining string data implicitly embraces two distinct problems. The first one is
to find patterns that are similar to a given entity of reference. The second problem
is to find unknown patterns that capture soft regularities, i.e., not exactly repeating
regularities. This problem can be formulated as a problem of extracting patterns
satisfying a minimum frequency constraint, when a pattern occurrences in data are
the entities acknowledged to be similar to the pattern. Note that a relation of
similarity, either between two patterns, or between a pattern and its occurrence in
data, is present in the formulation of both problems and is central when handling the
fault-tolerance.

We concentrate on deterministic approaches that employ correct and complete
strategies to extract fault-tolerant patterns in string data, on the contrary to prob-
abilistic approaches. Thus we do not cover non-deterministic approaches, such as
Hidden Markov Models (HMMs), Bayesian networks, weight matrices, profiles, etc.
A major part of considered approaches were inspired when trying to answer a par-
ticular class of biological problems, but their are not tied to any particular problem
and can be directly applied to a variety of application domains.

Similarity and Soft-Frequency Constraints

The goal of this PhD work was to develop a correct and complete generic solver that
is able to handle the fault-tolerance and thereby can be applied in biological sequence
analysis. A state of art on the existing approaches to tackle the similarity constraint
and the fault-tolerant patterns extraction is that efficient ad-hoc solvers are available

Introduction 7

to tackle specific combinations of primitive constraints. A key issue for designing
efficient generic solver is to exploit the opportunities for search space pruning, as-
sociated to constraint properties (like anti-monotonicity and its dual monotonicity
property) [DJDM02, DD03]. It is far more complex and generally not feasible to con-
sider generic solvers for constraints that do not have these good (anti-)monotonicity
properties.

In most of the application domains, the notion of similarity between two entities
ε1 and ε2 informally means a ”small difference“ between ε1 and ε2. Obviously, the
property ”small difference“ should not be propagated too far, i.e., the relation of sim-
ilarity should not be transitive. A similarity constraint, establishing a non-transitive
similarity relation between two entities, is fundamentally neither monotonic nor anti-
monotonic, since a non-transitive similarity relation can not be isomorphic to a gen-
eralisation relation. Due to this property, a fault-tolerant pattern extraction can not
benefit from recent algorithmic breakthrough in generic solver design.

Therefore, our approach, published in [MB06, MB07], is to formulate the similar-
ity and soft-frequency constraints so that they can be handled by the state-of-the-art
search space pruning strategies, i.e., as Boolean combinations of anti-monotonic and
monotonic primitive constraints. We found such expression using the longest com-
mon subsequence (LCS) of two strings, which is the longest pairing of their matching
symbols, allowing all possible interruptions in either of the strings. We formulate a
similarity constraint between a string of reference σ and a candidate string pattern φ
as a conjunction of two constraints having the desired (anti-)monotonicity properties:
a string pattern φ is similar to a reference string σ, if its LCS with σ is large enough (a
monotonic constraint) and if the number of deletions, necessary to perform on φ in or-
der to obtain that LCS, is small enough (an anti-monotonic constraint). Concerning
the soft-frequency constraints, notice that one needs to find all soft-occurrences of a
pattern φ (i.e., all entities in data that are similar to a pattern φ) in order to evaluate
its soft-frequency. This means to evaluate a similarity constraint where the pattern
φ in question is a string of reference. To accomplish this we use our previous contri-
bution on similarity constraint, expressed as a conjunction of two (anti-)monotonic
constraints that bear on the LCS. Remark however, that even if we can locate the
soft-occurrences of a pattern φ efficiently, the associated minimum (resp. maximum)
soft-frequency constraint is not guaranteed to be anti-monotonic (resp. monotonic),
since there is no guaranteed stable relation between the string pattern φ substrings
and superstrings and the cardinality of the sets of their soft-occurrences (and thus
the satisfaction of the soft-frequency constraint). Yet, interestingly, when using the
defined similarity constraint to acknowledge a substring σ as a soft-occurrences of
a pattern φ, the associated soft-frequency constraints are guaranteed to be (anti-
)monotonic, provided that a (sensible) condition on similarity constraint parameters
is satisfied.

Based on these contributions we designed and implemented the generic solvers

8 Introduction

Marguerite-{Sim,SoftFr} that solve arbitrary combinations of similarity and soft-
frequency constraints with other (anti)-monotonic constraints. These solvers are
built on and extends the generic solver FAVST [DD04], which instantiates the efficient
generic strategies [DJDM02, DD03] to mine string patterns in string data sets.

Twilight Zone

Fault-tolerance is a first step toward actionable patterns, when mining real-world
data (i.e., containing errors) that represents (degenerated) phenomenons. However,
it does not tell anything about the relevancy of the extracted patterns. Indeed, rele-
vant patterns are quite often hidden amongst many irrelevant ones. The bottleneck
of most local pattern extraction methods is the burden of the spurious patterns.
Irrelevancy must be understood in terms of both objective and subjective interest-
ingness. For instance, most of the time, it is important to avoid to provide or, even
better, to compute the known patterns. Data miners cannot afford to present (hun-
dred of) thousands of patterns to the data expert, hoping that she/he will find the
gold nuggets. For example, it would be of great interest to know whether a given
pattern or a collection of patterns is statistically unexpected w.r.t the mining task
(i.e., input data set and constraint thresholds values). However, the constraints that
rely on statistical measures are known to be difficult to push into the extraction
phase. Specifically, they cannot be fully/easily described by means of combinations
of monotonic and anti-monotonic constraints.

To try to solve this problem, we decided to assess local patterns relevancy adapt-
ing the principle of the Twilight Zone studied in [KP02b]: comparing the number
of extracted patterns in the input data set with the expected number of patterns
extracted in random data sets exhibiting the same features (i.e., structural proper-
ties of the data set, e.g., size of the data set, number of sequences, length of the
sequences, etc) as the original data set. One difficulty here was to estimate the num-
ber of local patterns that satisfy a given constraint in a random data set, exhibiting
some features. Estimating the expected number of patterns that satisfy a constraint
is in general much more difficult than estimating the probability that a given pattern
satisfies such a constraint. This second problem has received a lot of attention, on the
contrary to the first one. The estimate of the number of extracted patterns might be
difficult as soon as we have at hand the combinations of many primitive constraints,
each of these constraints requiring at least one parameter (i.e., threshold) value. We
have a limited insight about the number of patterns, satisfying the constraints, in
the multidimensional parameter (threshold) space. For example, the number of pat-
terns, satisfying a minimum frequency constraint with a given frequency threshold,
depends on the pattern size (length), allowed in the pattern size (length) constraint.
A common practice is to count the number of patterns obtained for a few different
parameter settings and to guess what could be the interesting parameter values for a

Introduction 9

deeper investigation. In simple contexts, e.g., when considering a single minimum fre-
quency constraint, a limited number of trials may be sufficient. This is obviously not
the case when considering a conjunction of primitive constraints giving rise to a large
multidimensional parameter space: we cannot afford to run hundreds or thousands
of experiments to probe such a space.

We proposed two solutions to this difficult problem. First, we have studied the
computation of an analytical estimate of the expected number of extracted patterns
thanks to known features of the input data set [MRS+08]. To simplify the task, we
consider data strings of the same length and we suppose that they are composed
of independent and uniformly distributed symbols (i.e., having the same occurrence
probability), and that the overlapping of the occurrences of the patterns has a negli-
gible impact on the number. From these assumptions, we derived analytical formulas
to compute, given threshold values, the expected number of patterns satisfying fre-
quency and soft-frequency constraints. At this end, we obtain the probability that
a pattern of a given length satisfies a minimum and maximum (soft-)frequency con-
straints, according to chosen threshold values. The results of experimental validation
are encouraging, yet the drawback is that for each constraint and each combination
of constraints a new probability has to be computed (if possible). In other words,
it works well for some particular constraints, but it cannot be considered as an ulti-
mate solution within a generic framework. Next, we studied an alternative approach
in [BRMB08]. We consider here pattern space sampling. Instead of computing the
estimate on abstract patterns, we generate a sampling of patterns and then we com-
pute their probability to satisfy the given constraint on random data sets, exhibiting
the same features as the original data set. The use of real patterns ((instead of ab-
stract ones) facilitates the computations and it allows to take into account a broader
class of constraints. For instance, arbitrary conjunctive syntactic constraints can be
used.

Genomic Data Analysis

Understanding the regulation mechanisms of the gene expression remains one of the
major challenges in molecular biology. One of the elements, through which the reg-
ulation works, is the initiation of the transcription by the interaction between gene
promoter elements at the level of DNA sequence and multiple activator and repres-
sor proteins, called Transcription Factors (TF). This interaction occurs when a TF
binds on its binding site on a gene promoter. Numerous efforts have given rise
to a variety of computational methods to discover putative Transcription Factors
Binding Sites (TFBSs) in sets of promoters of co-regulated genes. Among them
two families can be distinguished: statistical or stochastic approaches, and combi-
natorial approaches [VMS99a]. Concerning the family of statistical and stochastic
approaches, a recent review of the most widely used algorithms exhibits rather lim-

10 Introduction

ited results [TLB+05], and concludes to the necessity to go on exploring alternative
methods. There are several reasons for their limited success, but it seems that the
difficulty to separate the patterns from the random background is among the principal
ones.

We focused on the family of combinatorial approaches that aims at an exhaustive
motif extraction without a priori hypothesis on the underlying stochastic process.
According to [KP02a], probably the best tools for finding consensus based motifs in
DNA sequences are the combinatorial pattern-driven algorithms that test all the 4l

different patterns of length l (DNA sequences are composed of 4 nucleotides: adenine,
guanine, thymine, cytosine), and then score each pattern by the number of approxi-
mate occurrences and find the high-scoring patterns. The exhaustive search through
all these 4l patterns becomes impractical for large l, but the length of binding sites
in promoter sequences is estimated to be between 5 and 15 base-pairs (bp) [Bul03]
and the mean of these lengths in Transfac R© [MFG+03] is 14.3 bp with standard
deviation 4.7 bp [FWV+05]. Thus, combinatorial methods are of great promise and
it is worth to test our approach to fault-tolerant string pattern extraction under
constraints for the discovery of the putative TFBS.

Having in mind the difficulties to model statistically the biological randomness,
we propose to postpone the phase of significant pattern selection, based on a sta-
tistical measure, and to use beforehand the supplementary biological information to
constraint the search and thereby reduce the number of extracted patterns. This ad-
ditional information comes in the form of a second data set representing a somehow
opposite biological situation. To collect this information, the method starts with a
classical operation used in molecular biology: the identification for differentially ex-
pressed genes. This allows to obtain two groups of genes, from which one can derive
two opposite data sets, composed of the promoters of these genes. To look for the
putative TFBSs regulating the overexpressed genes, we choose the first set (the pro-
moters of the over-expressed genes) to be used as a positive set, and the second set as
a negative one. Then our method consists in finding the patterns occurring on at least
minFr promoters from the positive set and on at most maxFr promoters from the
negative set, where the parameter minFr (resp. maxFr) is supposed to be a large
(resp. small) frequency constraint threshold value. The originality of the proposed
method w.r.t the other combinatorial algorithms, which allow to extract patterns
from several data sets (e.g., SPEXS [BJVU98b] or DRIM [ELYY07]), is that the
maximal frequency threshold is set explicitly. This is particularly interesting, when
there is a clear semantic cut between positive and negative data sets, and the negative
data set has an opposite biological sense (presence/absence of a mutation; addition
or not of a given drug, etc.), and does not just represent random background. Two
kinds of patterns are handled by our method: patterns having exact matches in the
sequences and patterns having approximate matches (i.e., within a given Hamming
distance). Interestingly, in both cases, the enrichment of the pattern discovery con-
text, using a negative data set, reduces the size of the solution set by several orders of

Introduction 11

magnitude. Even then, the set of the extracted patterns remains large, and thus we
develop an approach to tune the parameters to focus on a manageable and potentially
interesting set of patterns. We select the exceptional patterns based on the measure
of subtlety [KP02b]: a pattern φ is considered to be subtle (i.e., inside the Twilight
Zone) if we expect that some random patterns could occur at least as often as φ in the
positive data set and at the same time no more often than φ in the negative data set.
In other terms, an exceptional pattern must not be subtle, i.e., inside the Twilight
Zone. Then, we verify which exceptional patterns are known TFBSs. Identification
of the TFs that can bind on the patterns specific to the positive data set can help
to discover new regulators of the concerned biological process. Patterns that do not
correspond to known TFBSs are of course interesting since they can reveal unknown
elements of regulation.

The method was developed in collaboration with the biologist group BM2A
(CNRS UMR 5534 in the Center for Molecular and Cellular Genetics), supervised by
Dr. Olivier Gandrillon. This group work on molecular basis of self-renewal, which is
a characteristic property of stem cells. Deregulation of this process occurs frequently
during cancer generation. We applied the previously described method to analyze two
different sets of promoters. The first set consists of the promoters of the genes that are
either repressed or not by the transforming form of the v-erbA oncogene. The second
set consists of the genes, such that their expression varies between self-renewing and
differentiating progenitors. The biological meaning of the found TFBSs was assessed
by the BM2A group, and, for one TF, its biological involvement is demonstrated. In
addition to this, the results of this study also provided our biologist collaborators
with the new hypothesis and insights in the self-regulation mechanism. This work is
published in [MRS+08]. A survey paper emphasizing the inductive querying scenario
that supports such a discovery process is [RMB+08].

We started to study a second application domain related to genomic data anal-
ysis. Comparative genomics can be seen as an attempt to take advantage of the
information provided by the signatures of selection to understand the function and
evolutionary processes that act on genomes. One of the comparative genomics tools
is to identify the common parts of genomes of the different biological species. These
common parts can be found by conjunctive correct and complete fault-tolerant pat-
tern extraction in the genomes in question. We considered the extraction of frequent
InsDels fault-tolerant patterns2 that are common to the four species of yeasts: S.
cerevisiae, S. bayanus, S. mikatae and S. paradoxus. To extract such patterns, we
applied our generic solver Marguerite-SoftFr. This opening to an application to
comparative genomics was carried out thanks to a collaboration with Prof. Ross D.
King (Department of Computer Science, University of Aberystwyth) in the context
of the IQ project.

2See Section 5.3.2 in Page 105.

12 Introduction

Structure of the Manuscript

We now sum up the structure of this manuscript. The first part presents the in-
ductive databases framework, a state-of-the-art on constraint-based pattern mining,
recent advances on generic inductive query solvers, and finally an original survey of
proposals for a declarative specification of fault-tolerant pattern mining tasks. Part 2
is dedicated to our research contribution. First, it describes our results on a decom-
position of similarity and soft-frequency constraints to handle fault-tolerance. Then,
it is concerned by our proposals for probabilistic approaches that can assess pattern
relevancy thanks to the Twilight Zone idea. Part 3 describes the application of the
aforesaid methods on real data sets for the discovery of new transcription factor bind-
ing sites and an opening to application to comparative genomics. Last Part concludes
and opens on the future research directions.

We assume the reader knows the classical machine learning and data mining
techniques which are well described in popular textbooks, for instance [HMS01a,
TSK06, BH03].

Part I

State of Art

13

Chapter 1

Inductive Databases and
Inductive Queries

Numerous effort put in data mining research during recent years have resulted in
its rapid and successful development. However, the generally accepted theoretical
framework for data mining is still lacking and remains a major research priority. One
of the most promising approach to this task is taken by inductive databases. Many
knowledge discovery from data processes can be based on data mining tasks which
extract patterns from data. We thus first provide the definitions that are useful to
formalize many data mining problems, and then introduce the underlying framework
of inductive databases.

1.1 Objects and Data

Definition 1.1 (Object, Universe) An object, denoted X, is an element of a given
set, denoted U and called universe.

We do not precise here what constitutes the universe. The general framework
that we will present is suitable for a wide range of objects of different nature, and
the particular universe can be specialized for each application.

Object is an important term because it is a basis for defining the notion of fre-
quency (see Definition 1.19 in Page 21), which is employed to a great extent in data
mining.

In this thesis we will focus on objects from the universe of strings.

15

16 CHAPTER 1. INDUCTIVE DATABASES AND INDUCTIVE QUERIES

Definition 1.2 (Basic Notions on Strings) Let Σ be an alphabet of symbols. Any
finite sequence σ = σ1 . . . σn, n ∈ N, of symbols from Σ is called a string1 over the
alphabet Σ. The length of a string σ, denoted |σ|, is a number of symbols it contains.
An individual symbol on the position i in a string σ is denoted by σi. The set of all
possible strings over the alphabet Σ is denoted by Σ∗. A substring σ′ of a string σ is
a sequence of contiguous symbols in σ, denoted σ′ v σ. Then σ is a superstring of
σ′, denoted σ w σ′.

Example 1.1 Let Σ = {a, c, g, t} be an alphabet. acctg is an example of string over
Σ. Its length is |acctg| = 5. acc is an example of a substring of acctg, denoted
acc v acctg.

Definition 1.3 (String Universe) Let Σ be an alphabet. Consider the universe of
all strings constructed from the symbols of Σ, denoted UΣ. An object X ∈ UΣ is a
string over Σ.

Definition 1.4 (Data) Data on the universe U , denoted D, is a collection of objects
X, organized in a specific way.

Data can be organized in the various forms, e.g., a multi-set2, a sequence of events,
a stream, a graph, etc. In this manuscript we focus on mining string data. It can be
organized into a multi-set of strings, called string data set, or consist of one string,
called data string.

Depending on the application context, it is convenient to see such data organized
either as a multi-set of string objects or as a collection of substring objects.

Definition 1.5 (String Object) Let D be string data. String objects, denoted S,
are elements of that set.

Example 1.2 Consider the alphabet of four symbols Σ4 = {a, c, g, t} and the universe
UΣ4 of all strings over Σ4. Consider a string data set D = {agtac, aaac, aaac} on UΣ.
There are three string objects in D: S1 = agtac, S2 = aaac, and S3 = aaac.

Definition 1.6 (Substring Object) Let D be a string data. Substring objects, de-
noted s, are substrings of the strings that compose that set. Note, that they are stored
intentionally in D.

1Also known as a sequence or a word in a literature
2Data may contain multiple instances of the same object

1.2. PATTERNS 17

Example 1.3 Consider the alphabet Σ4, the universe UΣ4 and the string data set D
from Example 1.2. s1 = ag, s2 = agt, s3 = tac, s4 = aaa are several examples of
substring objects in D.

Remark 1.1 Note that string and substring objects are elements of the same uni-
verse UΣ.

1.2 Patterns

The notion of pattern is central to data mining, since they are what data mining
aims to discover. As an object, in a high level of abstraction, a pattern is an element
of a pre-specified set.

Definition 1.7 (Pattern, Pattern Language) A pattern φ is an element of a
given set L, which is called a pattern space, a search space or a pattern language.
In this manuscript, we use the term pattern space or search space when referring
to the set of all possible patterns (see Section 2.1 in Page 29), otherwise, especially
when referring to the syntactic properties and expressiveness of the patterns, we use
the term pattern language.

In the following we define several pattern languages that will be used throughout
this manuscript. Our thesis focuses on string patterns, and therefore we first define
the string pattern language.

Definition 1.8 (String Pattern Language) Let Σ be an alphabet. String pattern
language, denoted LΣ, is the set of all possible strings Σ∗ over the alphabet Σ.

This thesis concerns mainly string patterns but we will also discuss concepts that
have been studied in the popular context of 0/1 data analysis, e.g., the famous pattern
language of itemsets which has been extensively studied by the data mining commu-
nity. The pattern space of itemsets can be arranged in a particularly advantageous
manner to exploit the resulting lattice structure (see Example 2.5 in Page 33).

Definition 1.9 (Basic Notions on Itemsets) Let i be a literal, called item. Let
I = {i1, . . . , in}, n ∈ N, be a set of items, called domain of items. An itemset I is a
subset of I. The size of an itemset I, denoted |I|, is the number of items it contains.
A powerset of I, i.e., a set of all its subsets, is denoted 2I .

Example 1.4 Consider an item domain I = {A,B,C,D}. I1 = {A,C}, I2 =
{A,B,C,D} are several examples of itemsets on I.

18 CHAPTER 1. INDUCTIVE DATABASES AND INDUCTIVE QUERIES

Definition 1.10 (Itemset Pattern Language) Let I be a domain of items. Item-
set pattern language, denoted LI , is a powerset of I.

String data mining is one of the domains of sequential data mining research.
Sequence patterns were extensively studied since their introduction in [AS95]

Definition 1.11 (Basic Notions on Sequences) A sequence is an ordered list of
elements. These elements can be either simple items from a fixed set of literals
(i.e., alphabet Σ or domain of items I), or itemsets on I. Sequence is denoted
Φ = 〈I1, . . . , In〉, n ∈ N, where Ii is the i-th element of the sequence. The length
of a sequence, denoted |Φ|, is the number of elements it contains. Consider another
sequence Ψ = 〈Y1, . . . ,Ym〉, m ≤ n, composed of elements Yi. Ψ is a subsequence of
Φ, if there exists integers 1 ≤ j1 ≤ . . . ≤ jm ≤ n such that Y1 ⊆ Ij1 , . . . ,Ym ⊆ Ijm.
Then, Φ is a supersequence of Ψ.

Definition 1.12 (Sequence Pattern Language) Let I be a domain of items. Se-
quence pattern language, denoted LS , is a set of all possible sequences that can be
constructed over I.

Example 1.5 Let I4 = {A,B,C,D} be domain of items. Φ = 〈{C}{A,D}{B,C}〉,
Ψ = 〈{C}{B}〉 and Ξ = 〈{C}{A,C}{B}〉 are several examples of sequences over I4.
Ψ is an subsequence of Φ, but Ξ is not.

Remark 1.2 Note that a string is also a sequence. Therefore, sequence pattern
mining algorithms can be often applied to mine string data. Remark, however, that
sequence is not a string, and a subsequence is not a substring.

Patterns, describing the properties of a subset of a data are called local patterns,
and patterns characterizing the entire data are called global patterns or global models.
Local patterns, e.g., itemsets, association rules, formal concepts, functional or inclu-
sions dependencies, datalog queries, substrings, episodes, episode rules, subgraphs,
etc., are typically used for descriptive purposes, whereas global patterns or models,
e.g., clusters, decision trees, support vector machines, etc., are also used to support
predictive ones. For more details concerning local patterns versus global patterns
and global models see [HMS01b, Han02, MBS05, BMS07]. In this thesis we consider
only local patterns, and whenever there is no ambiguity, we use the term pattern to
denote local pattern.

A relation between patterns and objects is established by a match function.

Definition 1.13 (Match Function) Given a universe U and a pattern language L,
a match function is a Boolean function: U×L → {true, false}. Given a pattern φ ∈ L

1.2. PATTERNS 19

and an object X ∈ U , we say that φ matches X if and only if match(φ,X) = true,
otherwise we say that φ does not match X.

String data can be considered as a collection of string objects or a collection of
substring objects. Consequently, depending on the desired semantics of patterns,
through the match function they can be associated either to string or to substring
objects. Match function is defined through some binary relation R. We will say that
a pattern φ match a string object S, if and only if S contains a substring σ that is
in relation R with φ. We will also say that a pattern φ match a substring object s,
if and only if s is in relation R with φ. Then, we call the substring σ (in the case of
match with a string object) and the substring object s the occurrences of the pattern
φ.

Following is the exact string patterns match function on string and substring
objects, defined through an identity relation.

Definition 1.14 (Exact String Match Function) Let UΣ be a universe of strings
over an alphabet Σ, S be a string object and s be a substring object from UΣ. Let φ
be a pattern from a string pattern language LΣ.

1. Define an exact string match function for string patterns matchv,S(φ, S) to
evaluate true, if and only if there exists a string σ, such that σ v S and σ is
equal to φ.

2. Define an exact match function for string patterns matchv,s(φ, s) to evaluate
true, if and only if s is equal to φ.

Example 1.6 Consider the alphabet Σ4, the universe UΣ4 and the string data set
D from Example 1.2 in Page 16. Consider the string pattern language LΣ4 over
Σ4 and the exact string match function. The pattern φ = ag exactly matches the
string object S1 = agtac, but it does not match the string object S2 = aaac. Also, the
pattern φ = ag exactly matches the substring object s1 = ag, but it does not match
the substring object s2 = agt from Example 1.3 in Page 17.

In Example 1.6, we have LΣ4 = UΣ4 . There is no requirement that a pattern
space L be equal to a universe U . In the following we give two examples of cases,
where pattern languages are different from the universe.

The first example considers a pattern language that is a subset of LΣ4 .

Example 1.7 Let Σ2 = {a, g} be the alphabet and LΣ2 be a string pattern lnaguage
over Σ2. Consider the string data set D on the universe UΣ4 from Example 1.2

20 CHAPTER 1. INDUCTIVE DATABASES AND INDUCTIVE QUERIES

in Page 16. The only patterns from LΣ2 that match string objects in D are a, aa,
aaa, g, ag. Note that the pattern language LΣ2 is more restrictive than LΣ4 from
Example 1.6.

The second example considers regular expression pattern language, which is a
superset of LΣ4 .

Definition 1.15 (Regular Expression) Regular expression, denoted re, is an ex-
pression over a given alphabet Σ using the well established set of regular expression
operators [LP81], e.g., the implicit concatenation operator, the disjunction denoted
by the sign |, or the grouping, denoted by the parentheses ().

Definition 1.16 (Regular Expression Pattern Language) Let Σ be an alpha-
bet. Regular expression pattern language, denoted Lre, is a set of all possible regular
expressions over the alphabet Σ.

Regular expression match function is defined through a classical regular expres-
sion matching.

Definition 1.17 (Regular Expression Match Function) Let UΣ be a universe
of strings over an alphabet Σ, S be a string object and s be a substring object from
UΣ. Let φ be a pattern from regular expression pattern language Lre.

1. Define a regular match function matchre,S(φ, S) to evaluate true, if and only if
there exists a string σ, such that σ v S and σ belongs to the language generated
by a regular expression φ.

2. Define a regular match function matchre,s(φ, s) to evaluate true, if and only if
s belongs to the language generated by a regular expression φ.

Example 1.8 Consider the alphabet Σ4 and the string data set D from Example 1.2
in Page 16. Let Lre4 be a regular expression pattern language over the alphabet Σ4.
Pattern ag(t|c) from Lre4 matches the string object agtac and the substring object
agt. Note that the pattern language Lre4 is more expressive than the pattern language
LΣ4 from Example 1.6.

1.3 Constraints

Data mining aims to discover patterns that are interesting. We specify the a priori
interesting patterns by declaring what properties, or in other words, what constraints
these patterns must satisfy.

1.3. CONSTRAINTS 21

Definition 1.18 (Constraint) Given a pattern language L, a constraint C is a
Boolean function: L → {true, false}. We say that a pattern φ ∈ L satisfies a con-
straint C if and only if Cφ = true. Constraints are usually parametrised. A constraint
C on a pattern φ with parameters p1, p2, . . . , pn, n ∈ N, is denoted Cφ(p1, p2, . . . , pn).

Constraints allow not only to select interesting patterns, but also to prune the
pattern space L, and thereby render the pattern extraction more efficient. When a
constraint is exploited to prune a search space, we say that it is pushed. Depending
on the extraction phase, in which a constraint is exploited for pruning, we say that
it is pushed more or less deeply. If the search space is small (this is usually a case
when it is already restricted to a particular collection of patterns), a constraint can
be evaluated by testing it for every pattern in that space. In that case, we say that
a constraint is post-processed.

In the following we give several examples to illustrate the notion of constraint. We
first define the constraint of frequency, which, due its remarkable pruning efficiency
and semantic capacity to select the interesting patterns, is very important in data
mining.

Definition 1.19 (Frequency) Given a pattern φ and data D, the frequency of φ in
D is the number of objects that φ matches :

Fr(φ,D) = |{X ∈ D | match(φ,X)}|

Definition 1.20 (Minimum/Maximum Frequency Constraint) Given data D,
a pattern φ ∈ L and the thresholds minFr,maxFr ∈ N, the minimum frequency con-
straint MinFrφ(minFr,D) evaluates to true if and only if Fr(φ,D) ≥ minFr. Simi-
larly, the maximum frequency constraint MaxFrφ(maxFr,D) evaluates to true if and
only if Fr(φ,D) ≤ maxFr. When referring to both minimum and maximum frequency
constraints, we abbreviate and call them frequency constraints.

Definition 1.21 (Exact String Match Function) Let UΣ be a universe of strings
over an alphabet Σ, S be a string object and s be a substring object from UΣ. Let φ
be a pattern from a string pattern language LΣ.

1. Define an exact string match function for string patterns matchv,S(φ, S) to
evaluate true, if and only if there exists a string σ, such that σ v S and σ is
equal to φ.

2. Define an exact match function for string patterns matchv,s(φ, s) to evaluate
true, if and only if s is equal to φ.

22 CHAPTER 1. INDUCTIVE DATABASES AND INDUCTIVE QUERIES

Definition 1.22 (Exact-frequency) Frequency that is computed using the exact
string match function matchv,{S,s}(φ, {S, s}) is called exact-frequency, denoted
Frv,{S,s}(φ,D). One of the contribution of this thesis concerns a soft-frequency.
Whenever it is clear from the context, which one is considered, we will abbreviate
and refer to the exact-frequency as frequency.

Definition 1.23 (Minimum/Maximum Exact-Frequency) Minimum (resp. max-
imum) frequency constraint, which bears on exact-frequency Frv,{S,s}(φ,D) is called
minimum (resp. maximum) exact-frequency constraint, denoted
MinFr

v,{S,s}
φ (minFr,D) (resp. MaxFr

v,{S,s}
φ (minFr,D)). One of the contribution

of this thesis concerns a minimum/maximum soft-frequency constraints. Whenever
it’s clear from the context, which one is considered, we will abbreviate and refer
to the minimum/maximum exact-frequency constraints as minimum/maximum fre-
quency constraints.

Example 1.9 Let Σ4 be an alphabet {a, c, g, t}, LΣ4 be a string pattern language
on Σ4 and D be a string data set from Example 1.2 in Page 16. Then, with the
exact string match function on string objects, Frv,S(tac,D) = 1, Frv,S(aa,D) = 2,
Frv,S(ac,D) = 3, and MinFrv,Saa (2,D) MinFrv,Sac (2,D) MaxFrv,Stac (1,D) are several ex-
amples of satisfied minimum and maximum frequency constraints. Similarly, with the
exact string match function on substring objects, Frv,s(tac,D) = 1, Frv,s(aa,D) = 4,
Frv,s(ac,D) = 3, and MinFrv,saa (3,D), MaxFrv,stac (2,D) are examples of satisfied con-
straints.

Following are several examples of so called syntactic constraints (see Section 2.2.1.2),
that allows to delimit the form of putatively interesting patterns.

Definition 1.24 (Minimum/Maximum Length) Let L be a pattern language, φ
be a pattern from L, and l ∈ N be a threshold. Let |φ| denote a length of a pattern
φ. Define a minimum length constraint MinLengthφ(l) to evaluate true if and only
if |φ| ≥ l. Similarly, define a maximum length constraint MaxLengthφ(l) to evaluate
true if and only if |φ| ≤ l.

Example 1.10 Let Σ4 be an alphabet {a, c, g, t}. Consider a string pattern language
LΣ4 on Σ4. Then, |c| = 1, |agat| = 4, and MinLengthagat(4), MaxLengthc(3) are
examples of satisfied minimum and maximum length constraints.

Definition 1.25 (Regular Expression Constraint) Let L be a string or sequence
pattern language, φ be a pattern from L and re be a regular expression (see Defini-
tion 1.15 in Page 20). Define a regular expression constraint MatchREφ(re) to eval-
uate true if and only if the pattern φ belongs to the language generated by the regular
expression re.

1.4. INDUCTIVE DATABASES 23

Remark 1.3 Note that a regular expression constraint MatchREφ(re) allows to spec-
ify a subset of string language or, equivalently, a regular family of sequence patterns.

Example 1.11 Let Σ4 be an alphabet {a, c, g, t}, and LΣ4 be a string pattern lan-
guage on Σ4. Consider a regular expression aa?g(t|c). Then MatchREagc(aa?g(t|c))
is an example of satisfied and MatchREaggt(aa?g(t|c)) is an example of not satisfied
regular expression constraint.

1.4 Inductive Databases

In recent years, the data mining research community put considerable effort to de-
velop efficient algorithms to extract various types of patterns in different kinds of
large collections of data. However, the data mining step in the Knowledge Discovery
in Database (KDD) process [PSF91] cannot be limited to the application of a given
algorithm to produce a collection of local patterns or to construct a global model.
In real life applications, the process of knowledge discovery in data is intrinsically
interactive and iterative: it needs for many related extractions that treat not only
different kinds of data, but also different pattern and model types. For instance, con-
sider the following sequence of tasks to find, among genes and biological situations,
some subsets of genes that are generally over-expressed in some subsets of situations
[BPB+07]:

• Collect the gene expression profiles3 over several biological situations.

• Discretize the gene expression profiles in the form of a Boolean matrix, where
genes are the columns and situation are the rows, so that a cell in a matrix
contains a 1 if the corresponding gene is over-expressed in a corresponding
situation, or a 0 if not. This matrix is called the Boolean expression matrix.

• Extract the formal concepts which hold in such a data [Wil82] (i.e., the largest
sets of over-expressed genes associated to the largest set of biological situa-
tions, in which their over-expression is observed) and such that minimum size
constraints are satisfied.

• Perform a hierarchical clustering of the extracted formal concepts.

• Select a cluster (i.e., a node in the hierarchy).

• To assess the strength and the pertinence of the association, visualize the fre-
quencies of the genes/situations associations in this cluster.

3In the field of molecular biology, a gene expression profile is a measure of the activity of thousands
of genes at once, creating a global picture of cellular activity.

24 CHAPTER 1. INDUCTIVE DATABASES AND INDUCTIVE QUERIES

• Continue the exploration by selecting different clusters.

To study and support such knowledge discovery processes, the framework of in-
ductive databases (IDB) was suggested in [IM96]. A early and simple formalisation
was then proposed in [BKM98, BKM99, MT97]. An IDB instance contains data and
patterns. The underlying idea of IDB is that the tasks of selecting, manipulating and
querying data and patterns can be considered as queries, and consequently the whole
KDD process can be considered as a process of querying. The queries on data and
sets of already extracted patterns can be formulated in Structured Query Language
(SQL) and handled by a Database Management System (DBMS). Concerning pat-
terns, the idea is to see an extraction task as an inductive query that declaratively
specifies the properties of patterns we are looking for in a (possibly not materialized,
i.e., stored intentionally) pattern space L. The declarative specification of an extrac-
tion task instead of the ad-hoc procedural constructs is appealing, because it holds the
promise of the discovery of an algebra for data mining. The actual situation in data
mining has much in common with the situation in databases before the discovery of
Codd’s relational algebra in 1970, when one disposed of many ad hoc proposals, each
adapted to a particular application domain. The discovery of IDB query language
that conceptually integrates the querying mechanisms and the primitives for treating
simultaneously the data and patterns would allow to formalise the KDD processes
in the form of sequences of queries that satisfy a closure property: every query takes
and produces an instance of inductive database. Thus it would be an equivalent
to relational algebra in databases theory for the extended framework of knowledge
discovery. However, the discovery of such language remains a long term goal. Sev-
eral specialized query languages have been proposed and implemented, e.g., DMQL
[HFW+96], MSQL [IV99], MINE RULE [MPC96, MPC98], XMine [BCKL02] (see also
[BBMM04, BM05, Mas05] for a state of art). These data mining query languages
have been studied and compared during the first EU funded project on inductive
databases, namely the cInQ project. The perspective of an abstract inductive query
language in IDB framework is proposed in [Rae02] and it has been developed further
within the IQ project. Indeed, in this project, a couple of inductive query languages
have been proposed like IQL [NR07] or Mining Views [BCF+08].

1.5 Inductive Queries

A pattern extraction task can be formalized as the computation of Th(L,D, C) =
{φ ∈ L | Cφ(D)}, i.e., finding patterns φ ∈ L such that φ satisfies the constraint C
[MT97]. The constraint C appears as the declarative specification of the subjective
interestingness for pattern relevancy. We say that computing Th(L,D, C) = {φ ∈
L | Cφ(D)} requires to solve the inductive query under the constraint C and this
is called constraint-based data mining. The promise of modeling data mining tasks

1.5. INDUCTIVE QUERIES 25

as inductive queries is to identify simple primitive operations, such that, through
their combinations, high expressiveness can be achieved. This was the case in the
field of database systems, where Codd’s relational algebra [Cod70] provides a set of
simple primitives that allow to express highly complicated tasks. By unifying various
data mining tasks under a single theoretical framework and braking them down into
common primitives, research efforts can be concentrated to optimize the solvers of
the primitives, instead of developing new solvers for each new task and application.
A design of efficient solvers is particularly important, because in general, the pattern
space L, which is indeed the search space, is very large (and possibly infinite), and
the collections of data can also be very large, what means that the cost of solving
the constraints, whose evaluation needs to access the data, can be very high.

Not all inductive queries can be evaluated. In the following we describe some
typical bottlenecks and known solutions to tackle them.

Restricting an Inductive Query Consider a domain of items I20000 containing
20 000 items, e.g., a collection of French articles in Wikipedia4 at the end of 2003. Let
LI20000 denote an itemset pattern language over I20000. Then, the inductive query that
asks for all the patterns φ ∈ LI20000 containing 15 items can not be solved, because
there are about 1060 of them, what is far too many5. Such an inductive query is
not selective enough, and it is hard to imagine the possible optimisations to solve
it, or to compute an approximation of the asked collection of patterns. A classical
approach is to render the evaluation feasible by specifying a more selective inductive
query, e.g., given data on Wikipedia usage logs, by adding an additional constraint
on minimum number of users that have consulted the demanded subsets of articles,
i.e., a minimum frequency constraint (see Definition 1.20 in Page 21).

Constraint Relaxation If an inductive query can not be solved efficiently, be-
cause the constraint C does not have good properties that enable to employ clever
pattern space L pruning strategies, a solution can be to apply constraint C relax-
ation techniques. Note that, somewhat surprisingly, this is indeed the contrary to
the previous approach. The idea is that having found a constraint C ′ that is less
selective than C (i.e., Th(L,D, C) ⊂ Th(L,D, C ′)) and that have the desired prop-
erties enabling to solve it efficiently, we can compute the set Th(L,D, C ′) and then
post-process that set to retain only the patterns that satisfy C. SPIRIT algorithms
family [GRS99] is a famous example of regular expression constraint relaxation when
mining sequences under a minimum frequency constraint and a regular expression
constraint (see Definition 1.25 in Page 22).

4Wikipedia (http://www.wikipedia.org/) is a multilingual, web-based, free content encyclopedia
project.

5To compare, there are 1050 atoms in the Earth and 1057 atoms in the Solar system.

26 CHAPTER 1. INDUCTIVE DATABASES AND INDUCTIVE QUERIES

Query Execution Plan Optimisation The efficiency of solving an inductive
query that is a Boolean composition of several constraints generally depends on the
order in which these constraints are pushed, and how deeply they are pushed into the
extraction phase (for an explication, what we mean by pushing the constraints, see
Page 21). A classical approach is to base on constraints properties (see Section 2.2.2
in Page 36) to choose the appropriate pushing strategy, e.g., the different SPIRIT
algorithms, depending on the regular expression constraint relaxation C ′, enforce
either the pruning by C ′ or by minimum frequency constraint. The efficiency of a
particular SPIRIT algorithm depends on the selectivity of a given C ′. Yet, the selec-
tivity of the constraint is not known a priori and depends on data. The algorithm
RE-Hackle [AB03] tackles this problem by applying dynamical pruning strategy: the
tradeoff between the minimum frequency constraint and the relaxed regular expres-
sion constraint C ′ is evaluated during the extraction phase, and then the appropriate
constraint is pushed for pruning. To find an optimal query evaluation plan is indeed
a typical tasks of IDB management system. It is an optimisation problem, similar to
the query evaluation problems in relational databases. This problem becomes partic-
ularly interesting when considering interactive querying sessions, which are intended
to be common when working with IDB. During such sessions, a user formulates rough
query to get an insight what patterns hold in his/her data. Then, based on the ob-
tained results, he/she refines the query. The querying process iterates, until the
satisfactory result is obtained. Incremental techniques can be designed for a clever
reuse of previous query evaluations (see, e.g., several chapters from [MLK04] and
[BDM06].

Local Optimisation Consider a set of items I. Let pattern language Lpart be
the partitions of I into disjoint subsets. The inductive query that asks a φ ∈ Lpart
such that the intra-subset distance is minimal, becomes impossible to solve when
the number of items in I reaches 10. In this case, local optimisation techniques
employed by, e.g., K-Means or hierarchical clustering algorithms, allows to compute
the partitions that are expected to be close to the optimal ones.

Remark that there is no mean to specify precisely the quality of the patterns
extracted using the local optimisation techniques. In the following, the approaches,
when extracted patterns do not satisfy exactly the constraints of an inductive query
or when not all patterns satisfying the constraint are extracted, are denoted heuristic
approaches6. On the contrary, when the constraints of an inductive query are selective
enough or they have good properties enabling to efficiently prune the pattern space,
the approaches to extract all the patterns that satisfy the constraints, denoted correct
and complete approaches7, can be designed.

6Heuristic algorithm takes shortcuts when exploring a search space, leading to the loss of an
undefinable part of the solution [VMS99b].

7Correct and complete algorithms, also known as combinatorial or exhaustive algorithms, explore
exhaustively all the search space unless there is a guarantee that some its subspace can be safely

1.5. INDUCTIVE QUERIES 27

An obvious advantage of correct and complete approaches is that the extracted
patterns are formally characterized and this is invaluable when trying to interpret
the computed solutions.

In this thesis, we will consider inductive queries on string data sets. Furthermore,
among the pattern domains on string data, we will consider mainly substring patterns
and the primitive constraints which can specify substring relevancy. In other terms,
we will not discuss further the many other pattern domains which have been studied
to support knowledge discovery from sequential data, for instance sequential patterns
(see, e.g., [AS95, SA96, PHW02]), episode and episode rules (see, e.g., [MTV97,
MR04]), composite episodes [BS07], etc. For recent survey on this important research
area, see, e.g., [MTP04] and more recently [Tei07].

discarded without a loss of any solution element.

28 CHAPTER 1. INDUCTIVE DATABASES AND INDUCTIVE QUERIES

Chapter 2

Constraint-Based Pattern
Mining

We have seen that pattern extraction can be performed by means of inductive query
solving, i.e., computing Th(L,D, C) = {φ ∈ L | Cφ(D)}. A naive approach to solve
this task is to generate every pattern φ from the pattern language L and check
whether the constraint Cφ is satisfied. However such approach is rarely feasible,
because a pattern space L is not only very large in most cases, but it can also be
infinite (e.g., a string pattern language LΣ). In addition to this, the evaluation of Cφ
can be expensive, especially when the collection of data D is large.

The constraint-based pattern mining research domain consists of searching for
efficient strategies to evaluate the constraints by a clever L traversal that enables to
find the solution set without exploring the whole pattern space L. The key issues for
designing such efficient strategies is to exploit the structure of the pattern space L,
the constraint types and their properties, and the structure of the solution set. These
three issues are explored in the following sections.

2.1 Structure of the Pattern Space

To establish a structure in a pattern space L, we require that the generality and
specificity relations be defined on every pair of patterns from the pattern language
L.

Definition 2.1 (Generality/Specificity Relation) Let L be a pattern language,
U be a universe, φ and ψ be patterns from L, X be an object from U and U × L →
{true, false} be a match function. Pattern φ is said to be more general than pattern

29

30 CHAPTER 2. CONSTRAINT-BASED PATTERN MINING

ψ (denoted φ � ψ) if and only if match(ψ,X)⇒ match(φ,X). In that case we also
say that pattern ψ is more specific than pattern φ (denoted ψ � φ).

Example 2.1 Let Σ4 denote the alphabet {a, c, g, t}. Let UΣ4 be universe of strings
over alphabet Σ4 and LΣ4 be string pattern language over alphabet Σ4. Consider
exact string match function matchv,S or matchv,s (see Definition 1.21 in Page 21).
Then the pattern φ = gt is more general than the pattern ψ = gtt, denoted gt �
gtt. Correspondingly, the pattern ψ = gtt is more specific than the pattern φ = gt,
denoted gtt � gt.

The generality relation � induces a structure in the pattern space L. Methods
to efficiently compute Th(L,D, C) rely on that structure. Note that the relation of
generality is a pre-order relation1. Because of symmetry, the same properties are
shared by a relation of specificity. Remark that the generality relation may not be
anti-symmetric, and thus it is not necessarily a partial order.2

Example 2.2 Let a set of propositional logic formulas, denoted Lf , be a pattern
language. Let a set of truth assignments, denoted Uf , be a universe. Define a match
function matchf (φ,X) to evaluate true if and only if a propositional logic formula φ
evaluates to true under a truth assignment X.

φ1 = x, φ2 = x∧ (x∨ y), φ3 = x∨ y and φ4 = y∨¬y are several patterns from Lf
and X1 = {x 7→ true, y 7→ true}, X2 = {x 7→ true, y 7→ false}, X3 = {x 7→ false, y 7→
true} and X4 = {x 7→ false, y 7→ false} are several objects from Uf . Then we have

matchf (φ1, X1) = matchf (φ1, X2) =
matchf (φ2, X1) = matchf (φ2, X2) =
matchf (φ3, X1) = matchf (φ3, X2) =
matchf (φ3, X3) =
matchf (φ4, X1) = matchf (φ4, X2) =
matchf (φ4, X3) = matchf (φ4, X4) = true

and

matchf (φ1, X3) = matchf (φ1, X4) =
matchf (φ2, X3) = matchf (φ2, X4) =
matchf (φ3, X4) = false.

Observe that φ1 � φ2, φ2 � φ1, φ3 � φ1, φ3 � φ2, φ4 � φ1, φ4 � φ2 and φ4 � φ3.
Note that we have φ1 � φ2 and φ2 � φ1, but φ1 6= φ2 and thus the relation � defined
in this example is not anti-symmetric and thus it is not a partial order.

1A pre-order relation (or quasi-order) is a binary relation that is reflexive and transitive.
2A partial order is a binary relation that is reflexive, transitive and anti-symmetric.

2.1. STRUCTURE OF THE PATTERN SPACE 31

We seek for a generality relation that is a partial order, because it allows to
organize a pattern space L into an efficiently exploitable structure. We can derive
an equivalence relation ∼ in L and use the resulting quotient set3 as the pattern
language. For this pattern language we can derive the generality relation that is a
partial order.

Given a match function that relates patterns from a pattern language L to objects
from a universe U , consider two patterns φ and ψ ∈ L, such that φ � ψ and ψ � φ.
Then from Definition 2.1 it follows that for any object X in the universe U , φ matches
X if and only if ψ also matches X. These two patterns can be thus considered
equivalent w.r.t. the universe U and the function match.

Definition 2.2 (Quotient Set) Let L be a set with a pre-order relation �. Define
an equivalence relation ∼ by:

φ ∼ ψ if and only if φ � ψ and ψ � φ

Denote the equivalence class containing φ by φ/ ∼ and the quotient set by L/ ∼.

Definition 2.3 (Generality Relation on Quotient Set) Define a generality re-
lation �∼ on L/ ∼ by

φ/ ∼ �∼ ψ/ ∼ if and only if φ � ψ.

Example 2.3 Continuing from Example 2.2, we have φ1 ∼ φ2. These groups φ1

and φ2 are into the same equivalence class in Lf/ ∼, while φ3 and φ4 belongs to two
other equivalence classes, i.e., φ1/ ∼ = φ2/ ∼ 6= φ3/ ∼ 6= φ4/ ∼. They are ordered
as φ4/ ∼ �∼ φ3/ ∼ �∼ φ1/ ∼.

The reflexivity and transitivity of �∼ follow from the reflexivity and transitivity
of �. Also note that given φ/ ∼ �∼ ψ/ ∼ and ψ/ ∼ �∼ φ/ ∼, we have φ/ ∼ =
ψ/ ∼. Thus the relation �∼ is anti-symmetric, what also means that it is a partial
order relation.

Definition 2.4 (Match Function on Quotient Set) Define a match function on
quotient L/ ∼ ×U → {true, false} by

match∼(φ/ ∼, X) ≡ match(φ,X).

3The set of all equivalence classes in a set A, w.r.t. the given equivalence relation ∼, is called the
quotient set of A by ∼, usually denoted A/ ∼.

32 CHAPTER 2. CONSTRAINT-BASED PATTERN MINING

Example 2.4 Continuing from Example 2.3, we have

match∼(φ1/ ∼, X1) = match∼(φ1/ ∼, X2) =
match∼(φ3/ ∼, X1) = match∼(φ3/ ∼, X2) =
match∼(φ3/ ∼, X3) =
match∼(φ4/ ∼, X1) = match∼(φ4/ ∼, X2) =
match∼(φ4/ ∼, X3) = match∼(φ4/ ∼, X4) = true

and

match∼(φ1/ ∼, X3) = match∼(φ1/ ∼, X4) =
match∼(φ3/ ∼, X4) = false.

Thus from a pattern language L and a generality relation �, which is a pre-order,
we can always derive another pattern language L/ ∼ with the relation �∼, which
is a partial order. Also, this new pattern language L/ ∼ is related to the universe
U by the quotient match function match∼(φ/ ∼, X), which can be always derived
from the match function on L × U . Therefore, if a generality relation � on a given
pattern language L is not a partial order, we can use the constructed equivalence
class L/ ∼ and the generality relation �∼ correspondingly as a pattern language and
a generality relation. Thus in the following we assume that the relations � and �
are partial orders. Notice that, e.g., the generality relation defined as a substring
relation v on a substring pattern language is a partial order.

A generality relation � that is a partial order allows to arrange the pattern space
L in the form of an acyclic directed graph. This graph is exploited to design efficient
algorithms that walk through the pattern space to find the patterns that satisfy the
given constraints.

Definition 2.5 (Partially ordered graph) Let L be a set with a relation � that
is a partial order. The partially ordered graph of L is an acyclic directed graph (V ,
E) where

• V = L is a set of vertices

• E ⊆ V × V is a set of edges. An edge exists between vertices φ and ψ, if and
only if φ � ψ and @ν ∈ L such that ν 6= φ, ν 6= ψ and φ � ν � ψ.

In other words, for each pattern φ ∈ L there is a corresponding vertex in the
partially ordered graph. Each edge in the graph corresponds to a pair of patterns
φ � ψ without any other pattern in between. If there is a pattern ν between φ and ψ,
i.e., if φ � ν � ψ, then the relation φ � ψ is represented by the directed path from φ

2.1. STRUCTURE OF THE PATTERN SPACE 33

through ν to ψ, taking advantage of the transitivity of the relation �. Also note that
the acyclicity of the partially ordered graph follows from the anti-symmetry property
of the partial order �.

In the following we give two examples of partially oriented graphs. The first one
establish a structure on the itemset pattern language (see Definition 1.10 in Page 18)
and the second one - on the string pattern language (see Definition 1.8 in Page 17).

Example 2.5 Let I4 = {A,B,C,D} be domain of items. Consider an itemset pat-
tern language LI4 on I4. The partially ordered graph of LI4 is depicted in Figure 2.1.
Note that there is no edge from, e.g., the itemset {A,D} to the itemset {A,B,C,D},
because there is an itemset {A,B,D}, such that {A,D} � {A,B,D} � {A,B,C,D},
and an itemset {A,C,D}, such that {A,D} � {A,C,D} � {A,B,C,D}. Notice
that LI4 contain a most general element (the empty set) and a most specific element
(the itemset {A,B,C,D}). Also, for every pair of itemsets φ, ψ ∈ LI4 there exists
a unique least general element ν ∈ LI4 such that ν � φ and ν � ψ. The analogous
condition also hold for the relation of specificity �. Thus LI4 is a lattice and takes
advantage of the nice properties of lattices.

Figure 2.1: Partially ordered graph of LI4 that is a lattice

Example 2.6 Let Σ4 = {a, c, g, t} be an alphabet and LΣ4 be a string pattern lan-
guage on Σ4. Several topmost levels of the partially ordered graph of LΣ4 are depicted
in Figure 2.2. The most general element of LΣ4 is the empty string. Note that the
pattern space LΣ4 is infinite and thus it is impossible to draw the complete partially
ordered graph. Remark that LΣ4 is not a lattice: not only it does not have a most
specific element, but also the condition that for every pair of patterns there must ex-
ist a unique least general element is not satisfied, e.g., both ac and ca are the least
general elements for the pair of strings aca and cac.

34 CHAPTER 2. CONSTRAINT-BASED PATTERN MINING

Figure 2.2: Partially ordered graph of LΣ4

2.2 Constraint Types and Properties

The generalisation of data mining tasks to the task of finding the set Th(L,D, C) =
{φ ∈ L | Cφ(D)} [MT97] opens a possibility to distinguish the type of the constraint
C and to study their properties. Then the corresponding strategies to efficiently
handle the constraints according to their type and/or properties can be designed.

2.2.1 Constraint Types

According to the restriction nature, one can distinguish three types of constraints:
data-dependent, syntactic and optimisation constraints.

2.2.1.1 Data-dependent Constraints

Constraints, whose evaluation requires to refer to data, are called data-set dependent
constraints.

Definition 2.6 (Data-dependent Constraint) Let L be a pattern language, φ be
a pattern from L, U be a universe containing objects X, D be data on U , match(φ,X)
be a match function mapping patterns to objects and Cφ be a constraint on φ. We
say that a constraint Cφ is a data-dependent constraint if and only if the evaluation
of Cφ requires to find the objects X ∈ D such that match(φ,X) = true.

Minimum and maximum frequency constraints (see Definition 1.20) are classical
examples of data-dependent constraints. The notion of frequency is very important
in data mining. On one hand, minimum frequency constraint pruning thanks to its

2.2. CONSTRAINT TYPES AND PROPERTIES 35

anti-monotonicity property (see Section 2.2.2.1 in Page 37) allows to reduce signif-
icantly the search space and thus render the correct and complete extractions (see
discussion on Page 26) feasible. A priori [AS94] is one of the first and most famous
data mining algorithms that efficiently exploits the minimum frequency constraint to
extract association rules. On the other hand, frequency constraints are semantically
important. They are often used to characterize interesting and/or exceptional pat-
terns. Consider, for example, a problem of finding active molecular substructures.
A possible solution is to search for the molecular substructures that are frequent in
the active molecules and infrequent in the inactive ones, what, in data mining terms,
means extracting the substructures that satisfy a minimum frequency constraint in
a set of active molecules and a maximum frequency constraint in a set of inactive
molecules [KRH01].

2.2.1.2 Syntactic Constraints

On the contrary to the data-dependent constraints, the syntactic constraints are
constraints whose evaluation do not require to refer to data. Syntactic constraints
restrict the form of the patterns, and thus allows to specify an a priori interesting
subset of a pattern language.

Definition 2.7 (Syntactic Constraint) Let L be a pattern language, φ be a pat-
tern from L and Cφ be a constraint on φ. We say that a constraint Cφ is a syntactic
constraint if and only if the evaluation of Cφ does not require to refer at a data set
D. Consequently, the corresponding Th(L,D, C) does not depend on data D.

Example 2.7 Minimum and maximum length constraints (see Definition 1.24 in
Page 22) and the regular expression constraint (see Definition 1.25 in Page 22) are
syntactic constraints.

2.2.1.3 Optimisation constraints

It is often useful to associate an evaluation function to define pattern semantics [BKM99].
Constraints that evaluate to true for patterns having optimal evaluation function val-
ues are called optimisation constraints.

Definition 2.8 (Evaluation function) Let D be data, L be a pattern language and
φ be a pattern from L. Let r be a set of result values. Evaluation function e(D, φ)
maps each pair (D, φ) to an element of r.

Example 2.8 Let Σ4 = {a, c, g, t} be an alphabet and LΣ4 be a string pattern lan-
guage on Σ4. Consider a string data set D = {agt, agc, gt, gt}. Let φ be a pattern

36 CHAPTER 2. CONSTRAINT-BASED PATTERN MINING

from LΣ4. Define an evaluation function e(D, φ) be equal to pattern’s φ frequency (see
Definition 1.19 in Page 21), with a set of result values r = {0, . . . , |D|} = {0, . . . , 4}.
Then, e.g., e(D, gt) = 3.

Since an evaluation function is intended to define pattern semantics, its choice
depends on the problem one is trying to answer through pattern extraction. For
example, statistical significance [WAG84, RF98a] and information content [Sta89,
WFHW96] are widely used evaluation functions when mining patterns in DNA se-
quences.

Definition 2.9 (Optimisation Constraint) Let L be a pattern language, φ be a
pattern from L, D be data and e(D, φ) be an evaluation function. We say that a
constraint Cφ is an optimisation constraint if and only if it evaluates to true when
e(D, φ) has an optimal value.

Many learning algorithms seek to compute global models that satisfy an optimi-
sation constraint. For example, a typical task of clustering is to find clusters such
that the inter-cluster distance is maximal and intra-cluster distance is maximal. Sim-
ilarly, a typical task of classification problems is to build a classifier that maximizes
an accuracy, or equivalently, minimizes an error rate. In most cases to find a correct
and complete solution is too much computationally expensive. Then, the heuristic
approaches devise techniques that are able to extract the patterns having a good, i.e.,
near to the optimal, evaluation function value.

Optimisation constraints are also difficult to exploit when mining local patterns,
and thus they are often handled by post-processing that filter out patterns having
not optimal evaluation function values. Some notable exceptions include algorithms
to mine association rules [AIS93] that are optimal w.r.t. a variety of evaluation
functions, e.g., [RJBA99], or mining maximal frequent itemsets, e.g., [BCFY05].

A slight variation of optimisation constraints for local patterns are so called top-k
constraints. Top-k constraint asks k ∈ N patterns having the best evaluation function
values. For example, [HWLT02] proposes an algorithm to extract the k itemsets with
the largest frequency values. Similarly, [TYH03, TYH05] proposes an algorithm to
extract the k sequence patterns with the largest frequency values.

2.2.2 Constraint Properties

The idea behind efficient search space pruning strategies is to safely ignore large pat-
tern space areas. The safety of such pruning is assured by constraint properties that
guarantee that no pattern satisfying the constraint condition can exist in the dis-
carded subspace. According to these formal properties, constraints can be attributed

2.2. CONSTRAINT TYPES AND PROPERTIES 37

to the classes. In the following, we present several such classes that were extensively
explored by the data mining community.

2.2.2.1 Anti-monotonic and monotonic constraints

The class of anti-monotonic constraints is one of the easiest to handle, and a number
of algorithms, A priori [AS94] being among the first ones, exploit the property of
anti-monotonicity to prune the pattern space and thus to render the complete and
correct extractions feasible and efficient.

Definition 2.10 (Anti-monotonicity) Let L be a pattern language. A constraint
C is anti-monotonic if and only if for any φ, ψ ∈ L we have that if φ � ψ, then
Cψ ⇒ Cφ.

The pruning by an anti-monotonic constraint is based on the following remark.

Remark 2.1 Note that, if a constraint C is anti-monotonic, then, for any φ � ψ,
if Cφ is not satisfied, then Cψ can not be satisfied.

Example 2.9 Let L be a pattern language, φ be a pattern from L, D be data and
minFr, l ∈ N be thresholds. The minimum support constraint MinFrφ(minFr,D) (see
Definition 1.20 in Page 21) and the maximum length constraint MaxLengthφ(l) (see
Definition 1.24 in Page 22) are anti-monotonic constraints.

Monotonicity is a property dual to anti-monotonicity.

Definition 2.11 (Monotonicity) Let L be a pattern language. A constraint C is
monotonic if and only if for any φ, ψ ∈ L we have that if φ � ψ, then Cψ ⇒ Cφ.

The exploitation of a monotonic constraint is usually based on the following re-
mark.

Remark 2.2 Note that, if a constraint C is monotonic, then, for any φ � ψ, if Cφ
is not satisfied, then Cψ can not be satisfied.

Example 2.10 Let L be a pattern language, φ be a pattern from L, D be data and
maxFr, l ∈ N be thresholds. The Maximum frequency constraint MaxFrφ(maxFr,D)
(see Definition 1.20 in Page 21) and the minimum length constraint MinLengthφ(l)
(see Definition 1.24 in Page 22) are monotonic constraints.

38 CHAPTER 2. CONSTRAINT-BASED PATTERN MINING

The duality between monotonic and anti-monotonic constraints has been observed
early in [BJ00] with a detailed presentation in [Jeu02]. It has motivated the study
of the relationship between border-based algorithms and the popular version spaces
(see next section), giving rise to the state-of-the-art generic solvers discussed in the
next chapter.

2.2.2.2 Succinct constraints

A property of succinctness was defined for constraints on itemset patterns [NLHP98].
It is an easy to exploit property that characterizes constraints for which pruning can
be done without candidate pattern generation and testing w.r.t. data D. Therefore,
succinct constraints are syntactic constraints. Notice that according to [Jeu02], suc-
cinct constraints can be expressed as conjunctions of monotonic and anti-monotonic
constraints.

Definition 2.12 (Succinctness) Let I be a domain of items, and I be an itemset
on I (see Definition 1.9 in Page 17). Let LI be an itemset pattern language. Let
πp be a selection predicate, i.e., any predicate allowed to appear as a parameter of a
selection operation in relational algebra. πp(I) returns the items that satisfy predicate
p. Then,

• an itemset I ⊆ I is a succinct set if it can be expressed as πp(I);

• SP ⊆ 2I is a succinct powerset if there is n ∈ N succinct sets I1, . . . , In ⊆ I
such that SP can be expressed in terms of the strict powersets of I1, . . . , In
using the union and minus set operators;

• a constraint C is a succinct constraint if Th(LI , C) is a succinct powerset.

Example 2.11 Let domain of items I be products sold in a supermarket, which
can be attributed to categories such as vegetables, fruits, cereals, etc. Consider a
constraint C that asks all itemsets that contain at least one vegetable item and at least
one fruit item. Let πvegetable(I) be a selection predicate that returns the items that
are vegetables, πfruit(I) be a selection predicate that returns the items that contain
fruits and π¬vegetable∧¬fruit(I) be a selection predicate that returns the items that
are neither vegetables nor fruits. Then, let I1, I2 and I3 be respectively the sets
πvegetable(I), πfruit(I) and π¬vegetable∧¬fruit(I). The constraint C is succinct because
its Th(LI , C) can be expressed as 2I − 2I1 − 2I2 − 2I1

S
I3 − 2I2

S
I3.

2.2. CONSTRAINT TYPES AND PROPERTIES 39

2.2.2.3 Convertible constraints

Before formally defining the notion of convertible constraints, we propose to consider
the following example.

Example 2.12 Let the domain of items I be products sold in a supermarket. Let
prices be associated with each such item. Consider a minimum average constraint
C that is satisfied if and only if the average prices of the items in a itemset I is
greater than θ, θ ∈ N. Consider an itemset I1 = {tomatos, apples} and an itemset
I2 = {tomatos, apples, peaches}. Suppose that the constraint CI1 is true for a given
θ. Then, we cannot say if CI2 is true, because the price of peaches can increase as
well as decrease the average price of items. Similarly, given that CI1 is true we can
not say if the CI2 is true. Therefore, C is neither monotonic, nor anti-monotonic.
Neither it is succinct. However, observe that if we arrange the items in the price-
descending order, the average of the items prices in a itemset is always smaller or
equal than the average of items prices in its prefix itemset.

A notion of convertible constraints on itemsets was introduced in [PH00, PHL01].
The idea is that, given a constraint that is neither anti-monotonic nor monotonic,
i.e., a constraint that does not establish a relation between itemset subsets, supersets
and a satisfaction of constraint, we can arrange the items in an itemset so that there
is a stable relation between a constraint satisfaction and an itemset prefix.

Definition 2.13 (Itemset Prefix) Let R be a total order over the items from the
domain I and m,n ∈ N be such that m ≤ n. Consider the itemset I1 = {i1, . . . , im}
and the itemset I2 = {i1, . . . , in} such that the items in I1 and I2 are listed according
to the order R. Then, the itemset I1 is called a prefix of the itemset I2 w.r.t. R.

Definition 2.14 (Convertible Constraint) Let LI be an itemset pattern language,
and φ ∈ LI be an itemset pattern. A constraint C is convertible anti-monotonic if
and only if there is an order R on items such that whenever an itemset φ satisfies C,
any itemset prefix of φ also satisfies C. A constraint C is convertible monotonic if
there is an order R on items such that whenever an itemset φ violates C, any item-
set prefix of φ also violates C. A constraint is convertible whenever it is convertible
monotonic or convertible anti-monotonic.

Remark 2.3 (Anti-)monotonic constraints are trivially convertible (anti-)monotonic.

Example 2.13 The minimum average constraint C from Example 2.12 is convertible
anti-monotonic w.r.t. the price-descending order R. A maximum average constraint
that is satisfied if and only if average of prices of items in a itemset I is smaller than
v, v ∈ N, is convertible monotonic w.r.t the same order R.

40 CHAPTER 2. CONSTRAINT-BASED PATTERN MINING

Although the notion of convertible constraints allows to push deeply into extrac-
tion phase a number of useful and otherwise hard to exploit constraints, it cannot be
easily generalized to other pattern languages, e.g., string or sequence patterns, where
an order of pattern elements is pre-composed and can not be freely re-arranged. An
interesting exception is Galibot algorithm [CBM02b], where a similarity to a pat-
tern of reference constraint is relaxed to a convertible anti-monotonic constraint (see
Section 4.2.3 for more details).

2.2.2.4 Prefix-monotone constraints

A notion of prefix-monotone constraints on sequence patterns (see Definition 1.12 in
Page 18) was introduced in [PHW02] with an objective to cover a large part of useful
constraints that can be pushed deeply using the proposed generalized strategy.

We first define a notion of sequence prefix.

Definition 2.15 (Sequence Prefix) Let I = {i1, . . . , ik}, k ∈ N, be a domain of
items and R be a total order over them. Since the item ordering in an itemset is
not important to sequential patterns, any order R can be considered. For example,
let R be the alphabetical order. The fact that the item ii is before the item ij w.r.t.
the order R is denoted ii < ij. Consider a sequence Φ = 〈I1, . . . , In〉, n ∈ N, and a
sequence Ψ = 〈I1, . . . , Ik,Y〉, k ∈ N. Ψ is a prefix of Φ, if

• k < n

• Y ⊆ Ik+1

• for each i ∈ Y and for each i′ ∈ Ik+1 − Y, i < i′

If Ψ is a prefix of Φ, it is also a subsequence of Φ.

Example 2.14 Let I = {A,B,C,D} be a domain of items. Let R be an alphabetical
order. The sequence Ψ = 〈{C}{A,B}〉 is a prefix of sequence Φ = 〈{C}{A,B,D}{B,C}〉,
but the sequence Ξ = 〈{C}{A,D} is not a prefix of Φ.

Definition 2.16 (Prefix-monotone Constraint) Let LS be a sequence pattern
language and φ be a pattern from LS . A constraint C is prefix anti-monotonic if
and only if for each sequence pattern φ satisfying the constraint C, every prefix of φ
also satisfies C. A constraint is prefix monotonic if and only if for each sequence φ
satisfying C, every sequence having φ as a prefix also satisfies C. A constraint C is
prefix-monotone if it is prefix anti-monotonic or prefix monotonic.

2.3. STRUCTURE OF THE SOLUTION SET 41

Remark 2.4 (Anti-)monotonic constraints are trivially prefix (anti-)monotonic.

In the following we define a legality w.r.t. a regular expression constraint, which is
an example of prefix anti-monotonic constraint. The interest of this constraint is that
it is a relaxation of a regular expression constraint (see Definition 1.25 in Page 22),
and thus enables to exploit the latter using the generalized strategy of [PHW02].

Definition 2.17 (Constraint of Legality w.r.t. a Regular Expression) Let L
be a string or sequence pattern language and φ be a pattern from L. Let re be a reg-
ular expression and Are be a corresponding deterministic finite automaton4. Define
a legality w.r.t. a regular expression constraint LegalREφ(re) to evaluate true if and
only if a state in Are can be reached following φ, or in other words, if a pattern φ is
legal5 w.r.t. a regular expression re.

Remark 2.5 A constraint of legality w.r.t. a regular expression LegalREφ(re) is a
relaxation of a regular expression constraint MatchREφ(re), since for each pattern φ
satisfying MatchREφ(re), every prefix of φ must be legal w.r.t. a regular expression
re.

Example 2.15 Let I = {A,B,C,D} be a domain of items and LS be a sequence pat-
tern language on I. Consider the regular expression C(A|D)(A|C). An example of a
satisfied legality constraint w.r.t. this regular expression is LegalRECA(C(A|D)(A|C)).
An example of an unsatisfied one is LegalRECC(C(A|D)(A|C)).

Example 2.16 A constraint of legality w.r.t. a regular expression LegalREφ(re) is
prefix anti-monotonic, since for each pattern φ that is legal w.r.t. a regular expression
re, every prefix of φ must also be legal w.r.t. re.

2.3 Structure of the Solution Set

We analyzed the structure of the pattern space (or, in other words, the pattern
language) L. Inductive query answering needs to compute a collection Th(L,D, C),
i.e., its solution or answer set which is a subset of L. We introduce now a method

4Regular expressions have the same expressive power as deterministic finite automata [LP81],
thus given any regular expression re one can always build a deterministic finite automaton Are such
that Are accepts the language generated by re.

5A term of a sequence legality w.r.t. a state of a deterministic finite automaton Are of a regular
expression re was introduced in [GRS99]. A term of sequence legality w.r.t. a regular expression re,
as defined here, was introduced in [PHW02], and is equivalent to a sequence legality w.r.t. the start
state of Are.

42 CHAPTER 2. CONSTRAINT-BASED PATTERN MINING

to compactly represent Th(L,D, C), using the structure of L. First, we examine
the case, where the inductive query involve an anti-monotonic constraint A or a
monotonic constraint M, or an arbitrary conjunction A ∧ M. There, the notion
of version space is presented. After, we introduce the notion of generalized version
spaces, which is used to solve the inductive queries that are arbitrary combinations
of anti-monotonic and monotonic constraints.

2.3.1 Version Space

Version spaces[Hir91, Hir94, Mit82] (also known as convex set) and their border repre-
sentations [MT97] are traditionally used to characterize the solution space Th(L,D, C)
in the fields of machine learning [Hir91, Hir94, Mit82] and data mining [MT97,
Bay98].

To begin, consider the computation of Th(L,D, C), where C is anti-monotonic.
According to the property of anti-monotonicity (see Definition 2.10 in Page 37), if
a pattern φ ∈ L satisfies the constraint C, then all patterns that are more general
than φ also satisfy C. In other words, if a pattern φ is in a solution set Th(L,D, C),
then all the patterns that are more general (see Definition2.1 in Page 29) than φ
also belong to the solution set. This means that φ covers all its generalisations.
Notice that, in general, one pattern does not cover the whole Th(L,D, C), and we
need several (many) patterns to cover the whole solution set6. The set of maximally
specific patterns in Th(L,D, C) is the minimal covering set7. It is called the S-set
(set of maximaly specific elements).

Definition 2.18 (S-set) Let L be a pattern space with a generality relation �. Let
S be any subset of L. The S-set of S is defined by

S(S) = {φ ∈ S | @ ψ ∈ S : φ 6= ψ ∧ ψ � φ}

The case, where the constraint C is monotonic is symmetric to the previous case.
According the the property of monotonicity (see Definition 2.11 in Page 37), if a
pattern φ ∈ L satisfy the constraint C, then all patterns that are more specific than
φ also satisfy C. Thereby, the pattern φ covers all its specialisations. The minimal
set of patterns that cover the whole solution Th(L,D, C) is called the G-set(set of
maximally general elements).

Definition 2.19 (G-set) Let L be a pattern space with a generality relation �. Let
S be any subset of L. The G-set of S is defined by

6A set of patterns cover the solution set Th(L,D, C), if these patterns and their generalisations
form Th(L,D, C)

7The set of covering patterns will be redundant if any of them is a generalisation of another. To
minimize the set of covering patterns we need to eliminate such redundancy

2.3. STRUCTURE OF THE SOLUTION SET 43

G(S) = {φ ∈ S | @ ψ ∈ S : φ 6= ψ ∧ ψ � φ}

Consider now a case, where the constraint C is a conjunction of a anti-monotonic
and monotonic constraint A ∧ M. Such constraint C is neither anti-monotonic,
not monotonic, however its solution Th(L,D, C) can be easily computed by the set
intersection Th(L,D,A) ∩ Th(L,D,M). Note that the S of Th(L,D,A) and the
G of Th(L,D,M) covers the elements of Th(L,D,A ∧ M), i.e., the solutions of
constraint C = A∧M. This means, that given the S-set and the G-set, the solution
set Th(L,D,A ∧M) is in between. The region, sandwiched between the the S-set
and G-set is called a version space.

Definition 2.20 (Version Space) Let L be a pattern space with a generality rela-
tion �. Let S be the S-set of a subset S of L and G be the G-set of S. Then S is a
version space, defined by:

{φ ∈ L | ∃ s ∈ S and ∃ g ∈ G : g � φ � s}

Take notice that a version space can represent the solution set to a conjunction
of any number of anti-monotonic and monotonic constraints, since a conjunction
of anti-monotonic constraints is anti-monotonic, and a conjunction of monotonic
constraints is monotonic. The level-wise version space algorithm that computes the
S-set and G-set set w.r.t. a conjunction of monotonic and anti-monotonic constraints
was introduced in [RK01, KRH01].

2.3.2 Generalized Version Space

In the previous section we saw that a version space can be used as a compact rep-
resentations of the solution set Th(L,D, C), where C is of the form A1 ∧ . . . ∧ An ∧
M1 . . .Mm. The condition on the constraint C form is however quite restrictive, and
there are many constraints, e.g., A1 ∨ (A2 ∧M1), that can not be expressed in this
form. [DJDM02, DD03] proposed to to evaluate a constraint C that is an arbitrary
Boolean combination of anti-monotonic and monotonic constraints by decomposing
C into n subconstraints Ci, such that

• C ≡ C1 ∨ . . . ∨ Cn, where n is minimal;

• each subconstraint Ci is the conjunction of an anti-monotonic and monotonic
subconstraint, i.e., Ci = A ∧M.

Note that the solution set Th(L,D, Ci) is a version space, and the solution set
Th(L,D, C) can be represented by a union of version spaces

⋃n
i=1 Th(L,D, Ci). The

union of version spaces is called a generalized version space.

44 CHAPTER 2. CONSTRAINT-BASED PATTERN MINING

Definition 2.21 (Generalized Version Space) A subset of a pattern space L with
a generality relation �, that can be expressed as a union of version spaces, is called
a generalized version space.

Chapter 3

Generic Solvers

By a generic solver we mean a solver capable to evaluate the inductive queries that
are arbitrary Boolean compositions of constraints, i.e., arbitrary expressions over
constraints using Boolean algebra operations: conjunction, disjunction and nega-
tion. On the contrary, an ad-hoc solver is a solver, designed to evaluate a particular
composition of constraints (e.g., a minimum frequency constraint, a conjunction of
minimum frequency constraint with other application specific constraints) on a par-
ticular pattern space L (e.g., itemset pattern language LI , string pattern language
LΣ).

The inductive databases framework provides a basis to study the properties of
different pattern languages L, constraints C and their different compositions, as well
as different types of data sets D. Thereby it provides a framework to design efficient
generic algorithms that solve inductive queries. Indeed, a key issue for designing effi-
cient solvers is to exploit the structure of the pattern space L, the structure of the so-
lution set Th(L,D, C) and the constraint C properties to compute Th(L,D, C) with-
out exploring the whole search space L. Extensive studies of the anti-monotonicity
and monotonicity properties have given rise to a general theory [DJDM02, DD03] for
mining general patterns (i.e., patterns from any pattern language L), satisfying an in-
ductive query with the constraint C that is a Boolean combination of anti-monotonic
and monotonic primitive constraints.

3.1 Theoretical Framework

The theory of solving inductive query with a constraint C that is an arbitrary
Boolean composition of anti-monotonic and monotonic primitive constraints, is based
on characterizing the solution set Th(L,D, C) by means of version spaces [Hir91,
Hir94, Mit82] and border representations [MT97] (2.3.1 in Page 42). More specifi-

45

46 CHAPTER 3. GENERIC SOLVERS

cally, this theory concerns the decomposition of such constraint C into a set of sub-
constraints Ci, such that Th(L,D, C) =

⋃k
i=1 Th(L,D, Ci), where k is minimal and

each Th(L,D, Ci) can be represented using a single version space, i.e., Ci = A∧M1,
where A denotes an anti-monotonic constraint and M denotes a monotonic con-
straint. Such solution set Th(L,D, C) that is a union of version spaces Th(L,D, Ci) is
known as generalized version space [DD03] (see Section 2.3.2 in Page 43). This results
in an operational procedure for solving arbitrary Boolean inductive queries, since once
each Ci is computed, the resulting solution sets Th(L,D, Ci) can be combined using
the set manipulation operations to obtain the solution Th(L,D, C) [DD03]. While
the latter can be done efficiently, the step of computing Ci = A ∧M is not trivial.
The general theoretical framework was instantiated to answer inductive queries on
patterns from string pattern language LΣ [DJDM02]. One of the key elements of this
instance is the algorithm VST to efficiently compute patterns, satisfying an arbitrary
conjunction of anti-monotonic and monotonic constraints. The algorithm VST and
the algorithm FAVST [DD04], efficiently solving the same problem in a distributed
environment, are presented in the following sections.

Considerable research effort in constraint-based data mining was dedicated for
itemset pattern mining. Researchers in itemset mining domain have also considered
the issue of extraction under anti-monotonic and monotonic constraints, e.g., [GLW00]
presents a method for combining the anti-monotonic and monotonic constraints when
mining item sets, and [PH00] discuss the use of FP-trees [HPY00] with several
anti-monotonic and monotonic constraints. Such approaches should not be confused
with the algorithms VST and FAVST, which are the instances of the general theo-
retical framework that works not only with itemset or string patterns, but with
patterns from any pattern language L. Also, the minimum frequency constraint
being anti-monotonic and the maximum frequency constraint being monotonic, the
algorithms VST and FAVST certainly solves the conjunction MinFrv,Sφ (minFr,D1) ∧
MaxFrv,Sφ (maxFr,D2) but they should not be confused with the ad-hoc approaches
dedicated to evaluate this particular conjunction of frequency constraints, such as
the algorithm of [FHK05, FHK06].

3.2 Instance for String Patterns

3.2.1 Version Space Tree

A Version Space Tree (VST)[DJDM02] is a data structure, dedicated to represent
and index a version space (see Definition 2.20 in Page 43) of string patterns, i.e., a

1 As noticed in Section 2.3.1 in Page 42, a conjunction of the anti-monotonic constraints is anti-
monotonic, and a conjunction of the monotonic constraints is monotonic. Therefore, a constraint
Ci = A1 ∧ . . .An ∧M1 ∧ . . . ∧Mm can be rewritten as Ci = A ∧M, where A = A1 ∧ . . .An and
M =M1 ∧ . . . ∧Mm.

3.2. INSTANCE FOR STRING PATTERNS 47

set Th(L,D, Ci), where Ci = A∧M. The anti-monotonic constraint A is required to
be non-trivial (i.e., it cannot evaluate true for every pattern φ), since otherwise the
version space and the corresponding VST will be infinite. There is no such require-
ment for monotonic constraint M, since the solution set to A is always bounded by
the most general pattern (in our case, an empty string) and the S set of Th(L,D,A).

VST was inspired by a well studied suffix tree [Wei73, Ukk95] data structure.

A trie is a tree, such that

• each edge is labeled with a symbol from a given alphabet Σ,

• each edge, emerging from a node, must be labeled with an unique label,

• each node N uniquely represents a string σ = σ1 . . . σn: the path from the root
node R to the node N spells the string σ. In the following we will denote such
string σ as string(N). The root node represents an empty string.

A suffix trie is a trie, such that

• for each node N there also exists a node N ′, such that string(N ’) is a suffix of
string(N).

• each node N has a link to the node N ′, called the suffix link. The root node is
an exception, because it represents an empty string, and its suffix link is defined
to be linked to the root node itself.

To design a suffix trie that represents a version space of strings, several modifica-
tions are made w.r.t. the classical suffix tree structure:

• such suffix trie is build from all suffixes of a set of strings2, whereas a classical
suffix trie is build from all suffixes of a single string.

• each node N is labeled with either ⊕ or 	: the label ⊕ indicates that string(N)
satisfies the constraint and therefore belongs to the version space, and the label
	 indicates that string(N) does not satisfy the constraint and therefore does
not belong to the version space,

• the chains of nodes with only one out-going edge are not coalesced into a single
edge with one label, since each node represents a string in a string data set,
with its proper label (and a count of its occurrences).

2This allows to index a set of strings.

48 CHAPTER 3. GENERIC SOLVERS

Take notice that such labeled suffix trie can contain nodes, such that their labels
and the labels of their all descendants are 	. Then such node and the subtrie,
composed of its descendants, are uninteresting (the corresponding string patterns do
not satisfy a constraint). Therefore, in practise, a labeled suffix trie is often pruned
so that all its leaf nodes are labeled with ⊕. Such labeled suffix trie is called a pruned
labeled suffix trie. Take notice that both tries have the same semantics and each fully
labeled suffix trie has a unique corresponding pruned labeled suffix trie. In most
cases there is no difference which trie is used, and therefore both are often referred
as a labeled suffix trie.

A Version Space Tree (VST) is a labeled suffix trie that represents a version space
of string patterns, i.e., for every string pattern φ from a version space, in a VST there
is a nodeN labeled with ⊕, such that φ = string(N). The VST data structure enables
to compute the sets S and G (see Section 2.3.1 in Page 42) by a simple tree traversal:

• the set S contains the strings represented by the nodes N labeled with ⊕, such
that they have no descendant nodes labeled with ⊕, and there are no nodes
labeled with ⊕, whose suffix links points to N ;

• the set G contains the strings represented by the nodes N labeled with ⊕, such
that their parents are labeled with 	, and their suffix link point to the node
labeled with 	.

Figure 3.1: Example of a Version Space Tree

Example 3.1 Let Σ be an alphabet {a, c, g, t}, LΣ be a string pattern language on
Σ, and D = {acg, gt, gt} be a string data set. Figure 3.1 depicts a VST that indexes
the string patterns φ present in the data set D. Note that each node contains the
frequency value of the corresponding string pattern. The dashed arrows indicate the
suffix links (the suffix links of the root and root children are omitted). This VST
islabeled for the inductive query IQ ≡ MinFrv,Sφ (2,D)∧MinLengthφ(1) (the labels are
stuck to the nodes). Here, the nodes labeled with 	 are left for illustrative reasons,
though the branches containing only 	 nodes are to be pruned. The solution to the IQ
is the set {gt, g, t} Note that the minimum frequency constraint is anti-monotonic and

3.2. INSTANCE FOR STRING PATTERNS 49

the minimum length constraint is monotonic, and thus the solution set is a version
space. The set S = {gt} and the set G = {g, t}.

3.2.2 Generic Solvers for Strings

In this section we present two algorithms that constructs a version space tree (VST),
containing the solution patterns to a constraint of the form A∧M. We remind that
the theory of solving the constraint C [DJDM02] that is and arbitrary Boolean com-
position of anti-monotonic and monotonic constraints consists of decomposing C into
the sub-constraints Ci = A ∧M, and then combining the solution sets Th(L,D, Ci)
to these Ci using the set manipulation operations [DD03]. Thus, the algorithm that
solves the constraint of the form A ∧M is the essential element of the instance of
the generic solver for string patterns.

Both algorithms take the following input elements:

• String data sets D1, . . . ,Dn.

• A constraint C = A∧M. The algorithms assume that the VST, and hence the
corresponding version space is finite. Therefore, the anti-monotonic constraint
A can not always evaluate true, i.e., it must be non-trivial3. There is no such
restriction for the monotonic constraint M.

• An alphabet Σφ, which contains the ”interesting“ symbols, from which the
patterns φ will be composed. The symbols that do not belong to this Σφ will
be ignored in the data strings.

Two algorithms, VST and FAVST, were designed to construct a VST and solve the
given constraint C = A ∧M. One of the contributions of this thesis is build on the
FAVST algorithm and therefore we will present it in a greater detail.

3.2.2.1 VST

The algorithm VST, introduced in [DJDM02], is a levelwise algorithm [MT97].

The algorithm consists of two steps:

• Descend: top-down growing of the VST, using the anti-monotonic constraint
A. This step reuse the idea of the well-known Apriori algorithm [AS94].

• Ascend: bottom-up marking of the VST, using the monotonic predicate.
3Otherwise, the version space, and thus the corresponding VST will grow infinitely

50 CHAPTER 3. GENERIC SOLVERS

Both steps are designed to minimize the number of data set scans, and, as in the
Apriori algorithm, one needs at most one scan for each level of the VST. They both
function performing the iterations of candidate generation, candidate testing (which
involves a data set scan) and pruning.

Descend The Descend algorithm works in a top-down breath-first manner and ex-
ploit the anti-monotonic constraint A. At each VST level k, one disposes the set
denoted Lk−1, containing the nodes labeled with ⊕, found in the previous iteration.
These nodes are expanded, labelled with ⊕ and put into the set of candidates, de-
noted Ck. The constraint A is evaluated for the string patterns string(N), such that
N ∈ Ck. This evaluation step involves a scan of the string data set D. The nodes in
the set Ck, such that string(N) satisfy the constraint A, are put to the set Lk, and
the other nodes are pruned from the VST. This process is continued in the level-wise
manner until the set Ck is empty. The suffix links in the VST are set in this phase,
during the process.

Take notice that the sets Ck and Lk correspond to the candidate and large sets
in the Apriori [AS94] algorithm. To generate the set Ck from the set Lk−1 (what
corresponds to the join operation in the Apriori), the VST algorithm exploits the
underlying VST data structure and makes use of the suffix links and the parent-child
relationships.

Ascend The Ascend algorithm handles the monotonic constraintM and works up-
wards. It starts with the set F0 containing the leaf nodes of the VST, constructed
by the Descend phase (the leaf nodes have ⊕ labels). The constraintM is evaluated
for the string patterns string(N), such that N ∈ F0. The nodes N in the set F0,
such that string(N) do not satisfy the constraint M, are labeled with 	. Due to
the monotonicity property, all their ancestors are also labeled with 	 (one can stop
the upward labelling with 	, when the ancestor that is already marked with 	 is
reached: it means that the ancestors from that point upwards was already labeled
with 	 by some other leaf node sharing the ancestors with the current node). The
nodes N in the set F0, such that string(N) satisfy the constraint M, guard their ⊕
labels. Their parent nodes are put into the set F1 and treated in the next iteration.
The process is continued until the set Fk is empty.

After the steps Descend and Ascend, both the anti-monotonic constraint A and
the monotonic constraint M are handled. The VST branches, containing only the
nodes labeled with 	, can be pruned by a simple tree traversal. The resulting pruned
labeled suffix trie represents the version space of the string patterns that are solutions
to the constraint A ∧M.

3.2. INSTANCE FOR STRING PATTERNS 51

3.2.2.2 FAVST

As the algorithm VST, the algorithm FAVST4, introduced in [DD04], constructs a
VST, containing the string patterns that are solutions to the constraint of the form
A ∧M. Differently from VST, FAVST is not a level-wise algorithm. Instead, it takes
advantage of the well-studied string processing principles, specifically, the suffix tree
construction [Ukk95, Wei73]. The particularity of the FAVST algorithm w.r.t. the
VST algorithm, is that it scans the data set only once, instead of at most 2m scans,
required by VST, where m is the length of the longest string pattern, satisfying the
anti-monotonic constraint A. Due to this property, FAVST is scalable in a distributed
environment, where a data set access is slow (e.g. over the Internet or an external
disk). On the other hand, FAVST is O(|D|2) in size, where |D| is a total number of
symbols in the data set D, and thus is less space-efficient than VST.

The algorithm FAVST is designed to solve the constraints that are conjunctions of
frequency constraints and of a maximal length constraint:

A ∧M = ∧ni=1MinFrv,Sφ (minFri,Di) ∧MaxLengthφ(maxLen)

∧ni=1 MaxFrv,Sφ (maxFri,Di)

FAVST is shown in Algorithm 1. To simplify the pseudo-code, the FAVST is writ-
ten as if one must specify the minimum and maximum frequency constraints for
each string data set Di. This is not the case, and the minimum frequency constraint
MinFrv,Sφ (minFri,Di) can be eliminated by setting the threshold minFri value equal

to 0. Similarly, a maximum frequency constraint MaxFrv,Sφ (maxFri,Di) can be elim-
inated by setting the threshold maxFri value equal to ∞. Concerning other con-
straints, the evaluation of the syntactic constraints (see Section 2.2.1.2 in Page 35)
do not require a data set scanning, and can be performed efficiently by a simple tree
traversal and adequate labelling. The evaluation of other data-dependent constraints
(see Section 2.2.1.1 in Page 34) would require some constraint-specific modifications.

Algorithm 1 FAVST
Require: Data sets D1, . . . ,Dn, alphabet Σφ, thresholds minFr1, . . . ,minFrn,
maxFr1, . . . ,maxFrn, maxLen

Ensure: VST containing the solution patterns (labelled with ⊕) to the constraint A ∧M
VST ← InitTree(D1, Σφ, minFr1, maxLen, maxFr1)
Prune the VST branches that contain only the nodes labeled with 	
for i = 2 to n do

CountAndUnmark(R, Di, Σφ, minFri, maxFri)
Prune the VST branches that contain only the nodes labeled with 	

end for

4FAVST stands for Finite Automata-based VST construction. The idea behind the algorithm FAVST

is that a suffix trie can be treated as a deterministic automata so that one can efficiently visit all the
substring patterns, contained in a data string.

52 CHAPTER 3. GENERIC SOLVERS

FAVST The algorithm FAVST starts by calling the InitTree algorithm to construct
an initial VST. InitTree handles the frequency and maximum length constraints
during the scan of the D1. Then, to reduce the VST, it prunes the unnecessary
branches, i.e., the branches that contain only the nodes labeled with 	. After, the
CountAndUnmark algorithm is invoked to process the frequency constraints on the
remaining string data sets. Note that CountAndUnmark do not grow the VST5, it
only counts the frequency of the patterns in the string data set Di and label with 	
the nodes, representing the patterns that do not satisfy the corresponding frequency
constraints. Again, the branches containing only the nodes labeled with 	 are pruned
after scanning each Di, in order to reduce the number of patterns that need to be
processed in the subsequent iteration.

The maximum length constraint threshold maxLen specifies an upper bound of
the length of the substring patterns, and thus of the VST depth. Therefore the value
of maxLen highly affects the FAVST time and space efficiency.

Each algorithm, InitTree and CountAndUnmark, scans the corresponding string
data set Di only once. Thus, if the data sets Di are disjoint, the algorithm FAVST
scans the whole data set D =

⋃n
i=1Di only once, and is a single-scan algorithm.

InitTree The algorithm InitTree builds a VST data structure. It is given in
Algorithm 2. InitTree scans a string data set symbol by symbol in consecutive order
and constructs a VST by puting these symbols on the edges of nodes. Processing
symbol by symbol we go down the trie thereby increasing the length of a string
pattern, represented by the current node N . To push the maximum length constraint
MaxLengthφ(maxLen), the algorithm, before growing down a trie, checks whether the
depth of the current node N , i.e., the length of the string(N), does not exceed the
threshold maxLen. If it does, the algorithm backs up by following the suffix link. If
a current node N does not have a child with an edge, containing the current symbol,
such child node c is created with a algorithm CreateChild, so that the current
symbol can be added to VST. Then the algorithm IncreaseFrequency, given in
Algorithm 4, increments the frequency count for the string(c), and for all its suffixes
(i.e., its substrings). Then, continuing from that child node c, which becomes the
current node N , the new iteration process the next symbol read in a string data set.
When InitTree reads a symbol that do not belong to the alphabet Σφ (including
a newline symbol, indicating the end of a current data string), the following trie
traversal restarts from the root node R.

Take notice that InitTree is a classic algorithm to construct a suffix tree, with

5The string pattern φ that do not belong to the VST constructed by InitTree, do not sat-
isfy the constraint MinFrv,Sφ (minFr1,D1) ∧ MaxFrv,Sφ (maxFr1,D1) ∧ MaxLengthφ(maxLen) can

not satisfy the constraint A ∧ M = ∧ni=1MinFrv,Sφ (minFri,Di) ∧ MaxLengthφ(maxLen) ∧ni=1

MaxFrv,Sφ (maxFri,Di) and needs not to be considered any further.

3.2. INSTANCE FOR STRING PATTERNS 53

the following modifications:

• the frequency of indexed substrings is counted during the trie construction;

• the maximum length constraint MaxLengthφ(maxLen) is pushed, which means
that the depth of the trie is bounded by the threshold maxLen value;

• the trie construction restarts from the root R when uninteresting symbols (i.e.,
those that do not belong to the alphabet Σφ) are encountered;

• the algorithm handles a set of data strings instead of a concatenation of these
strings. The approach of concatenating multiple strings into one by inserting
the delimiter symbols is convenient for the theoretical analysis of complexity,
however, in practice, it multiples the depth of a tree, and thus the memory
consumption.

Once the VST is constructed, the algorithm UnlabelVSTForFr, given in Algo-
rithm 5, is invoked to unlabel with 	 the nodes, corresponding to string(N) that do
not satisfy the frequency constraints in the data set D1.

CreateChild The algorithm CreateChild, given in Algorithm 3, creates and ini-
tializes a new node, denoted c. To initialize a suffix link of the node c, one have
to find in a VST a node that represents a suffix of string(c). Take notice that such
suffix node can be found through a parent node. Let aw, where a is a symbol and w
is a substring, be a string represented by a parent node. Then, the new child node
that is to be created represents the string awξi. The suffix of awξi is wξi, which is
represented by a child with edge ξi of the node representing the string w. As w is
a suffix of aw, the node representing the string w is pointed by a suffix link of the
c parent. Remark, that a node, representing the suffix of a newly created node c,
does not necessarily already exists in a VST. In that case, it is created by recursively
invoking CreateChild.

IncreaseFrequency The algorithm IncreaseFrequency increments the frequency
count for the string(c), and for all its suffixes (i.e., all its substrings). In order to
avoid a multiple count of the string pattern, occurring several time in the same data
string6, the data string identifier ID is recorded in a field ”last-id“ and checked before
incrementing the frequency.

UnlabelVSTForFr The algorithm UnlabelVSTForFr traverses the VST to mark the
nodes N , such that string(N) do not satisfy the frequency constraints, with labels 	.

6Consider, e.g., a data string S = agtgt and the node representing the string pattern φ = gt.

54 CHAPTER 3. GENERIC SOLVERS

Algorithm 2 InitTree
Require: Data set D1, alphabet Σφ, thresholds minFr1, maxFr1, maxLen
Ensure: VST containing the solution patterns (labelled with ⊕) to the constraint

MinFrv,Sφ (minFr1,D1) ∧MaxFrv,Sφ (maxFr1,D1) ∧MaxLengthφ(maxLen)
Create VST with the root node R
R.suffix ← >, R.label ← ⊕, R.count ← 0, R.last-id ← undefined
for all string S ∈ D1 with unique id ID do
N ← R
for all symbol ξi ∈ S do

if ξi ∈ Σφ then {ξi is an interesting symbol}
if depth of N ≥ maxLen then {check for the MaxLengthφ(maxLen) }
N ← N .suffix

end if
if N has a child with edge ξi then
c← N .child with edge ξi

else
c← CreateChild(N,ξi)
c.edge← ξi {set edge of a new child node}
Add c to N children

end if
IncreaseFrequency(c, ID) {increase frequency}
N ← c {current node gets one level deeper}

else {ξi is an uninteresting symbol}
N ← R {break input string, continue from the root}

end if
end for

end for
UnlabelVSTForFr(R, minFr1, maxFr1)

Algorithm 3 CreateChild
Require: Parent node N , edge symbol ξi for the child node
Ensure: The newly created node c with the symbol ξi on its edge

Create node c
c.label← ⊕, c.count← 0, c.edge← undefined, c.last-id← undefined
sn← N .suffix
if N is a root node R then
c.suffix← N

else
if sn has a child sc with edge ξi then
c.suffix← sc

else {recursively create the necessary suffix nodes}
sc← CreateChild(sn, ξi)
sc.edge← ξi {set edge of a new child node}
Add sc to sn children
c.suffix← sc

end if
end if

3.2. INSTANCE FOR STRING PATTERNS 55

Algorithm 4 IncreaseFrequency
Require: Node c, ID
Ensure: Frequency for string(c) and all its substrings is increased by 1
x← c
while (x is not a root node R) ∧ (x.last-id 6= ID) do
{if it is not root suffix and its frequency not increased yet}
x.count← x.count + 1
x.last-id← ID
x← x.suffix {also count all c suffixes}

end while

Also it prepares the VST for the subsequent calls for CountAndUnmark by resetting
the data set specific information, contained in the nodes.

Algorithm 5 UnlabelVSTForFr
Require: VST root node R, minFr, maxFr
Ensure: Nodes N , such that string(N) does not satisfy MinFrv,Sφ (minFr,Di) ∧

MaxFrv,Sφ (maxFr,Di), arelabeled with 	
for all N in VST do {traverse the VST and unlabel}

if N .count < minFr ∨ N .count > maxFr then
N .label ← 	

end if
{reset VST for the subsequent CountAndUnmark traversal}
N .count ← 0
N .last-id ← undefined

end for

CountAndUnmark The algorithm CountAndUnmark, given in Algorithm 6, takes as
input the VST whose nodes have the unset values of ”count“ and ”last-id“. It counts
the frequency in a data set Di of the string patterns, present in that given VST, and
set the label 	 to the nodes, such that string(N) does not satisfy the given frequency
constraints. CountAndUnmark is similar to the the algorithm InitTree, with the
difference that CountAndUnmark does not create any nodes. If a substring pattern,
present in a data set Di, is not in the VST, it means that this pattern does not satisfy
the constraints on the data sets processed previously, and thus it will not satisfy the
whole conjunctive constraint C = A ∧M and does not belong to the solution set.
Therefore, there is no need to create a node, representing such string pattern. Take
notice that the maximum length constraint MaxLengthφ(maxLen) was pushed by
the InitTree sub-algorithm, and thus it does not need to be considered anymore.
As in InitTree, the frequency counting and, afterwards, the node unlabelling are
performed by IncreaseFrequency and UnlabelVSTForFr algorithms.

We discussed about generic solvers only, and we do not address the design of
ad-hoc solvers (for specific constraints) at purpose.

56 CHAPTER 3. GENERIC SOLVERS

Algorithm 6 CountAndUnmark
Require: VST root node R, data set Di, alphabet Σφ, thresholds minFri, maxFri
Ensure: VST in which the patterns φ that are not solutions to the constraint

MinFrv,Sφ (minFri,Di) ∧MaxFrv,Sφ (maxFri,Di) arelabeled with 	
for all string S ∈ Di with unique id ID do
N ← R
for all symbol ξi ∈ S do

if ξi ∈ Σφ then {ξi is an interesting symbol}
while (N is not a root node R) ∧ (N has no child with edge ξi) do
{current substring pattern is not in VST}
N ← N .suffix {try a suffix (a shorter string)}

end while
if N is not a root node R then {if a good child (possibly in a suffix) was found}
c← N .child with edge ξi
x← c
IncreaseFrequency(c) {increase frequency}
N ← c {current node gets one level deeper}

end if
else {σi is an uninteresting symbol}
N ← R {break input string, continue from the root}

end if
end for

end for
UnlabelVSTForFr(R, minFri, maxFri)

Chapter 4

Fault-Tolerance Expressed by
Constraints

Motivation

The approaches to needed fault-tolerance when searching for regularities in strings
comes from different research domains, such as approximate string matching, bioin-
formatics and data mining. They are formulated and presented in a domain specific
manner and terms. This presents a serious impediment to knowledge transfer and
exchange, and prohibits the cross-fertilisation among these domains. Our contribu-
tion consists of formalizing the different approaches to fault-tolerance when mining
strings in the unified constraint-based mining terms thereby putting them into the
inductive databases framework.

4.1 Introduction

It is common that real life data contains errors due to technological issues concerning
data collection, storage and transmission. In some application domains they may
be also due to somewhat exploratory alphabet design. For example, data available
as numerical time series can be analyzed by means of algorithms for substrings,
provided that the data is discretized and thus encoded as a sequence of events in
a “computed” alphabet. Also, data representing real world phenomenon is often
intrinsically degenerated1, e.g., many variants of string patterns in DNA sequences

1A term of degeneracy has different meanings in mathematics, physics, medicine. In this
manuscript, we employ a term of degeneracy as it is used in biological systems context, i.e., to
express the ability of elements that are structurally different to perform the same function or yield
the same output [EG01]

57

58 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

can be binding sites for the same transcription factor or many web site browsing
sequences can lead to the accomplishment of the same task. To capture knowledge
when working with such data, a fault-tolerance is needed.

A motivation for fault-tolerance came from many application domains. One of the
classic application areas is signal processing. For example, in speech recognition, the
parts of the signal may be compressed in time and/or not pronounced, and to discern
a word, a perfect matching approach is practically inoperative. In error correction
domain, to ensure the correct transmission over a channel, it is necessary to be able
to recover the correct message after a possible error introduced during the transmis-
sion. Another one application domain is text and information retrieval. Approximate
matching is one of the basic tools for correcting and recognizing the mistyped words.
One of the largest application areas remains computational biology. Biological se-
quences can be considered as strings over specific alphabets, e.g., DNA sequences
can be seen as strings over a four letter nucleotide alphabet and protein sequences
can be seen as strings over a twenty letter amino acids alphabet. Exact matching is
rarely convenient when analyzing biological sequences, since they typically contains
errors due to sequencing technologies and, in addition to this, they are known to be
intrinsically degenerated. A recent and rapid development of computational biology
and considerable effort put in bioinformatics2 have resulted in a number of interesting
approaches to tackle the needed tolerance for errors. The “search allowing errors” is a
fundamental operator for numerous problems, e.g., DNA sequence reconstruction by
aligning and merging its fragments, looking for functional parts in DNA sequences,
establishing how different two sequences are in order to reconstruct the phylogenetic
trees3. A major part of approaches reviewed in this chapter were inspired when try-
ing to answer a particular class of biological problems, but their are not tied to any
particular problem and can be directly applied in a variety of application domains.

We concentrate on deterministic on the contrary to probabilistic approaches4 that
employ correct and complete strategies to extract fault-tolerant patterns in string
data. Thus we do not cover non-deterministic approaches, such as Hidden Markov
Models (HMMs), Bayesian networks, weight matrices, profiles, etc.

From constraint-based data mining point of view, the notion of fault-tolerance
when mining string data implicitly embraces two distinct problems. The first one,
which will be presented in Section 4.2, is to find patterns φ that are similar to a given

2Bioinformatics refers to the conception and advancement of algorithms, computational and sta-
tistical techniques and theory to solve formal and practical problems arising from the management
and analysis of biological data.

3A phylogenetic tree, also called an evolutionary tree, is a tree showing the evolutionary rela-
tionships among various biological species or other entities that are believed to have a common
ancestor.

4 Deterministic patterns are patterns that either match or do not match a given object, i.e., their
match functions return true or false values. Probabilistic patterns assigns a probability to the match
between a pattern and a given object [BJEG98a].

4.2. SIMILARITY CONSTRAINT 59

entity of reference. The second problem, which will be presented in Section 4.3, is
to find unknown patterns φ that capture soft regularities, i.e., not exactly repeating
regularities. This problem can be formulated as a problem of extracting patterns
satisfying a minimum frequency constraint, when a match function match(φ,X)
evaluates true for a set of objects X that are similar to φ. Note that a relation of
similarity, either between two patterns, or between a pattern and an object, is present
in the formulation of both problems and is central when handling fault-tolerance.

4.2 Similarity Constraint

The problem of revealing elements in data that are somehow similar to a given entity
of reference, in constraint-based data mining terms can be formulated as a task of
extraction under a similarity constraint.

Definition 4.1 (Similarity Constraint) Let φ be a pattern from pattern language
L and ε be some entity. Define a similarity constraint Simφ(ε) to evaluate true if and
only if φ and ε are in a similarity relation.

Remark 4.1 Note, that the similarity constraint is a syntactic constraint.

The focus of this section is the similarity constraint on patterns in string data
and the various relations of similarity, on which such constraint is based.

We reformulate various approaches, including those coming from approximate
string matching domain, in the terms of constraint-based data mining. These ap-
proaches can be generalized to the pattern extraction under a conjunction of the sim-
ilarity constraint Simφ(ε) and the minimum frequency constraint MinFrφ(minFr,D)
(see Definition 1.20 in Page 21). These approaches differ in a way they instantiate a
pattern language L, an entity ε and a similarity relation.

4.2.1 Approximate String Matching

A problem of approximate string matching is to locate in a data string D5 all soft-
occurrences φ of a given string ψ6,i.e., allowing a limited number of errors in the
match. Put in constrained-based data mining terms, this means to extract the pat-
terns φ that satisfy a conjunction of constraints Simφ(ψ)∧MinFrφ(1,D), where φ and
ψ are from the same string pattern language LΣ.

5In approximate string matching domain it is often referred as sequence or text.
6In approximate string matching domain it is often referred as pattern.

60 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

A classical way to measure a similarity between two strings φ and ψ is to compute
their distance. The distance between strings is intended to be small when one of
the strings is likely to be an erroneous variant of the other. In approximate string
matching domain a notion of edit operation on string is central when defining distance.
The most commonly used operations of insertion, deletion, substitution of a symbol
and a transposition of two symbols were distinguished in [Dam64]. Then the distance
is a minimal number of such operations necessary to perform on a string φ in order to
obtain a string ψ. Once an operation has converted a substring σ into σ′, no further
operations can be done on this σ′. This restriction forbids editing the same symbol
or substring many times, and thus renders the distance computable.

In many applications, where certain errors on data are more likely to occur and/or
are not equally penalizing, it is preferable to assign weights to operations. These
weights are typically referred to as costs, or in other words, penalties, of performing
the corresponding operations. Then the distance between two strings φ and ψ is the
minimal cost of a sequence of operations necessary to perform on a string φ in order
to obtain a string ψ, where the cost of a sequence of operations is the sum of the
costs of the individual operations.

The weights associated to the substitutions can be represented in a form of a
matrix, called the substitution matrix. Substitution matrices are commonly used in
the context of biological sequences (amino acid or nucleotide sequences) alignments,
where weights describe the rate at which one symbol in a sequence changes to another
symbol over time. Note that the weight of substituting a symbol ξi by a symbol ξj
can measure their dissimilarity, as well as similarity. In the first case a substitution
matrix is referred to as a dissimilarity matrix, and in the latter case it is referred
to as a similarity matrix . When substitution weights measure a similarity, they
are often referred to as scores. Then, having assigned so called gap penalties for
insertions/deletions, instead of distance we rather compute a similarity or, in other
words, a proximity between two strings φ and ψ, that is defined as the maximal
score of a sequence of operations necessary to perform on a string φ in order to
obtain a string ψ. Well known examples of similarity matrices for amino acids are
PAM250 [DSO78] and BLOSUM62 [HH92]. BLOSUM62 is used as a default scoring matrix
in BLAST 2.0 program from the famous BLAST [AGM+90] algorithms family.

For a survey on approximate string matching see, e.g., [Nav01]. In the following
sections we overview several well-known symbol-based distances that are used to
establish a similarity relation, i.e., given a threshold k ∈ N, two strings σ1 and
σ2 are similar if and only if their distance is less or equal to k. When computing
these distances, except the episode distance (described in Section 4.2.1.3), one can
assume that operations are made on either of the strings. There are many approaches
to model the needed similarity through a notion of distances, and the overview,
presented in this manuscript, is not extensive. Among the not covered distances are
inversion distance [KS95], which allows to reverse substrings, block distance [Tic84,

4.2. SIMILARITY CONSTRAINT 61

EH88, Ukk92, DLT94], which allows to rearrange and permute substrings, q-gram
distance [Ukk92], which is based on common q-length substrings and distance allowing
swaps [AAL+00, LKPC97].

4.2.1.1 Hamming Distance Similarity Constraint

Hamming distance was introduced by Richard Hamming in his paper on Hamming
codes [Ham50].

Definition 4.2 (Hamming distance) Hamming distance of two strings σ1 and σ2,
denoted HammingDist(σ1, σ2), is the minimal number of substitutions, necessary to
transform a string σ1 into a string σ2.

Remark 4.2 Note that the Hamming distance of two strings σ1 and σ2 is finite if and
only if |σ1| = |σ2|. In this case it is metric, and it holds 0 ≤ HammingDist(σ1, σ2) ≤
|σ1| = |σ2|.

The Hamming distance between two strings of equal length can be reformulated
as the number of positions for which the corresponding symbols are different or as
the number of mismatches between two strings.

Two strings are said to be in a Hamming distance similarity relation, if their
Hamming distance does not exceed a given threshold.

Definition 4.3 (Hamming Distance Similarity Relation) Let σ1 and σ2 be two
strings over a given alphabet Σ, and k ∈ N be a threshold. The strings σ1 and σ2 are
in a Hamming distance similarity relation, denoted simHdist(σ1, σ2, k), if and only if
HammingDist(σ1, σ2) ≤ k.

Hamming distance similarity constraint is defined for string patterns and is based
on the Hamming distance similarity relation.

Definition 4.4 (Hamming Distance Similarity Constraint) Let LΣ be a string
pattern language, φ be a pattern from LΣ, σ be a string, and k ∈ N be a threshold.
Define a Hamming distance similarity constraint, denoted HammingDistSimφ(σ, k) to
evaluate true if and only if φ and σ are in the Hamming distance similarity relation
simHdist(φ, σ, k).

Given a data string D, a string σ and a threshold k ∈ N, the problem of extracting
string patterns φ satisfying the conjunction of constraints HammingDistSimφ(σ, k) ∧
MinFrv,sφ (1,D), in the approximate string matching domain is known as string match-
ing with k mismatches.

62 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

4.2.1.2 Edit Distance Similarity Constraint

Edit distance was introduced by Vladimir Levenshtein in [Lev65]. After his name, it
is also known as Levenshtein distance.

Definition 4.5 (Edit or Levenshtein Distance) Edit or Levenshtein distance of
two strings σ1 and σ2, denoted EditDist(σ1, σ2), is the minimal number of insertions,
deletions and substitutions, necessary to transform a string σ1 into a string σ2.

Remark 4.3 The edit distance is a metric, and we have 0 ≤ EditDist(σ1, σ2) ≤
max(|σ1|, |σ2|).

Then, two strings are said to be in a edit distance similarity relation, if their edit
distance does not exceed a given threshold.

Definition 4.6 (Edit Distance Similarity Relation) Let σ1 and σ2 be two strings
over a given alphabet Σ, and k ∈ N be a threshold. The strings σ1 and σ2 are
in an edit distance similarity relation, denoted simEdist(σ1, σ2, k), if and only if
EditDist(σ1, σ2) ≤ k.

Edit distance similarity constraint is defined for string patterns and is based on
the edit distance similarity relation.

Definition 4.7 (Edit Distance Similarity Constraint) Let LΣ be a string pat-
tern language, φ be a pattern from LΣ, σ be a string, and k ∈ N be a threshold. Define
an edit distance similarity constraint, denoted EditDistSimφ(σ, k) to evaluate true if
and only if φ and σ are in the edit distance similarity relation simEdist(φ, σ, k).

Edit distances have been studied extensively. Given a data string D, a string
σ and a threshold k ∈ N, the problem of extracting string patterns φ, satisfying
a conjunction of constraints EditDistSimφ(σ, k) ∧MinFrv,sφ (1,D), in the approximate
string matching domain is known as string matching with k differences.

If the different operations have different costs or if the costs depend on the involved
symbols, then we talk of a generalized edit distance.

Definition 4.8 (Generalized Edit Distance) The generalized edit distance of two
strings σ1 and σ2, denoted GenEditDist(σ1, σ2), is the minimal cost of a sequence of
insertions, deletions and substitutions that are necessary to perform on σ1 in order
to transform it into σ2, where the cost of a sequence of operations is the sum of the
costs of individual operations.

4.2. SIMILARITY CONSTRAINT 63

Remark 4.4 If the cost of all operation is equal to 1, then generalized edit distance
is equivalent to edit distance.

Edit distance has gained a lot of popularity since its generalized version is powerful
enough to implement the needed fault-tolerance in wide range of applications. The
choice of pertinent costs or scores of operations is a problem of its own, and learning
it is one of the possible approaches (see, e.g., [OS06] for a recent development in this
area). Despite of the fact that most approximate string matching algorithms focus
on the edit distance, many of them can be easily extended to the generalized edit
distance. Also, many algorithms that are designed for edit distance can be adapted to
other distances that use either a subset of operations allowed by edit distance, such as
Hamming distance (see the previous Section 4.2.1.1) or longest common subsequence
distance (see Section 4.2.1.4), or a superset of operations allowed by edit distance,
such as Damerau-Levenshtein distance that allows all four edit operations of insertion,
deletion, substitution and transposition.

4.2.1.3 Episode Distance Similarity Constraint

Episode distance [DFG+97] was designed for finding sequences of events, all of them
occurring within a short period of time in a sequence of events.

Definition 4.9 (Episode distance) Episode distance of two strings σ1 and σ2, de-
noted EpisodeDist(σ1, σ2), is the minimal number of insertions necessary to perform
on a string σ2 in order to transform it into a string σ1.

Remark 4.5 Note that episode distance between two strings σ1 and σ2 can be finite
if and only if |σ2| ≤ |σ1|. Also note that even if |σ2| ≤ |σ1| it might be not possible
to convert σ2 into σ1 by performing only the insertions in σ2. Therefore it holds
that either EpisodeDist(σ1, σ2) = |σ1| − |σ2| or EpisodeDist(σ1, σ2) = ∞. Episode
distance is not a metric.

Two strings are said to be in an episode distance similarity relation, if their
episode distance does not exceed a given threshold.

Definition 4.10 (Episode Distance Similarity Relation) Let σ1 and σ2 be two
strings over a given alphabet Σ, and k ∈ N be a threshold. The strings σ1 and σ2 are
in an episode distance similarity relation, denoted simEpdist(σ1, σ2, k), if and only if
EpisodeDist(σ1, σ2) ≤ k.

Episode distance similarity constraint is defined for string patterns and is based
on the episode distance similarity relation.

64 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

Definition 4.11 (Episode Distance Similarity Constraint) Let LΣ be a string
pattern language, φ be a pattern from LΣ, σ be a string, and k ∈ N be a thresh-
old. Define an episode distance similarity constraint, denoted EpisodeDistSimφ(σ, k)
to evaluate true if and only if φ and σ in the episode distance similarity relation
simEpdist(φ, σ, k).

Given a data string D and a string σ, the problem of extracting patterns φ,
satisfying the conjunction of constraints EpisodeDistSimφ(σ, k)∧MinFrv,sφ (1,D), where
k ∈ N is either a given threshold or a minimum possible value, in the approximate
string matching domain is known as episode matching.

4.2.1.4 Longest Common Subsequence (LCS) Distance

The problem of longest common subsequence is a classical computer science problem,
which consists of finding a maximum length subsequence of several (usually two)
strings. A famous application of this problem is the diff utility to compare two
files, developed in the early 1970s on the Unix operating system. It is also applied in
the bioinformatics domain, see, e.g., [NW70b]. A study concerning longest common
subsequences can be found in, e.g., [Apo97].

Definition 4.12 (Longest Common Subsequence (LCS)) In the following, we
provide two definitions of the longest common subsequence (LCS) of two strings σ1

et σ2, denoted LCS(σ1, σ2). The second definition is a constructive one.

1. A subsequence of a string σ1 is any sequence Φ that can be obtained by deleting
zero or more (not necessarily consecutive) symbols from σ1 (see Definition 1.11
in Page 18 for a formal definition of sequence and subsequence). Φ is a LCS
of the strings σ1 and σ2, if it is a subsequence of σ1, a subsequence of σ2, and
its length is maximal.

2. A substitution can be always achieved by one deletion and one insertion. If
insertions and deletions have unit costs and if the cost of substitution is higher
than 2, then an optimal sequence of edit operations will always avoid substitu-
tions and produce σ2 from σ1 only by means of insertions and deletions. Then
the pairs of matching symbols (i.e., symbols on which neither insertion nor
deletion was applied) in σ1 and σ2 is the longest pairing of symbols that can be
made between both strings, preserving the symbol order. It is called the LCS of
strings σ1 and σ2.

Remark 4.6 Given two strings σ1 and σ2, their LCS is in general not unique.

Now we can define the LCS distance.

4.2. SIMILARITY CONSTRAINT 65

Definition 4.13 (LCS Distance) Consider the minimal sequence of insertions and
deletions that are necessary to produce on a string σ1 in order to obtain a string σ2.
Then the number of unpaired symbols, i.e. the symbols on which either insertion or
deletion was applied, is the longest common subsequence distance between σ1 and σ2,
denoted LCSDist(σ1, σ2).

Remark 4.7 Given an LCS(σ1, σ2), the LCS distance LCSDist(σ1, σ2) = |σ1| +
|σ2| − 2 ∗ |LCS(σ1, σ2)|.

Remark 4.8 The LCS distance is a metric, and we have 0 ≤ LCSDist(σ1, σ2) ≤
|σ1|+ |σ2|.

Two strings are said to be in a similarity relation, if their LCS distance does not
exceed a given threshold.

Definition 4.14 (LCS Distance Similarity Relation) Let σ1 and σ2 be strings
over a given alphabet Σ, and k ∈ N be a threshold. The strings σ1 and σ2 are
in a LCS distance similarity relation, denoted simLCSdist(σ1, σ2, k), if and only if
LCSDist(σ1, σ2) ≤ k.

The LCS distance similarity constraint is defined for string patterns and is based
on the LCS distance similarity relation.

Definition 4.15 (LCS Distance Similarity Constraint) Let LΣ be a string pat-
tern language, φ be a pattern from LΣ, σ be a string, and k ∈ N be a threshold. Define
a LCS distance similarity constraint, denoted LCSDistSimφ(σ, k) to evaluate true if
and only if they are in the LCS distance similarity relation simLCSdist(φ, σ, k).

One of the earliest usage of the LCS distance similarity constraint was to as-
sess whether a significant homology7 exists between two proteins [NW70b]. The idea
is that a number of matches between two sequences, allowing all possible interrup-
tions in either of them, must be large enough. Further algorithmic improvements
concerning the computation of the LCS were proposed in [AG87].

4.2.2 Regular Expression Constraint

Regular expression constraint MatchREφ(re) (see Definition 1.25 in Page 22) provides
a powerful way to specify a set of searched patterns through concatenations, unions,

7In biology, homology generally signifies a similarity between subjects that is due to their shared
ancestry.

66 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

and repetitions of simple strings and other subexpressions. Thus, it is convenient
to specify a similarity constraint, when the nature of the needed fault-tolerance is
well known and can be specified by a regular expression. Pattern extraction under
a regular expression constraint was considered by at least two research domains:
regular expression matching and sequential data mining.

The problem of regular expression matching is to find substrings in a data string
D that match a given regular expression re. Put in constraint-based mining terms,
this means to extract string patterns φ that satisfy a conjunction of constraints
MatchREφ(re)∧MinFrφ(1,D). There are at least two fundamentally different families
of algorithms that perform a regular expression matching in a string. The fastest
algorithms ([MY60, Tho68] being among the first ones) relies on a result in a formal
language theory that allows every nondeterministic finite automaton to be trans-
formed into a deterministic finite automaton [RS59]. The other family of algorithms
performs a regular expression matching using backtracking. The worst case time com-
plexity of these algorithms is exponential, but they are simple to implement and allow
the use of backreferences8. Despite of the lower time efficiency, many programming
languages, e.g., Perl, Python and Java, have regular expression implementations
based on the recursive backtracking.

Sequential data mining community has considered the problem of finding se-
quence (or string) patterns φ that satisfy a conjunction of constraints MatchREφ(re)∧
MinFrφ(minFr,D) in a set of sequences (or strings) D. The motivation is to al-
low users to express the family of sequential patterns they are interested in, and
thereby to provide a user-controlled focus when mining frequent pattern in data sets
of sequences, e.g. WWW logs, market-basket, telecommunications data. A regu-
lar expression constraint MatchREφ(re) being, in general, neither anti-monotonic not
monotonic, the SPIRIT algorithms [GRS99] exploit it to prune the search space by
pushing deeply into the extraction phase various relaxed versions of MatchREφ(re).
The algorithm RE-Hackle [AB03] takes one step further by evaluating the trade-off
between pruning by a minimum frequency constraint MinFrφ(α,D) and a relaxed
version of a regular expression constraint MatchREφ(re), and thereby choosing the
appropriate pruning strategy dynamically. Although both algorithms are intended
for sequence pattern extraction, they can be equally used to extract string patterns
in string data sets.

4.2.3 Similarity Constraint Based On Edit Score

An original approach to exploit a similarity constraint based on the edit operations
scores is introduced in [CBM02b] and detailed in [Mas05]. The idea behind the
proposed similarity relation resemble the one of the generalized edit distance (see

8A backreference stores the part of the string matched by the part of the regular expression so
that it can be reused.

4.3. FAULT-TOLERANT PATTERNS 67

Definition 4.8 in Page 62), except that with the operations one associates rewarding
scores and not penalizing costs, which are multiplied and not summed.

Definition 4.16 (Galibot Similarity Score) Let the operations of insertion, dele-
tion and substitution be associated with scores that depend on the position and the
symbol on which they are applied. Let these scores be from the interval [0, 1] and
reward the similarity, i.e., the less penalizing an operation, the bigger an asso-
ciated score. The Galibot similarity score9 between strings σ1 and σ2 is denoted
GalibotScore(σ1, σ2). It is the maximal score of a sequence of operations necessary
to perform on σ2 in order to obtain σ110, where the score of the sequence of operations
is the product of the scores of the operations.

The similarity relation is established on the basis of this score.

Definition 4.17 (Galibot Similarity Relation) Let σ1 and σ2 be two strings over
a given alphabet Σ, and t ∈ N be a threshold. Strings σ1 and σ2 are in a Galibot
similarity relation, denoted simGalibot(σ1, σ2, t), iff GalibotScore(σ1, σ2) ≥ t.

Galibot similarity constraint is defined for string patterns and is based on the
Galibot similarity relation.

Definition 4.18 (Galibot Similarity Constraint) Let LΣ be a string pattern lan-
guage, φ be a pattern from LΣ, σ be a string, and t ∈ N be a threshold. Define a
Galibot similarity constraint, denoted GalibotSimφ(σ, t) to evaluate true iff φ and σ
are in the Galibot similarity relation simGalibot(φ, σ, t).

The similarity constraint GalibotSimφ(σ, t), because its relaxation is based on a
potential similarity of immediate prefix of φ, is a convertible anti-monotonic con-
straint, what allows to push it deeply into an extraction phase. This property is
exploited by the Galibot solver [CBM02b], which extracts sequence or string pat-
terns φ satisfying the constraint GalibotSimφ(σ, t) ∧MinFrφ(minFr,D) in a sequence
or string set D.

4.3 Fault-tolerant Patterns

In the previous sections, we presented various approaches to handle the problem
of finding patterns in string data that are, according to some definition, similar to

9Named after the associated algorithm Galibot.
10Note that in this measure we cannot think that operations can be performed either on σ1 or σ2,

since their scores depend on the positions on which they occur.

68 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

an entity of reference. However, in many situations, that entity of reference is not
available. In this section we address the approaches, which tackle the problem of
extracting the unknown soft-regularities in string data. By soft-regularities we mean
regularities that are not exactly repeating, but approximately similar ones. The
difficulty is how to formally specify a set of similar elements, present in a string data.
We represent that set as a fault-tolerant pattern. In constraint-based data mining
terms, we formulate the problem of fault-tolerant pattern discovery as the task of
extracting the fault-tolerant patterns φ that satisfy a minimum frequency constraint
with the match function that evaluates true for a set of objects, i.e., in our case,
string or substring objects, that, correspondingly, contain or are the elements similar
to φ11. From this property one may induce a relation of similarity between these
elements themselves12. Therefore, in this section we focus on different languages of
patterns allowing to express the approximate regularities and on similarity relations
that implements the fault-tolerance through the corresponding match functions.

Even if Definition 1.20 for a pattern frequency (see Page 21) does not change
for fault-tolerant patterns, i.e., it is the number of objects that pattern φ matches,
we will call it a soft-frequency and denote it SoftFr(φ,D), whenever the associated
match function evaluates true for a set of objects, similar to φ. Subsequently, we
call a minimum frequency constraint a minimum soft-frequency constraint and de-
note it MinSoftFrφ(minFr,D), whenever it concerns a soft frequency of a pattern φ.
Similarly, we call a maximum frequency constraint a maximum soft-frequency con-
straint and denote it MaxSoftFrφ(maxFr,D)), when it concerns a soft frequency of
a pattern φ. It is important to distinguish between the frequency and soft-frequency
constraints, because they do not share the same properties, e.g., the soft-frequency
constraints are not guaranteed to have the (anti-)monotonicity properties.

Correct and complete approaches to extract deterministic fault-tolerant patterns
in string data have been seldom studied by the data mining community, while they
constitute one of the core algorithmic issues in bioinformatics. The approaches, which
we introduce in this section, come from bioinformatics research community and were
conceived while trying to answer molecular biology problems. We reformulate them in
constraint-based data mining terms so that they can be put in the inductive databases
framework. In the bioinformatics literature it is common to use the term motif both
to denote an object, present in string data, and the representation of the extracted
regularity. Remind that we make a distinction between these two entities and denote
the first one a (soft-)occurrence and the latter one a pattern.

11 Except for clique patterns, presented in Section 4.3.2 in Page 72, where a similarity relation is
used not to define a match function, but to construct a pattern.

12Remark that these elements are (soft-)occurrences of a pattern.

4.3. FAULT-TOLERANT PATTERNS 69

4.3.1 Fault-tolerant String Patterns

Fault-tolerance can be implemented through string patterns φ by acknowledging the
substrings, which are not equal to φ, as its occurrences, called soft-occurrences. Thus
the key difference between string patterns and fault-tolerant string patterns is the
way in which a match function, enabling soft-matching, is defined.

4.3.1.1 Soft-matching through Hamming Distance Similarity Relation

The idea of discovering approximately similar regularities in a data string by means
of soft-matching, defined through the Hamming distance similarity relation (see Def-
inition 4.3 in Page 61), was introduced in [SEVS95a].

Definition 4.19 (Hamming Match Function) Let UΣ be a universe of strings
over an alphabet Σ, s be a substring object from UΣ, and k ∈ N be a threshold. Let φ
be a pattern from a string pattern language LΣ.

1. Define a Hamming match function matchH,s(φ, s, k) to evaluate true, if and only
if φ and s are in the Hamming distance similarity relation simHdist(φ, s, k).

2. Define a Hamming match function matchH,S(φ, S, k) to evaluate true, if and
only if here exists a string σ, such that σ v S and σ and φ are in the Hamming
distance similarity relation simHdist(φ, σ, k).

Remark 4.9 Note that the Hamming distance is a metric, and therefore, because
of the triangular inequality, the Hamming distance similarity relation between the
pattern φ and its soft-occurrences induces a similarity relation between the soft-
occurrences themselves.

Definition 4.20 (Hamming Soft-Frequency) Frequency Fr(φ,D) that is evalu-
ated using the Hamming match function matchH,{s,S}(φ, {s, S}, k), is called an Ham-
ming soft-frequency and is denoted SoftFrH,{s,S}(φ,D, k).

Definition 4.21 (Minimum/Maximum Hamming Soft-Frequency) The min-
imum (resp. maximum) frequency constraint MinFrφ(minFr,D) that uses the Ham-
ming match function matchH,s(φ, s, k) is called the minimum (resp. maximum)
Hamming soft-frequency constraint. It is denoted MinSoftFrH,sφ (minFr,D, k) (resp.

MinSoftFrH,sφ (minFr,D, k)).

The associated algorithm H-Moivre [SEVS95a], which is an extension of the KMR
algorithm [KMR72, LAC89], solves the following problems:

70 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

1. extract all string patterns φ ∈ LΣ in a data string D that satisfy the constraint

MinSoftFrH,sφ (minFr,D, k) ∧MinLengthφ(minLen) ∧MaxLengthφ(maxLen),

where minLen = maxLen;

2. find the greatest length lmax, for which there exists at least one lmax-length
string pattern φ that satisfies MinSoftFrH,sφ (minFr,D, k)), i.e., the minimum
Hamming soft-frequency constraint, and solve the problem 1 for minLen =
maxLen = lmax.

4.3.1.2 Soft-matching through Edit Distance Similarity Relation

Similarly to the previously introduced approach that employs a Hamming distance
similarity relation, the article [SEVS95a] also elaborates a soft-matching through the
edit distance similarity relation (see Definition 4.6 in Page 62).

Definition 4.22 (Edit Match Function) Let UΣ be a universe of strings over an
alphabet Σ, s be a substring object from UΣ, and k ∈ N be a threshold. Let φ
be a pattern from a string pattern language LΣ. Define an edit match function
matchE,s(φ, s, k) to evaluate true, iff φ and s are in the edit distance similarity rela-
tion simEdist(φ, s, k).

Remark 4.10 The edit distance is a metric, and therefore, because of the triangular
inequality, the edit distance similarity relation between the pattern φ and its soft-
occurrences induces a similarity relation between the soft-occurrences themselves.

Definition 4.23 (Minimum Edit Soft-Frequency Constraint) The minimum fre-
quency constraint MinFrφ(minFr,D) that uses the edit match function matchE,s(φ, s, k)
is called the minimum edit soft-frequency constraint, denoted MinSoftFrE,sφ (minFr,D, k).

The corresponding correct and complete algorithm L-Moivre [SEVS95a], is also
an extension of the KMR algorithm and solves the following problems:

1. extract all string patterns φ ∈ LΣ in a data string D that satisfy the constraint

MinSoftFrE,sφ (minFr,D, k) ∧MinLengthφ(minLen) ∧MaxLengthφ(maxLen),

where minLen = maxLen;

2. find the greatest length lmax, for which there exists at least one lmax-length
string pattern φ that satisfies MinSoftFrE,sφ (minFr,D, k), i.e., the minimum edit
soft-frequency constraint, and solve the problem 1 for minLen = maxLen =
lmax.

4.3. FAULT-TOLERANT PATTERNS 71

4.3.1.3 Soft-matching through Word-based Similarity Relation

An alternative to symbol-based similarity between two strings is to use their sub-
strings as units of comparison [SVS95]. In bioinformatics literature, the substrings
used for the comparison are known as words, hence the name word-based similarity.
The motivation behind a similarity defined by comparing words is that it allows to
achieve greater sensitivity13 when analyzing in biological sequences. The idea of us-
ing words as units of string comparison is also employed in the implementation of
famous BLAST [AGM+90] program to perform pairwise comparisons between a query
string and the strings in the database.

The relation between two words w1 and w2 is established by computing their
score using a similarity matrix (see Page 60).

Definition 4.24 (Word Similarity Score) Let Σ = {ξ1, . . . , ξn} be an alphabet of
symbols. Let M denote a similarity matrix |Σ| × |Σ| s.t. M(ξi, ξj) is the score of
similarity between symbols ξi, ξj ∈ Σ. Let w1 = w1

1 . . . w
1
lw

and w2 = w2
1 . . . w

2
lw

be
two words of length lw over the alphabet Σ. A similarity score of w1 and w2, denoted
SimScore(w1, w2), is the sum of the similarity scores of their corresponding symbols,
i.e.,

SimScore(w1, w2) =
lw∑
i=1

M(w1
i , w

2
i)

Then, two strings are considered similar, if the similarity score of their every
lw-length word is greater than a given threshold.

Definition 4.25 (Word-based Similarity Relation) Let t be a similarity thresh-
old and lw be a word length. Let Σ be an alphabet on which a similarity matrix M
is defined. Let σ1 and σ2 be two strings of equal length over Σ. The strings σ1 and
σ2 are in a word-based similarity relation simW (σ1, σ2, lw, t), if and only if the word
similarity score of their every lw-length word is greater than t, i.e., if

SimScore(σ1
i . . . σ

1
i+m−1, σ

2
i . . . σ

2
i+m−1) ≥ t for all i ∈ 1, . . . , |σ1| −m+ 1

The following match function qualifies the substrings of string objects, that are
similar to string pattern φ according to the word-based similarity relation, as the
soft-occurrences of φ.

13Sensitivity is a fitness measure defined as fraction of true positives among true positives and
false positives [LWS+93]. In our context, true positives are the strings that are known to be similar
and are similar according to a similarity relation, whereas false positives are strings that are known
to be not similar, but are recognized as similar according to a similarity relation.

72 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

Definition 4.26 (Word-based Match Function) Let UΣ be a universe of strings
over an alphabet Σ, on which a similarity matrix M is defined, S be a string object
from UΣ, and t be a similarity threshold. Let φ be a pattern from a string pattern
language LΣ. Define a word-based match function matchW (φ, S, lw, t) to evaluate
true if and only if there exists a string σ, such that σ v S and φ and σ are in the
word-based similarity relation simW (φ, S, lw, t).

Remark 4.11 Note that when the scores in the similarity matrix M obeys a met-
ric, the word-based similarity relation between the pattern φ and its soft-occurrences
induces a similarity relation between the soft-occurrences because of the triangular
inequality.

Definition 4.27 (Minimum Word-based Soft-Frequency Constraint) A min-
imum frequency constraint MinFrφ(minFr,D) that uses the word-based match func-
tion matchW (φ, S, lw, t) is called the minimum word-based soft-frequency constraint.
It is denoted MinSoftFrW,Sφ (minFr,D, lw, t).

The associated algorithm [SVS95] solves the following problems:

1. extract all string patterns φ ∈ LΣ in D that satisfy the constraint:

MinSoftFrW,Sφ (minFr,D, lw, t) ∧MinLengthφ(minLen) ∧MaxLengthφ(maxLen)

where minLen = maxLen;

2. find the greatest length lmax, for which there exists at least one lmax-length
string pattern φ that satisfies the minimum word-based soft-frequency con-
straint MinSoftFrW,Sφ (minFr,D, lw, t), and solve the problem 1 for minLen =
maxLen = lmax.

The authors also discuss a variant of this algorithm that allows the introduction
of gaps between the pattern and its occurrences.

4.3.2 Clique Patterns

One of the classic approaches to handle fault-tolerance is to introduce it in the level of
the alphabet of symbols. The symbols of the alphabet can be grouped into equivalence
classes by defining an equivalence relation over an alphabet. Then, each class is
considered as a new symbol of the reduced alphabet. This idea was introduced
for the amino acid sequence analysis in [KG85a]. Such approach can be extended
by considering, instead of an equivalence relation, a reflexive, symmetric, but not
transitive14 similarity relation. This is convenient, e.g., for protein sequences that can

14A meaningful relation similarity between two entities can not be propagated too far

4.3. FAULT-TOLERANT PATTERNS 73

be seen as strings on alphabet of amino acids. Two or more amino acids usually share
some physico-chemical properties, such as electrical charge, polarity, size, different
levels of acidity, etc., but rarely all of them. Then, two amino acids are similar, if
they share enough physico-chemical properties to be considered related.

Definition 4.28 (Similarity Relation on Alphabet) Let Σ = {ξ1,...,ξn}, n ∈ N
be an alphabet of symbols. Similarity relation on alphabet Σ, denoted simalph(ξi, ξi),
is a reflexive, symmetric, but not transitive binary relation between symbols from Σ.

The relation of similarity on alphabet simalph can be extended to a relation of
similarity between strings σ1 and σ2 of equal length as follows: σ1 and σ2 are similar
if and only if in each position their corresponding symbols are related by simalph.
The idea of such relation over amino acid alphabet for pairwise string comparison was
independently introduced in [Cob94] and in [BDMR90]. The paper [SVC95] takes
one step further and use this relation to construct fault-tolerant patterns.

Definition 4.29 (Alphabet-based Similarity Relation) Let Σ be alphabet of sym-
bols, on which a similarity relation simalph is defined. Let σ1, σ2 be be two strings of
length l on alphabet Σ. Strings σ1 and σ2 are in a alphabet-based similarity relation
simalph,l(σ1, σ2), if and only if, for all 1 ≤ i ≤ l, σ1

i and σ2
i are in simalph(σ1

i , σ
2
i)

relation.

The fault-tolerant patterns are then defined as the maximal cliques of the alphabet-
based similarity relation.

Definition 4.30 ((Maximal) Clique of Alphabet-based Similarity Relation)
Let Σ be alphabet of symbols, on which a similarity relation simalph is defined.
A multi-set of strings of length l over Σ, denoted Cl, is a clique of the alphabet-
based similarity relation simalph,l(σ1, σ2), if and only if for all σi, σj ∈ Ck we have
simalph,l(σi, σj) = true. A clique Cl is maximal if and only if by adding any other
l-length substring over alphabet Σ, the resulting set is no more a clique. The length
of clique Cl, denoted |Cl|, is l.

Definition 4.31 (Clique Pattern Language) Consider the alphabet Σ and the
relation simalph from Definition 4.30. The clique pattern language, denoted LC ,
is a set of all possible maximal cliques Cl of alphabet-based similarity relation.

The particularity of a clique pattern match function is that it associates a pattern
φ not to one object, but to a set of objects at once.

74 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

Definition 4.32 (Clique Match Function) Consider the alphabet Σ and the re-
lation simalph from Definition 4.30. Let UΣ be a universe of strings over Σ, and α be
a set of l-length substring objects from UΣ. Let φ be a pattern from a clique pattern
language LC . Define a clique match function matchC(φ, α) to evaluate true, if and
only if φ is equal to the set α.

Remark 4.12 Observe that the frequency of a pattern φ ∈ LC , i.e., the number of
objects that it matches, is also the number of string elements that it contains.

Definition 4.33 (Clique Minimum Frequency) A minimum frequency constraint
that uses the clique match function matchC(φ, α) is called a clique minimum frequency
constraint, denoted MinFrC,αφ (minFr,D).

The corresponding maximal clique of alphabet-based similarity relation extraction
algorithm [SVC95] is an extension of the KMR algorithm [KMR72, LAC89]. It solves
the following problems:

1. extract all clique patterns φ ∈ LC in a data string D that satisfy the constraint:

MinFrC,αφ (2,D) ∧MinLengthφ(minLen) ∧MaxLengthφ(minLen)

where minLen = maxLen;

2. find the greatest length lmax, for which there exists at least one lmax-length
clique pattern φ that satisfies a clique minimum frequency constraint denoted
MinFrC,αφ (2,D), and solve the problem 1 for minLen = maxLen = lmax.

Algorithm proposed in [SVPS95] is a generalized version of [SVC95]. It solves its
performance bottleneck, which arises when searching common degenerated features
in linear coding of protein 3D structures, because of large alphabet (typically over
100 symbols), significant degeneracy of a similarity relation defined on alphabet, and
a symbol repeating consecutively in data a great number of times.

4.3.3 Patterns that are Strings over Alphabet Subsets

In the previous section we presented an approach to fault-tolerant patterns, which is
convenient when the similarity can be expressed by a single relation on the alphabet.
However, the problem becomes more difficult when the relations existing on alphabet
are overlapping and/or of different levels, what is the case, e.g., if one need to compare
the protein sequences at various levels of structure (primary, secondary and tertiary)
simultaneously. In this section we present two approaches to model these complex
relationships by patterns that are strings over subsets of alphabet.

4.3. FAULT-TOLERANT PATTERNS 75

4.3.3.1 String over Alphabet Cover Patterns

The idea of modeling the relations holding on an alphabet by string patterns on an
alphabet cover15 was introduced in [SVS97].

Definition 4.34 (String over Alphabet Cover) Let Σ be an alphabet, and c =
{α1, . . . , αn} where n ∈ N, be a cover of Σ. A finite sequence σc = αp . . . αq of
elements from a cover c is called a string over alphabet cover. The length of a string
over alphabet cover is the number of subsets αi it contains.

Definition 4.35 (String over Alphabet Cover Pattern Language) Let Σ be an
alphabet and c be its cover. String over alphabet cover pattern language, denoted Lc,
is the set of all possible strings over c.

String over alphabet cover patterns implement fault-tolerance through their in-
trinsic capability of soft matching. A l-length string over alphabet cover σc match
l-length string σ, such that every string σ symbol σi is an element of the correspond-
ing string over alphabet cover σc subset σci . Such strings σ are instances of the string
over alphabet cover σc.

Definition 4.36 (Instance of String over Alphabet Cover) Let Σ be an alpha-
bet and c = {S1, . . . , Sn}, n ∈ N be its cover. Consider a l-length string σ = σ1 . . . σl
over Σ and a l-length string σc = σc1 . . . σ

c
l over c. σ is an instance of σc if and only

if σi ∈ σci , for all i = 1, . . . , l.

Further flexibility can be achieved by allowing up to k, k ∈ N errors in such σc

and σ matching. We can then compute the corresponding distance and use it to
establish a similarity relation between string over alphabet cover σc and string σ.

Definition 4.37 (Set-edit Distance) Let Σ be an alphabet and c be its cover. Let
σ be a string over Σ and σc be a string over alphabet cover. The minimum number
of deletions, insertions and substitutions, necessary to convert σ into an instance of
σc, is called the Set-edit distance, denoted SEDist(σc, σ).

A string over alphabet cover σc and a string σ ∈ Σ∗ are in a set-edit distance
similarity relation if their set-edit distance is smaller than a given threshold.

Definition 4.38 (Set-edit Distance Similarity Relation) Let Σ be an alphabet,
c be its cover, k ∈ N be a threshold, σc be a string over alphabet cover and σ be a string
over Σ. σc and σ are in the set-edit distance similarity relation simSEdist(σc, σ, k) if
and only if their set-edit distance SEDist(σc, σ) is less or equal to k.

15 Alphabet Σ cover is a set of its subsets {α1, . . . , αn}, n ∈ N, such that
Pn
i=1 αi = Σ.

76 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

The following match function associates string over alphabet cover patterns φ to
string objects.

Definition 4.39 (Set-edit Match Function) Let Σ be an alphabet, c be its cover,
UΣ be a universe of strings over an Σ, S be a string object from UΣ, and k be a
threshold. Let φ be a pattern from a string over alphabet cover pattern language Lc.
Define a match function matchSEdist(φ, S, k) to evaluate true if and only if there
exists a string σ such that σ v S and simSEdist(φ, σ, k) = true.

Remark 4.13 The set-edit distance is a metric, and therefore, because of the trian-
gular inequality, the set-edit distance similarity relation between the pattern and its
occurrences induces a similarity relation between the occurrences.

Definition 4.40 (Minimum Set-edit Soft-Frequency) The minimum frequency
constraint MinFrφ(minFr,D) based on the set-edit match function matchSEdist(φ, S, k)
is denoted MinSoftFrSEdist,Sφ (minFr,D, k). It is called the minimum set-edit soft-
frequency constraint.

Two algorithms to extract strings over alphabet cover, Poivre and LePoivre, are
presented in [SVS97]. Poivre tackles the special case, when no errors between pattern
φ ∈ Lc and its occurrences are allowed, i.e., the occurrences of φ are its instances.
Thus, the algorithm Poivre, uses the match function matchSEdist(φ, S, 0). LePoivre
tackles the general case, when the threshold k of set-edit distance between a pattern
φ and its occurrences is allowed to be greater than 0. Both algorithms were inspired
by the KMR algorithm [KMR72, LAC89]. They solve the following problems:

1. extract all string patterns φ ∈ Lc in a string data set D that satisfy the con-
straint

MinSoftFrSEdist,Sφ (minFr,D, k)∧MinLengthφ(minLen)∧MaxLengthφ(maxLen),

where minLen = maxLen;

2. find the greatest length lmax, for which there exists at least one lmax-length
string over alphabet cover pattern φ that satisfies a minimum set-edit soft-
frequency constraint MinSoftFrSEdist,Sφ (minFr,D, k), and solve the problem 1
for minLen = maxLen = lmax.

4.3.3.2 String over Weighted Combinatorial Cover Patterns

String over alphabet cover patterns, presented in the previous section, requires to
specify in advance the cover, i.e., the alphabet of subsets, over which such patterns

4.3. FAULT-TOLERANT PATTERNS 77

will be constructed. However, in many cases one does not know, what alphabet is
pertinent to reveal the regularities of interest (concerning biological sequence analy-
sis, see, e.g., [GEW85, KG85b]). To answer this problem, [SV96a] considers fault-
tolerant patterns, which are strings over the powerset of the symbols alphabet Σ.
This means that the subset alphabet (e.g., a cover) need not be specified in ad-
vance16. Note that among alphabet Σ subsets, used to construct patterns, there is
also a set Σ, consisting of all symbols. This means that the pattern can contain
wildcard symbols17. Wildcard symbol in a pattern correspond to positions, which
are not significant for the captured regularity. This is of interest, e.g., when search-
ing for putative functional elements in biological sequences, since they often contain
the non-conserved positions. Observe that employing the concept of wildcard in a
pattern is different from working with distance between pattern and its occurrences
that counts errors18. Consider a l-length pattern that is composed only of wildcard
symbols. It is obviously uninteresting, since it match any l-length string over Σ. To
avoid such situations, one can associate weights with the elements of Σ powerset,
which restrict the number of appearance of these subsets in a pattern (if there no
restriction is desired, the corresponding weight is assigned to ∞). Such structure is
called a weighted combinatorial cover.

Definition 4.41 (Weighted Combinatorial Cover) Let Σ be an alphabet, and
2Σ be a powerset of Σ. Let 2Σ+ denote the set 2Σ \∅. A weighted combinatorial cover
of the alphabet Σ, denoted wcc, is the set of pairs (αi, hs), where αi is an element of
2Σ+, i ∈ N, and hs is a non negative integer or ∞.

The considered patterns are strings over weighted combinatorial cover wcc.

Definition 4.42 (String over wcc) Let Σ be an alphabet, and wcc be its weighted
combinatorial cover. A finite sequence σwcc = αp . . . αq of elements from 2Σ+, such
that the number of αi appearances in σwcc does not exceed its hs, specified in wcc, is
called a string over weighted combinatorial cover. The length of a string over weighted
combinatorial cover is a number of subsets αi it contains.

Definition 4.43 (String over wcc Pattern Language) Let Σ be an alphabet and
wcc be its weighted combinatorial cover. String over wcc pattern language, denoted
Lwcc, is a set of all possible strings over wcc.

String σwcc over wcc and string σ over alphabet Σ are in a similarity relation, if
σ is an instance of σwcc.

16Any possible alphabet Σ subset belongs to the powerset of Σ
17Wildcard symbol is a symbol that can be substituted for any other symbol from the alphabet
18 There is no notion of an error here, instead some positions are considered as non-significant for

a regularity.

78 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

Definition 4.44 (wcc similarity relation) Let Σ be an alphabet and wcc be its
weighted combinatorial cover. Let σ = σ1 . . . σl be a l-length string over Σ, and
σwcc = σwcc1 . . . σwccl be a l-length string over wcc. σwcc and σ are in a wcc similarity
relation simwcc(σwcc, σ), if and only if σi ∈ σwcci , for all i = 1, . . . , l.

The following match function associates string over wcc patterns to string objects.

Definition 4.45 (Match Function for wcc similarity) Let Σ be an alphabet, wcc
be its weighted combinatorial cover, UΣ be a universe of strings over an Σ, and S be
a string object from UΣ. Let φ be a pattern from string over wcc pattern language
Lwcc. Define a match function matchwcc(φ, S) to evaluate true if and only if there
exists a string σ such that σ v S and simwcc(φ, σ) = true.

Definition 4.46 (Minimum wcc Soft-Frequency) The Minimum frequency con-
straint MinFrφ(minFr,D) that uses the wcc match function matchwcc(φ, S) is called
a minimum wcc soft-frequency constraint. It is denoted MinSoftFrwcc,Sφ (minFr,D).

Algorithm, proposed in [SV96a] solves the following problems:

1. extract all string patterns φ ∈ Lwcc in a string data set D that satisfy the
constraint

MinSoftFrwcc,Sφ (minFr,D) ∧MinLengthφ(minLen) ∧MaxLengthφ(maxLen),

where minLen = maxLen;

2. find the greatest length lmax, for which there exists at least one lmax-length
string over wcc pattern φ that satisfies a minimum wcc soft-frequency constraint
MinSoftFrwcc,Sφ (minFr,D), and solve the problem 1 for minLen = maxLen =
lmax.

To locate very degenerated patterns, one can go further and allow errors in string
σwcc over wcc and string σ over alphabet Σ matching. Then, a similarity between σwcc

and σ is evaluated based on their distance, defined analogically to set-edit distance
(see Definition 4.37 in Page 75). The idea of the algorithm to extract φ ∈ Lwcc
patterns with the match function that allows up to k distance between φ and its
occurrence, is also introduced in [SV96a].

4.3.4 Regular Expression Patterns

Fault-tolerance is intrinsic for regular expression patterns, since they match the
strings belonging to the language generated by the pattern (see Definition 1.17 in
Page 20).

4.3. FAULT-TOLERANT PATTERNS 79

4.3.4.1 String with Wildcards Patterns

We now consider strings with wildcards patterns, introduced in [RF98b, RF98c].
Strings with wildcards are strings over an alphabet composed of literal symbols and
wildcard symbols.

Definition 4.47 (String with Wildcards) Let Σ be an alphabet of literal symbols.
Let . denote a wildcard symbol, i.e., a position that match any symbol from Σ. String
with wildcard, denoted σ., is a string that begins and ends with a symbol from Σ and
contains an arbitrary combination of symbols from the extended alphabet Σ ∪ {.}.

Definition 4.48 (String with Wildcards Pattern Language) Let Σ be an al-
phabet of literal symbols. String with wildcards pattern language, denoted LΣ

S
{.}, is

a set of all possible strings with wilcards over Σ.

A string with wildcards pattern φ ∈ LΣ
S
{.} is a regular expression, and thus it

implements fault-tolerance through its intrinsic capability to match the strings that
belongs to the language generated by φ.

Definition 4.49 (Language Generated by String with Wildcards) Let us de-
note by L(ξi) the language generated by a literal symbol ξi ∈ Σ. It is the set containing
one element {ξi}. The language generated by a wildcard symbol . , denoted L(.), is
the set containing all symbols in Σ, i.e., L(.) = Σ. The language generated by a
string with wildcard σ. = σ.

1 . . . σ
.
n, denoted L(σ.), is a set of strings σ = σ1 . . . σn,

such that σi ∈ L(σ.
i), i = 1, . . . , n.

Definition 4.50 (String with Wildcards Match Function) Let UΣ be a universe
of strings over literal symbols alphabet Σ, and S be a string object from UΣ. Let φ
be a pattern from a string with wildcards language LΣ

S
{.}. Define a match function

matchΣ
S
{.}(φ, S) to evaluate true if and only if there exists a string σ such that

σ v S and σ belongs to the language L(φ).

Definition 4.51 (Minimum Soft-Frequency for Strings with Wildcards) The
minimum frequency constraint MinFrφ(minFr,D) that uses the string with wildcards
match function matchΣ

S
{.}(φ, S) is called a minimum soft-frequency constraint for

strings with wildcards. It is denoted MinSoftFr
Σ

S
{.},S

φ (minFr,D).

Consider, for example, a string with wildcards ac.g occurring in a known number
of position in a string data set D. Then, if another string with wildcards a..g occurs
at the same positions and nowhere else in D, it is not interesting, since it contain

80 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

no new knowledge and can be deduced from ac.g. Therefore, in most cases, it is
desirable to extract only the most specific or, in other words, maximal strings with
wildcards. We first define the relation of specificity, and then we will employ it to
define the constraint of maximality.

Definition 4.52 (Specificity Relation on Strings with Wildcards) Given an
alphabet Σ, let σ.1 and σ.2 be strings with wildcards. σ.2 is said to be more spe-
cific than σ.1 if σ.2 can be obtained from σ.1 by changing its one or more wildcard
symbols to symbols from Σ, or by appending a string over Σ

⋃
{.} to the left or/and

right of σ.1.

Definition 4.53 (Maximality Constraint) Let φ ∈ LΣ
S
{.} be a string with wild-

cards pattern, and D be a string data set. A maximality constraint Maximalityφ(D) is
satisfied iff there exists no pattern ψ that is more specific than φ and have the same
number of occurrences in D.

Observe that maximality constraint is a data-dependent constraint. In addition
to this, syntactic constraints can be put on a number of wildcards in a pattern.
This allows to focus on the extraction of more or less degenerated regularities. Such
constraint applies on subpatterns of a pattern φ.

Definition 4.54 (Subpattern of pattern with wildcards) Let φ ∈ LΣ
S
{.} be a

string with wildcards pattern. Any φ substring that also belong to pattern language
LΣ

S
{.} is called a subpattern of φ.

Definition 4.55 (Rigidity Constraint) Let φ ∈ LΣ
S
{.} be a string with wild-

cards pattern, and L,W ∈ N, L ≤ W , be thresholds. Define a rigidity constraint
Rigidityφ(L,W) to evaluate true if and only if every subpattern of φ of length W con-
tains at least L symbols from alphabet Σ, i.e., not wildcard symbols. Note that if
Rigidityφ(L,W) is satisfied, than it is also satisfied with any threshold W ′ > W .

Teiresias algorithm [RF98b, RF98c] extract patterns φ ∈ LΣ
S
{.}, satisfying

the constraints MinSoftFr
Σ

S
{.},S

φ (minFr,D) ∧Maximalityφ(D) ∧ Rigidityφ(L,W) in a
string data set D.

To avoid a combinatorial explosion in the number of string with wildcard patterns,
recently a promising idea was proposed in [PRF+00], which consists of extracting the
generator sets of the patterns, called the bases of motifs. It is a well-known and
precisely defined mathematical object, guaranteeing the property of completeness.
Informally, a basis of motifs is a subset of all patterns that satisfy the given con-
straints. From such subset it is possible to construct all other patterns also satisfying

4.3. FAULT-TOLERANT PATTERNS 81

these constraints19. The argument behind the basis of [PRF+00] is that a compact
enough basis can be always found. Despite of the interesting features of basis de-
fined in [PRF+00], they were revealed to have some drawbacks. An upper bound
of a number of basis, satisfying a minimum frequency constraint MinFrφ(minFr,D)
in data string D, with minFr ≥ 2, does not hold. Since the associated polynomial
time (in number of symbols in a data string) extraction algorithm relies on that
bound, the problem of efficiently discovering such bases remains open [PCGS05].
Subsequently, a refinement of the definition of basis and the corresponding incre-
mental extraction algorithm was presented in [AP04]. Recently, a basis defined with
stronger conditions than that of [PRF+00] (thus included in the basis of [PRF+00],
and therefore smaller), but able to generate the same set of patterns, was introduced
in [PCGS05]. The preliminary ideas of this work were described in [PCGS02] and
published in [PCGS03]. Among few other nice properties, the number of patterns in
such basis and the total number of their occurrences, satisfying a minimum frequency
constraint MinFrφ(minFr,D) in data string D, with minFr = 2, have provable upper
bounds that are linear in the number of symbols in a data string D. In addition to
this, an exponential dependency on minFr of the number of patterns in the basis
defined in [PCGS05, PRF+00, PAA03] was revealed. Consequently, there can not ex-
ist a polynomial-time algorithm to extract these bases satisfying MinFrφ(minFr,D)
constraint, with arbitrary values of minFr ≥ 2.

4.3.4.2 Generalized Regular Patterns

Generalized regular patterns are strings over the alphabet composed of literal sym-
bols, groups of literal symbols, restricted and unrestricted length wildcards. An ex-
tensive study of generalized regular pattern extraction and application to biological
sequence analysis can be found in [Vil02].

We first define three kinds of symbols, which, altogether with literal symbols,
form the alphabet of generalized regular patterns.

Definition 4.56 (Group Symbols) Let Σ = {ξ1, . . . , ξn} be an alphabet of literal
symbols. Let g1, . . . , gn be subsets of Σ, such that each subset contains more than one
element. To denote such subsets gi = {ξp, . . . , ξq} we use bracketed lists of all symbols
in gi, called group symbols and noted [ξp . . . ξq]. A set of group symbols forms a group
alphabet, denoted Γ.

Definition 4.57 (Wildcard of Unrestricted Length) Let Σ be a literal symbols
alphabet. A wildcard of unrestricted length, denoted ∗, is a symbol that can be substi-
tuted for any element of the set Σ∗, i.e., for any string over Σ.

19 The patterns that are not in the basis are the combinations of patterns in the basis.

82 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

Definition 4.58 (Wildcard of Restricted Length) Let Σ be a literal symbols al-
phabet. A wildcard of restricted length, denoted ∗(p, q), p, q ∈ N, p ≤ q, is a symbol
that can be substituted for any string of length between p and q over literal symbols
alphabet Σ. A set of restricted length wildcards {∗(p, q) | 0 ≤ p ≤ q <∞} is denoted
W .

Then, we define generalized regular pattern.

Definition 4.59 (Generalized Regular Pattern) Let Σ be a literal symbols al-
phabet, Γ be group symbols alphabet, ∗ be the unrestricted length wildcard and W be
a set of restricted length wildcards. Generalized regular pattern r is a string over
Σ ∪ Γ ∪ ∗ ∪W .

Definition 4.60 (Generalized Regular Pattern Language) Let Σ be a literal
symbols alphabet, Γ be group symbols alphabet, ∗ be the unrestricted length wildcard
and W be a set of restricted length wildcards. Generalized regular pattern language,
denoted Lr, is a set of all generalized patterns over Σ ∪ Γ ∪ ∗ ∪W .

A generalized regular pattern φ ∈ Lr is a regular expression, and, as string with
wildcards patterns (presented in the previous section), it implements fault-tolerance
by matching the strings that belongs to the language generated by φ.

Definition 4.61 (Language defined by a generalized regular pattern) Let ξi
be a symbol from literal symbols alphabet Σ. A language defined by ξi, denoted L(ξi),
is a one-element set {ξi}. Let [ξp . . . ξq] be group symbol from group alphabet Γ. A
language defined by [ξp . . . ξq], denoted L([ξp . . . ξq]), is a set {ξp, . . . , ξq}. A language
defined by a wildcard of unrestricted length ∗, denoted L(∗), is a set of all strings
over the literal symbols alphabet Σ, noted Σ∗. A language defined by a wildcard of
restricted length ∗(p, q), p, q ∈ N, p ≤ q, denoted L(∗(p, q)), is a set of all strings
of length between p and q over the literal symbols alphabet Σ. Let r be a generalized
regular pattern. A language defined by r = r1 . . . rn, denoted L(r), is a set of strings
σ = ζ1 . . . ζn, where ζi is a substring of σ20, such that ζi ∈ L(φi), i = 1, . . . , n.

Definition 4.62 (Generalized Regular Patterns Match Function) Let UΣ be
a universe of strings over a literal symbols alphabet Σ, and S be a string object from
UΣ. Let φ be a regular pattern from pattern language Lr. Define a match function
matchr(φ, S) to evaluate true if and only if there exists a string σ, such that σ v S
and σ belongs to the language L(φ).

20ζ1 is a substring, and not a symbol, of σ, because the languages of ∗ and ∗(p, q) contain not only
symbols, but also substrings

4.3. FAULT-TOLERANT PATTERNS 83

Definition 4.63 (Minimum Soft-Frequency on Generalized Regular Patterns)
A minimum frequency constraint MinFrφ(minFr,D) that uses the generalized regular
patterns match function matchr(φ, S) is called a minimum soft-frequency constraint
for generalized regular patterns. It is denoted MinSoftFrr,Sφ (minFr,D).

SPEXS [Vil98, Vil02] is generalized framework of algorithms that extract general-
ized regular patterns φ ∈ Lr that satisfy MinSoftFrr,Sφ (minFr,D) constraint in one or
more data string(s) or a string data set(s) D. Combinations of syntactic constraints
on maximum allowed number of group symbols, given the groups alphabet Γ, max-
imum allowed number of unrestricted wildcards and maximum allowed number of
restricted wildcards, given their length, allows to delimit a subset of regular pattern
language that is of interest. When the strings in data are related, there may exist
many patterns satisfying the minimum frequency constraint even with high frequency
thresholds. Also, the more complex is the pattern language, the more different pat-
terns contains the solution set. It is challenging to decide which of these patterns are
pertinent. To assist this task, pattern fitness measures, which evaluate pattern inter-
estingness and relevance, can be computed. Then, these measures are used to rank
and compare the extracted patterns. SPEXS computes the pattern fitness measures,
based on pattern improbability [VBJ+00] or on Minimum Description Length (MDL)
principle [BJUV96, BUV96]. Then the constraint on pattern minimum fitness can be
formulated and evaluated by post-processing (see discussion in Page 21). SPEXS also
allows to extract patterns overrepresented in a positive string data set D+ with re-
spect to the negative or random one D− by pushing a minimum frequency constraint
only on a positive string data set and by post-processing a minimum ratio constraint,
which restricts how much more frequent pattern is in D+ than in D− [BJVU98a].

4.3.5 Structured Patterns

In the previous sections we considered various languages of fault-tolerant patterns
that allow to express regularities, composed of one element. However, there are cases
where a regularity, one is trying to capture, potentially contains several elements
separated by gaps. A typical example is the transcription factor binding sites, which
often work in groups, and the relative positions of such multiple sites, participating
in a biological process, are in general not random. Structured patterns, introduced
in [MS00a, MS00b], allow to express such characteristics.

Definition 4.64 (Structured Pattern) Let Σ be an alphabet. Structured pattern,
denoted B, is a pair (b, d), where:

• b is a p-tuple (b1, . . . , bp), p ∈ N, of strings bi over alphabet Σ, representing p
structural pattern parts, which are called boxes,

84 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

• d is a (p − 1)-tuple of triplets ((dmin1 , dmax1 , δ1), . . . , (dminp−1 , dmaxp−1 , δp−1)),
dmini , dmaxi , δi ∈ N, dmaxi ≥ dmini, representing the (p−1) intervals of distance
between two successive boxes bi, bi+1.

The length of a structured pattern is a number of boxes bi it contains.

Definition 4.65 (Structured Pattern Language) Let Σ be an alphabet. The
structured pattern language, denoted LB, is the set of all possible structured patterns
(b, d).

A structured pattern implements the fault-tolerance by allowing up to k mis-
matches between each its box and a corresponding substring, as well as variations of
gap length between two adjacent boxes.

Definition 4.66 (Box-Hamming Similarity Relation) Let Σ be an alphabet, B
be a structured l-length pattern, σ be a string on Σ, and k ∈ N be a threshold. The
pattern B and the string σ are in a box-Hamming similarity relation simBH(B, σ, k)
iff the positions in a string σ are such that

• l substrings σ1, . . . , σi, . . . , σl of string σ, starting at positions σ1, . . ., σj, . . .,
σ|σ|−|bl|+1 are such that Hamming distance between each box bi and σi, i =
{1, . . . , l}, is less or equal to k,

• there exists a di from the interval [dmini + δi, dmaxi − δi], such that the distance
between the end position of σi and the start position of σi+1 is di ± δi21.

Observe, that when δi = (dmaxi−dmini+1)/2, then δi can be omitted, since the allowed
distance di between two substrings σi and σi+1 is in the interval [dmini , dmaxi].

The following match function associates structured patterns to string objects.

Definition 4.67 (Structured Pattern Box-Hamming Match Function) Let UΣ

be a universe of strings over an alphabet Σ, S be a string object from UΣ, and k be
a threshold. Let φ be a structured pattern from LB. We define a match function
matchBH(φ, S, k) to evaluate true iff there exists a string σ such that σ v S and
simBH(φ, σ, k) = true.

Definition 4.68 (Minimum Box-Hamming Soft-Frequency) A minimum fre-
quency constraint MinFrφ(minFr,D) that uses the structured pattern box-Hamming
match function matchBH(φ, S, k) is called a minimum box-Hamming soft-frequency
constraint. It is denoted MinSoftFrφ,SBH(minFr,D, k).

21±δi is an allowed variation of the distance di.

4.3. FAULT-TOLERANT PATTERNS 85

Note that the frequency of a structured pattern is not simply the number of
objects that is matches, but the number of objects that it matches with the same
distance di, used to establish the box-Hamming similarity relation.

Various on suffix trees based algorithms to extract structured patterns φ ∈ LB
that satisfy a minimum frequency constraint MinSoftFrφ,SBH(minFr,D, k) in a string
data set D are introduced in [MS00a, MS00b]. Different versions allows to extract
2-boxes length patterns and arbitrary l-boxes length patterns. In addition to this,
further syntactic constraints can be added on a structured pattern B and string σ
similarity, e.g., a maximum allowed rate of errors, a maximum or minimal symbol
frequency in a box (or in all boxes of B).

86 CHAPTER 4. FAULT-TOLERANCE EXPRESSED BY CONSTRAINTS

Part II

Contribution

87

Chapter 5

Similarity and Soft-Frequency
Constraints

5.1 Problem Setting

Motivation

We study the similarity and soft-frequency constraints that enable the fault-tolerance,
indispensable in many application domains (genomic data analysis, seismic data anal-
ysis, WWW usage mining being only few examples). To motivate the need for com-
plete and generic solvers we propose to consider a typical situation, when a domain
expert uses data mining techniques in real-life applications, especially when the ques-
tion he/she is trying to answer is somewhat exploratory. For example, the biologist
researcher aims to find the putative transcription factor binding sites (patterns) in a
set of promoter sequences (a set of character strings). There two ways to proceed,
that is, to use either statistical motif discovery tools that employ heuristic strategies
or to turn to correct and complete pattern extraction. The fact that different heuris-
tic motif discovery tools gives different results on the same data, and that typically
these results depend on the ordering the input data sequences, can be not acceptable
for some biologist researchers. The alternative way then is the correct and complete
pattern extraction. A number of good exhaustive algorithms have been developed
to search for biological motifs on sequences. The problem is that these are ad-hoc
approaches, that is, they are solvers for one tight inductive query composed of one or
several constraints. In an exploratory data mining task, a typical situation is that the
results of the current pattern extraction gives rise to the new questions and thus the
new inductive queries. If we rely on the ad-hoc solvers, once a question (an inductive
query) changes, a new algorithm has to be devised. Though from inductive querying
point of view, the goal is to provide a solver capable to evaluate arbitrary Boolean

89

90 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

compositions of constraints. It is like to be able to evaluate SQL queries on patterns.

Research Context

Similarity between two strings is the core algorithmic issue in approximate string
matching domain, while it is also of great importance in bioinformatics domain. Sev-
eral approaches to similarity constraint was studied by the data mining community.
Similarity relation allows to identify the soft-occurrences and therefore is fundamen-
tal to define the fault-tolerant patterns. Fault-tolerant pattern extraction in strings
or string data sets through soft-frequency constraints have been extensively studied
in bioinformatics area. A state of art on these existing approaches to tackle the
similarity constraint and the fault-tolerant patterns extraction when mining strings
(presented in Chapter 4) is that efficient solvers are available for specific (ad-hoc)
conjunctions of primitive constraints.

An alternative promising approach, proposed by [DJDM02, DD03], is to consider
a generic theory, which handles arbitrary Boolean compositions of constraints that
are either anti-monotonic or monotonic (see Section 3.1 in Page 45). Such theory was
implemented to mine string patterns in string data sets, and resulted in the generic
solvers VST and FAVST. A key issue for designing efficient generic solver is to exploit
the opportunities for search space pruning, associated to constraint properties (like
anti-monotonicity and its dual monotonicity property).

The research in string pattern mining have recently resulted in a solver that
performs the extraction under the minimum frequency constraint, the conjunction of
minimum and maximum frequency constraints and some statistic constraints [FHK05,
FHK06]. The particularity of this solver is that it is optimal in time, i.e., time is
linear in the input and the output size. The key of this approach resides in the use
of array-based data structures, in the concrete, suffix-array and lcp-array. This very
interesting research work should not be however confused with the generic solvers.
The solver of [FHK05, FHK06] is tuned for exploiting the exact-frequency constraints,
and cannot solve the constraints having only the (anti-)monotonicity property. There-
fore it cannnot be employed as a framework for fault-tolerant string pattern mining
through the similarity and soft-frequency constraints.

In most of the application domains, the notion of similarity between two entities
ε1 and ε2 informally means a ”small difference“ between ε1 and ε2. Obviously, the
property ”small difference“ should not be propagated too far, i.e., the relation of simi-
larity should not be transitive. A similarity constraint (see Definition 4.1 in Page 59),
establishing a non-transitive similarity relation between two entities, is fundamentally
neither monotonic nor anti-monotonic, since a non-transitive similarity relation can
not be isomorphic to a generalisation relation. Due to this property, a fault-tolerant
pattern extraction can not benefit from recent algorithmic breakthrough in generic

5.2. SIMILARITY CONSTRAINT 91

solver design.

Problem Statement

The objective is to formulate the similarity and soft-frequency constraints so that they
can be solved efficiently, i.e., as Boolean combinations of anti-monotonic and mono-
tonic primitive constraints. This will enable not only to solve these constraints effi-
ciently, but also to design the generic solver Marguerite-{Sim,SoftFr} that employs
the efficient generic strategies [DJDM02, DD03, DD04] for solving arbitrary combi-
nations of similarity and/or soft-frequency constraints with other (anti)-monotonic
constraints.

5.2 Similarity Constraint

In this section we present our contribution on handling the similarity constraint by
exploiting the associated (anti-)monotonicity properties, published in [MB06].

The meaningful similarity relation can not be transitive and therefore the associ-
ated similarity constraint is neither anti-monotonic nor monotonic.

Example 5.1 Let Σ = {a, c, g, t} be an alphabet, and LΣ be a string pattern language
on Σ. Let σ = aactcgc be a reference string on that alphabet. The edit similarity con-
straint EditDistSimφ(σ, 2) (see Definition 4.7 in Page 62) evaluates true for example
the patterns φ1 = aactc, φ2 = actcg, φ3 = taactcgcc, and false for example the pat-
terns φ4 = actc, φ5 = ct, φ6 = ataactcgcc. Note that the constraint EditDistSimφ(σ, 2)
is neither anti-monotonic (φ4 is more general than φ1), nor monotonic (φ6 is more
specific than φ1).

Recent advance in data mining research have resulted in the theory to efficiently
evaluate the arbitrary Boolean compositions of (anti-)monotonic constraints(see Sec-
tion 3.1 in Page 45). Take notice that, thanks to these results, a non-(anti-)monotonic
constraint can profit from efficient evaluation strategies, if only it can be reformulated
as a Boolean combination of (anti-)monotonic constraints. Therefore we search how
to express a similarity constraint as a Boolean composition of such constraints.

5.2.1 LCS Similarity Constraint

It makes sense to evaluate the similarity between two strings, based on their longest
common subsequence (LCS), which is the longest pairing of their matching symbols,

92 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

allowing all possible interruptions in either of the strings (see Section 4.2.1.4). Inter-
estingly, given two strings σ1 and σ2, there is a stable relation between the length of
LCS(σ1, σ2) and substrings of string σ1.

Lemma 5.1 Let σ1, σ2 be strings over alphabet Σ. Let σ1′ denote a substring of σ1.
Then, |LCS(σ1, σ2)| ≥ |LCS(σ1′, σ2)|.

Proof 5.1 (Lemma 5.1) A proof by contradiction is as follows. Assume Φ be a
LCS(σ1, σ2), and Φ′ be a LCS(σ1′, σ2). Say that |Φ′| = |LCS(σ1′, σ2)| > |LCS(σ1, σ2)| =
|Φ|. According to the definition of subsequence (see Definition 1.11 in Page 18), Φ′

is also a subsequence of σ1 and σ2. If |Φ′| > |Φ|, then the LCS(σ1, σ2) is Φ′ and not
Φ. This is a contradiction to the assumption that Φ is the LCS(σ1, σ2).

Therefore, we propose to search for the (anti-)monotonicity properties of a simi-
larity constraint between two strings by studying their LCS. We first observe that
similar strings are expected to have a large enough LCS, and thus formulate a min-
imum LCS constraint.

Definition 5.1 (Minimum LCS Constraint) Let LΣ be a string pattern language,
φ be a pattern from LΣ, σ be a reference string, and minLCS ∈ N be a threshold.
Define a minimum LCS constraint, denoted MinLCSφ(σ,minLCS), to evaluate true
if and only if |LCS(φ, σ)| ≥ minLCS.

Theorem 5.1 The minimum LCS constraint MinLCSφ(σ,minLCS) is monotonic.

Proof 5.2 (Theorem 5.1) Consider substring patterns φ and φ′, such that φ′ v φ.
A consequence of Lemma 5.1 is that if |LCS(φ′, σ)| ≥ minLCS, then |LCS(φ, σ)| ≥
minLCS.

Consider the following example.

Example 5.2 Let σ = tctggga be a reference string over the alphabet Σ = {a, c, g, t}.
The string patterns φ1 = gcggga and φ2 = ctggaga from LΣ satisfy MinLCSφ(σ, 5)
constraint, since |LCS(φ1, σ)| = |cggga| = 5 and |LCS(φ2, σ)| = |ctggga| = 6. Note,
that a string pattern φ3 = attagtgttttgggg also satisfies MinLCSφ(σ, 5) constraint,
since |LCS(φ3, σ)| = |ttggg| = 5.

This example illustrates that the minimum LCS constraint MinLCSφ(σ,minLCS)
enables to specify a minimum number of matching symbols, however, as we can see

5.2. SIMILARITY CONSTRAINT 93

in the case of string φ3, it does not restrict the number of non-matching symbols and
thus is not sufficient to specify a requested degree of similarity. We remind that a
subsequence of a string can be obtained by deleting some symbols from that string.
By limiting the number of deletions, necessary to perform on a string in order to get
its LCS with a reference string, we obtain the needed complementary constraint that
bound the number of ”errors“.

Definition 5.2 (Maximum Deletions Constraint) Let LΣ be a string pattern
language, φ be a pattern from LΣ, σ be a reference string, and maxDels ∈ N be
a threshold. Let fix any LCS(φ, σ), and denote the symbols of φ that to not belong
to this LCS as dels1. The number of dels, denoted DelsLCS(φ, σ), is equal to |φ|−
|LCS(φ, σ)|. Define a maximum deletions constraint, denoted MaxDelsφ(σ,maxDels),
to evaluate true, if and only if DelsLCS(φ, σ) ≤ maxDels.

Theorem 5.2 The maximum deletions constraint MaxDelsφ(σ,maxDels) is anti-
monotonic.

Proof 5.3 (Theorem 5.2) Assume that the constraint MaxDelsφ(σ,maxDels) is
satisfied. Let take any LCS of φ and σ. Label the symbols of φ that belong to
the LCS(φ, σ) with labels match, and the symbols of φ that do not belong to the
LCS(φ, σ) with labels del. The number of symbols labelled with dels is at most
maxDels. Let us now consider (fixe) any substring φ′ of φ while preserving the labels
assigned for φ. Obviously, the number of φ′ symbols labelled with del is less or equal
to maxDels. If the symbols of φ′, labelled with match, constitutes the LCS(φ′, σ),
then we have MaxDelsφ(σ,maxDels) ⇒ MaxDelsφ′(σ,maxDels). If not, a LCS of
φ′ and σ gives rise to a larger number of symbols of φ′ labelled with match, and
thus, necessarily, a smaller number of symbols labelled with del. Thus, we also have
MaxDelsφ(σ,maxDels)⇒ MaxDelsφ′(σ,maxDels).

Then, we say that two strings are in the LCS similarity relation, if they satisfy
the minimum LCS constraint and the maximum deletions constraint.

Definition 5.3 (LCS Similarity Relation) Let σ1, σ2 be two strings over a given
alphabet Σ, and minLCS,maxDels ∈ N be two thresholds. The strings σ1 and σ2

are in LCS similarity relation, denoted simLCS(σ1, σ2,minLCS,maxDels), if and
only if MinLCSσ1(σ2,minLCS) ∧MaxDelsσ1(σ2,maxDels) = true.

Based on the LCS similarity relation, we define a LCS similarity constraint.

1Notice, that a LCS(φ, σ) can be obtained from φ by deleting the dels.

94 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

Definition 5.4 (LCS Similarity Constraint) Let LΣ be a string pattern language,
φ be a pattern from LΣ, σ be a reference string, and minLCS,maxDels ∈ N be thresh-
olds. Define a LCS similarity constraint, denoted LCSSimφ(σ,minLCS,maxDels) to
evaluate true, if and only if a pattern φ and a reference string σ are in the LCS
similarity relation simLCS(φ, σ,minLCS,maxDels).

Example 5.3 Continuing from Example 5.2, the patterns φ1 and φ2 satisfy the con-
straint LCSSimφ(σ, 5, 1). Pattern φ4 = gcgggta satisfies the constraint LCSSimφ(σ, 5, 2),
since LCS(φ4, σ) = |cggga| = 5. Pattern φ3 does not satisfy neither constraint
LCSSimφ(σ, 5, 1) nor constraint LCSSimφ(σ, 5, 2).

Remark 5.1 The length of a pattern φ satisfying LCSSimφ(σ,minLCS,maxDels)
constraint, is at least minLCS and at most |σ| + maxDels. Note that even though
the maximal length of a pattern φ, satisfying LCSSimφ(σ,minLCS,maxDels), can be
inferred from |σ| and maxDels, the fact that φ satisfies the constraint
MinLCSφ(σ,minLCS) ∧MaxLengthφ(|σ|+maxDels) does not imply that it also sat-
isfies the constraint LCSSimφ(σ,minLCS,maxDels).

Example 5.4 Consider a reference string σ = agcgac over the alphabet Σ = {a, c, g, t},
a string pattern φ = gagataga, and the thresholds minLCS = 4, maxDels = 2. The
pattern φ satisfies the constraint MinLCSφ(σ, 4) ∧MaxLengthφ(6 + 2), but it does not
satisfy the constraint LCSSimφ(σ, 4, 2), since, even if LCS(φ, σ) = |agga| = 4, we
have DelsLCS(φ, σ) = 4 > 2.

5.2.2 Marguerite-Sim Generic Solver

The LCS similarity constraint, which is expressed as a conjunction of a monotonic
and an anti-monotonic constraint, can be resolved using the generic constraint ex-
ploitation strategies (see Section 3.1 in Page 45). Based on these strategies we devel-
oped a generic solver Marguerite-Sim, which solves the LCS similarity constraint
and its arbitrary conjunctions with other (anti-)monotonic constraints on an arbi-
trary number of string data sets Di. Marguerite-Sim is built on the FAVST generic
solver [DD04] (see Section 3.2.2.2 in Page 51), and therefore can be seen as its ex-
tension2.

Marguerite-Sim generic solver is given in Algorithm 7. It is very similar to
the FAVST generic solver and the only difference is that instead of Algorithm 2
InitTree, presented in Page 54, a new algorithm 8 InitTreeWithSim is invoked.

2FAVST is pronounced [foust], as Faust, a principal character of the Johann Wolfgang von
Goethe’s tragic play Faust. Margaret (also known as Gretchen) is a girl, Faust falls in love with.
Marguerite is a French version of Margaret.

5.2. SIMILARITY CONSTRAINT 95

InitTreeWithSim, similarly to InitTree, constructs a VST on the data set D1, by
simultaneously pushing the LCS similarity constraint. As FAVST, Marguerite-Sim is
written as if one must specify the minimum and maximum frequency constraints for
each string data set Di. If this is not a case then the minimum frequency constraints
MinFrv,Sφ (minFri,Di) can be eliminated by setting the threshold minFri value equal

to 0. Similarly, the maximum frequency constraints MaxFrv,Sφ (maxFri,Di) can be
eliminated by setting the threshold maxFri value equal to ∞. Notice, however, that
due to the reused FAVST architecture, the minimum frequency constraint with the
threshold minFr value 1 is always implicitly enforced, since only the patterns that
occur at least once in the (first) string data set D1 are considered (by putting them
into the VST). Also remark, that a maximal length constraint is no longer required,
since the length of the solution patterns is implicitly restricted by the LCS similarity
constraint.

As in FAVST, the evaluation of the other syntactic constraints (see Section 2.2.1.2
in Page 35) does not require a data set scanning, and can be performed efficiently
by a simple tree traversal and adequate labelling. The evaluation of the other data-
dependent constraints (see Section 2.2.1.1 in Page 34) would require some constraint-
specific modifications. Also, as FAVST, Marguerite-Sim is a single-scan algorithm.

Algorithm 7 Marguerite-Sim
Require: Data sets D1, . . . ,Dn, alphabet Σφ, thresholds minFr1, . . . ,minFrn,
maxFr1, . . . ,maxFrn, maxLen, minLCS, maxDels

Ensure: VST containing the solution patterns (labelled with ⊕) to the constraint A ∧M
VST ← InitTreeWithSim(D1, Σφ, minFr1, maxFr1, minLCS, maxDels)
Prune the VST branches that contain only the nodes labelled with 	
for i = 2 to n do

CountAndUnmark(R, Di, Σφ, minFri, maxFri)
Prune the VST branches that contain only the nodes labelled with 	

end for

InitTreeWithSim Based on Algorithm 2 InitTree, presented in Page 54, we de-
signed the algorithm InitTreeWithSim, given in Algorithm 8, that exploits the LCS
similarity constraint when constructing a VST. The anti-monotonic sub-constraint
MaxDelsφ(σ,maxDels) is pushed during the VST grow-up phase. It is handled sim-
ilarly to the MaxLengthφ(maxLen) constraint in the InitTree algorithm. Minor
algorithmic changes comes to the fact that, if the current node represents a pattern
φ = ξ1ξ2 . . . ξn, satisfying a constraint MaxDelsφ(σ,maxDels), and if a pattern’s φ
extension φ̃ = ξ1ξ2 . . . ξnξn+1 does not satisfy that constraint, its immediate suffix
ξ2 . . . ξnξn+1 does not necessarily satisfy MaxDelsφ(σ,maxDels) (though any prefix of
φ̃ does). The monotonic MinLCSφ(σ,minLCS) is pushed during the VST unlabelling
phase, by the Algorithm 9 UnlabelVSTForSimAndFr, presented in Page 97.

96 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

Algorithm 8 InitTreeWithSim
Require: Data set D, alphabet Σφ, ref. string σ, thresholds minFr, maxFr, minLCS,
maxDels

Ensure: VST in which the patterns φ satisfying LCSSimφ(σ,minLCS,maxDels) ∧
MinFrv,Sφ (minFr,D) are labelled with ⊕
Create VST with the root node R
R.suffix ← >, R.label ← ⊕, R.count ← 0, R.last-id ← undefined
for all string S ∈ D1 with unique id ID do
N ← R
for all symbol ξi ∈ S do

if ξi ∈ Σφ then {ξi is an interesting symbol}
{check for the MaxLengthφ and if LCSSimφ can be satisfied}
if (depth of N ≥ maxLen) ∨ (depth of N ≥ |σ|+maxDels) then
N ← N .suffix

end if
if N has a child with edge ξi then
c← N .child with edge ξi

else {check if φ = concat(string(N),ξi) would satisfy MaxDelsφ}
cand← concat(string(N),ξi)
lcs← computeLCS(cand,σ)
dels← |cand| − lcs
z ← N
childFound← false
while (dels > maxDels) ∧ (z 6= R) do {search for other parent for ξi }
z ← z.suffix
if z has a child with edge ξi then
c← z child with edge ξi
childFound← true
break

end if
cand← concat(string(z),ξi)
lcs← computeLCS(cand,σ)
dels← |cand| − lcs

end while
if (childFound = false) ∧ (z 6= >) then
N ← z
c← CreateChild(N,ξi) {Algorithm 3 CreateChild is given in p. 54}
c.edge← ξi {set edge of a new child node}
c.lcs← lcs
Add c to N children

end if
end if
IncreaseFrequency(c, ID) {Algorithm 4 IncreaseFrequency is given in p. 55}
N ← c {current node gets one level deeper}

else {ξi is an uninteresting symbol}
N ← R {break input string, continue from the root}

end if
end for

end for
UnlabelVSTForSimAndFr(R, minLCS, minFr, maxFr)

5.2. SIMILARITY CONSTRAINT 97

UnlabelVSTForSimAndFr Algorithm 9 UnlabelVSTForSimAndFr push the mono-
tonic similarity sub-constraint MinLCSφ(σ,minLCS) by unlabelling the nodes, such
that string(N) does not satisfy minLCS, with 	. In addition to this, as its counterpart
Algorithm 5 UnlabelVSTForFr, given in Page 55, UnlabelVSTForSimAndFr unlabels
the corresponding VST nodes with 	 to solve the frequency constraints, and prepares
the VST for the subsequent calls to Algorithm 6 CountAndUnmark, given in Page 56.

Algorithm 9 UnlabelVSTForSimAndFr
Require: VST root node R, minLCS, minFr, maxFr
Ensure: Nodes N , such that string(N) does not satisfy MinLCSφ(σ,minLCS) ∧

MinFrv,Sφ (minFr,D), are labelled with 	
for all N in VST do {traverse the VST and unlabel}

if (N .lcs < minLCS) ∨ (N .count < minFr) ∨ (N .count > maxFr) then
N .label ← 	

end if
{reset VST for CountAndUnmark traversal}
N .count ← 0
N .lcs ← 0
N .last-id ← undefined

end for

5.2.3 Experimental Validation

To provide an experimental validation of the defined LCS similarity constraint, we ex-
tracted the patterns satisfying the inductive query LCSSimφ(σ,minLCS,maxDels)∧
MinFrv,Sφ (1,D) in the sets of human promoter sequences3. For the inductive query
evaluation we implemented the solver Marguerite-Sim, presented in the previous sec-
tion, in C programming language. We ran the experiments on a Pentium(R) 4CPU
3.00GHz processor and 1GB main memory.

5.2.3.1 Added Value of Pushing the LCS Similarity Constraint

The interest of the LCS similarity constraint, expressed as a conjunction of anti-
monotonic and monotonic sub-constraints, is that it is possible to push it deeply into
the extraction phase. The objective of this section is to assess the added value of
that possibility to push a similarity constraint and thus to prune the search space ef-
ficiently w.r.t. the approach, where a similarity constraint is not pushed, but instead
computed by post-processing a set of patterns, calculated beforehand. For the exper-

3Available from UCSC Genome Browser website on
http://hgdownload.cse.ucsc.edu/goldenPath/hg17/bigZips/

98 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

iments we used the string data set, composed of the upstream promoter sequences of
the human genome (20647 sequences of length 5000, 101MB).

To assess the approach of constraint pushing, we extracted the patterns that sat-
isfy the LCS similarity constraint LCSSimφ(σ,minLCS,maxDels) with the reference
string σ of different lengths and with more or less selective parameters minLCS and
maxDels4. We started with a reasonable length of the reference string σ, equal to
6, and augmented that length until the extraction became unfeasible. We did not
investigate the entire space of the parameters minLCS and maxDels values, because
of the following semantic issues:

• A similarity constraint is intended to enforce enough similarity, a large param-
eter minLCS and the small parameter maxDels values in the LCS similarity
constraint LCSSimφ(σ,minLCS,maxDels) do not imply a similarity anymore;

• The parametersminLCS andmaxDels are related (see Definition 5.2 in Page 93).
Enforcing DelsLCS(φ, σ) ≤ maxDels also means that at least (|φ|−maxDels)
symbols of φ constitute the LCS(φ, σ). Thus, the value of the parameter
maxDels specifies a lower bound for the length of LCS(φ, σ), which can be
raised by a larger minLCS parameter value in the MinLCSφ(σ,minLCS) sub-
constraint.

• The meaning of “large” and “small” parameter value is dependent on the ref-
erence string length |σ|.

Concerning the post-processing approach, we focus on the cost to extract the set
of patterns, which then can be filtered to solve the LCS similarity constraint. We do
not take into account the cost of filtering, since it is negligible compared with the cost
of the pattern extraction. Given that the constraint LCSSimφ(σ,minLCS,maxDels)
implies |φ| ≤ |σ| + maxDels (see Remark 5.1 in Page 94), to evaluate a post-
processing approach we focus on the extraction of patterns that satisfy the constraint
MaxLengthφ(|σ|+maxDels).

To evaluate the added value of the pruning by the LCS similarity constraint, we
focus on the phase of the VST5 construction, since it is the most expensive and crucial
for the solver FAVST (and thus, also for the solver Marguerite-Sim): once a VST is
available, it can always be further pruned using any (anti)-monotonic constraint by
a simple tree traversal. The memory and time consumption scalability studies of
both, constraint pushing and constraint post-processing, approaches are presented,
correspondingly, in the Table 5.1 and Table 5.2. The first four columns in these

4The smaller the parameter minLCS and the larger the parameter maxDels, the less selective
is the LCS similarity constraint.

5Version Space Tree (VST) is a data structure used by FAVST and Marguerite. For more details
on VST, see Section 3.2.1 in Page 46.

5.2. SIMILARITY CONSTRAINT 99

Table 5.1: Scalability of Memory Consumption

LCSSimφ |σ| minLCS maxDels Number of nodes in VST maxLen
Pushing Post-proc.

LCSSimφ LCSSimφ

LCSSim1
φ 6 4 1 527 21 844 7

LCSSim2
φ 7 5 1 642 87 380 8

LCSSim3
φ 7 5 2 5 280 349 524 9

LCSSim4
φ 10 8 1 5 836 5 386 756 11

LCSSim5
φ 10 8 2 54 524 18 143 975 12

LCSSim6
φ 10 8 3 406 623 not feasible 13

LCSSim7
φ 15 13 1 106 455 not feasible 16

LCSSim8
φ 15 12 2 1 024 215 not feasible 17

LCSSim9
φ 20 18 1 1 861 901 not feasible 21

LCSSim10
φ 25 23 1 1 027 140 not feasible 26

LCSSim11
φ 30 28 1 not feasible not feasible 31

tables give the parameter values for the constraint LCSSimφ(σ,minLCS,maxDels).
The fifth column ”Pushing LCSSimφ“ gives the results, when the corresponding LCS
similarity constraint is pushed6. The seventh column ”maxLen“ gives the threshold
of the MaxLengthφ(maxLen = |σ| + maxDels) constraint, used for post-processing.
The sixth column ”Post-proc. LCSSimφ“ gives the results, when the corresponding
LCS similarity constraint is post-processed.

The experimental results on memory consumption, presented in Table 5.1, reveal
that the power of the anti-monotonic LCS similarity sub-constraint MaxDelsφ(σ,maxDels)
is promising. The approach of pushing the constraint LCSSimφ(σ,minLCS,maxDels)
scales much better on the size of the VST, when |σ| and maxDels increase. Moreover,
it enables to go far away beyond the limits of the post-processing approach. Starting
from the LCSSim6

φ, a VST construction, while pushing only MaxLengthφ(maxLen), is
no longer possible since the memory consumption memory exceeds 1GB, whereas ex-
ploiting MaxDelsφ(σ,maxDels) reduces a size of VST to 406623 nodes, what requires
approximately 20MB of memory.

The VST construction, when pushing the LCS similarity constraint, takes more
time than the post-processing approach, because of the LCS computation (see Ta-

6We remind, that when pushing the LCSSimφ(σ,minLCS,maxDels) constraint, it is the anti-
monotonic sub-constraint MaxDelsφ(σ,maxDels), that is exploited to prune the nodes during VST
construction. The monotonic sub-constraint MinLCSφ(σ,minLCS) is employed once the VST is
constructed in order to get every pattern φ, satisfying LCSSimφ(σ,minLCS,maxDels). Therefore,
in the concrete, this study concerns the pruning by MaxDelsφ(σ,maxDels) capacity.

100 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

Table 5.2: Scalability of Time Consumption

LCSSimφ |σ| minLCS maxDels Time maxLen
Pushing Post-proc.

LCSSimφ LCSSimφ

LCSSim1
φ 6 4 1 1min 40s 23s 7

LCSSim2
φ 7 5 1 1min 49s 53s 8

LCSSim3
φ 7 5 2 2min 17s 1min 17s 9

LCSSim4
φ 10 8 1 2min 50s 1min 59s 11

LCSSim5
φ 10 8 2 3min 42s 2min 36s 12

LCSSim6
φ 10 8 3 4min 47s not feasible 13

LCSSim7
φ 15 13 1 5min 07s not feasible 16

LCSSim8
φ 15 12 2 6min 48s not feasible 17

LCSSim9
φ 20 18 1 8min 16s not feasible 21

LCSSim10
φ 25 23 1 12min 55s not feasible 26

LCSSim11
φ 30 28 1 not feasible not feasible 31

ble 5.2). To compute the LCS, we have implemented a classical dynamic program-
ming approach of time complexity O(nm) [Hir75]. There is a room for improvements
on such a computation (see, e.g., [Apo97] for a survey). Nevertheless, the time cost of
pushing the constraint LCSSimφ(σ,minLCS,maxDels) is acceptable, since it enables
to perform extractions that would not have been possible otherwise.

Even if we consider only several points in the space of the parameters of the
LCSSimφ(σ,minLCS,maxDels) constraint, the behaviour for other parameter sets
can be induced from the presented results: large |σ| and small minLCS parameter
values would result in a huge (unless pattern length is limited by a rather small
maxDels) set of solutions (and thus significant memory and time consumption),
since almost every pattern becomes similar to a reference string σ, especially when
the alphabet is small.

5.2.3.2 Selectivity of the LCS Similarity Constraint

The constraint LCSSimφ(σ,minLCS,maxDels) intrinsically specifies the lower and
the upper bounds of the length of the pattern satisfying it (see Remark 5.1 in Page 94).
We thus investigate the selectivity of the LCS similarity constraint by comparing it
with the selectivity of the constraint on the pattern length MinLengthφ(minLCS) ∧
MaxLengthφ(|σ|+maxDels).

As in the previous section, for the experiments we used 20647 upstream promoter

5.2. SIMILARITY CONSTRAINT 101

Table 5.3: Selectivity of the LCS Similarity Constraint

LCSSimφ Number of patterns
satisfying the constraint

LCSSimφ MinLengthφ(minLCS)∧
MaxLengthφ(|σ|+maxDels)

LCSSim3
φ 3 196 349 184

LCSSim4
φ 1 132 5 364 912

LCSSim5
φ 15 965 18 122 131

sequences of length 5000. The results are presented in Table 5.3. The first column
represents the constraint LCSSimφ(σ,minLCS,maxDels) (it is explicitly given in the
first four columns of Table 5.1 or Table 5.2). The second column gives the number
of patterns that satisfy the corresponding LCS similarity constraint. The third col-
umn gives the number of patterns that satisfy the length constraint, derived from
the corresponding LCS similarity constraint. The results reveal that the constraint
LCSSimφ(σ,minLCS,maxDels) is quite selective, and much more powerful than the
length constraint it induces. Observe that the selectivity of the LCS similarity con-
straint is not linearly related to its pruning capacity, i.e., a larger solution set can
be stored in a smaller VST (compare the column ”Number of patterns satisfying the
constraint LCSSimφ“ in Table 5.3 and the column ”Pushing LCSSimφ“ in Table 5.1
for the constraints LCSSim3

φ and LCSSim4
φ). The reason is that the large values of |σ|

and the parameter maxDels can require many nodes to represent a quite restricted
solution set (keep in mind the combinatorial issues, the number and the length of
branches in a VST).

5.2.3.3 Empirical Validation

We have defined a similarity constraint as the conjunction of two sub-constraints that
enables efficient pruning, and, what is equally important, can be arbitrary combined
with other (anti-)monotonic constraints and solved by the generic solver Marguerite.
Such a definition is, however, only valuable if it captures a useful and intuitive simi-
larity measure. To verify this empirically, we assume that after having perturbed data
by some noise, a pertinent similarity constraint should enable to find the perturbed
regularities that held in the data initially.

For the experiments we used the promoter sequences of chromosomes X and Y
(1004 sequences of 1000 nucleotides). To obtain noised set of sequences, we perturbed
that data by a noise. Introducing z% of noise means that each symbol undergoes
an error event with a probability z/100. In case of the error event, we assume that

102 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

the deletion of a symbol, its substitution by a different one, or an insertion of a
supplementary symbol are equally possible. Also, in the case of an insertion or a
substitution, any other symbol7 has an equal probability to be chosen.

In the constraint LCSSimφ(σ,minLCS,maxDels) we used a 10-length string of
reference σ, which is present on 25 data sequences, once on each of them. Then,
we introduced a 5% noise on the promoter sequences. In the noised sequences, the
reference string σ occurs exactly on the 15 same sequences, as in the initial promoter
sequences, and on 1 sequence, where it is not present in the initial data8. Among
the string patterns that satisfy the LCSSimφ(σ, 9, 1) constraint in the noised data,
there are all 25 (15 exact and 10 approximate) occurrences of σ, which were present
(possibly shifted) in the initial data, and 57 other string patterns. It is encouraging
that LCSSimφ constraint enables to recover all occurrences. Yet, the number of false
positives is quite large. Notice however, that the problem of discriminating between

• pattern that are perturbed occurrences of the reference pattern,

• patterns that are perturbed or not perturbed occurrences of those that were
similar to a reference string in the original data, and

• patterns that have become similar to the reference pattern due to the noise,

is different from our current goal, i.e., designing a constraint that captures a similarity.

5.3 Soft-Frequency Constraint

In this section we present our contribution on handling the soft-frequency constraint
by exploiting the assiociated (anti-)monotonicity properties, published in [MB07].

With several exceptions9, the fault-tolerant pattern extraction task from string
data, in constraint-based data mining terms, can be formulated as the task of ex-
tracting all the patterns φ that satisfy a minimum soft-frequency constraint, i.e., a
minimum frequency constraint when the associated match function evaluates true for
a set of objects, similar to the pattern φ (see Section 4.3 in Page 68).

The evaluation of the minimum soft-frequency constraint MinSoftFrφ(minFr,D)
or the maximum soft-frequency constraint MaxSoftFrφ(maxFr,D) requires to com-
pute a soft-frequency SoftFr(φ,D) of a pattern φ. For this, one needs to find all

7I.e., not equal to the one that is concerned by an error event.
8The reference string is considered to occur exactly in the noised data, if it is present on the same

sequence as in the initial data, allowing a small shift in its position of occurrence (because of the
random insertions and deletions produced by noise).

9See, e.g., [SVC95], presented in Section 4.3.2

5.3. SOFT-FREQUENCY CONSTRAINT 103

objects X in data D that are similar to φ, i.e., to evaluate the constraint SimX(φ) ∧
MinFrX(1,D). As explained in Research Context in Page 90, a similarity constraint
SimX(φ) can not have the (anti-)monotonicity properties. The step of computing the
soft-frequency SoftFr(φ,D) for each pattern φ is thus a non-trivial extraction task,
where the efficient (anti-)monotonicity-based pruning strategies can not be applied.
In addition to this, the minimum soft-frequency constraint MinSoftFrφ(minFr,D)
(resp. maximum soft-frequency constraint MaxSoftFrφ(maxFr,D)) is not guaran-
teed to be anti-monotonic (resp. monotonic), since there is no guaranteed stable
relation between the string pattern φ substrings and superstrings and the cardinality
of the sets of their soft-occurrences (and thus the satisfaction of the soft-frequency
constraint).

The LCS similarity constraint, introduced in Section 5.2.1, is expressed by the
conjunction of two subconstraints that have the appealing monotonicity and anti-
monotonicity properties. Therefore, differently from the other similarity constraints,
the LCS similarity constraint take advantage of these properties and thus can be
solved efficiently by the generic solver Marguerite-SoftFr. Hence, we propose to
use this similarity constraint to find the soft-occurrences of a pattern φ, necessary to
evaluate its soft-frequency.

The LCS similarity constraint LCSSimX(φ,minLCS,maxDels) is parametrized
by minLCS, which is the minimum required length of LCS(X,φ), and by maxDels,
which is the maximum allowed number of deletionsDelsLCS(X,φ) (see Definition 5.2
in Page 93). Note, that the value of minLCS threshold, enforcing a minimal number
of matches, is directly dependent on the pattern length |φ| (whereas the value of
maxDels threshold is dependent on the |LCS(X,φ)|). When using the LCS simi-
larity constraint to find the soft-occurrences of a pattern φ in order to evaluate the
soft-frequency constraints, the lengths of the putatively interesting patterns φ are var-
ious. Therefore, the threshold minLCS in the sub-constraint MinLCSφ(σ,minLCS)
can not be fixed. Thus, we will reformulate the subconstraint MinLCSφ(σ,minLCS)
so that the threshold of the new constraint will dependent on the |LCS(X,φ)|, instead
of the length of φ.

Interestingly, when the match function uses the newly defined similarity relation
to acknowledge a substring σ as a soft-occurrences of a pattern φ, the associated
soft-frequency constraints are guaranteed to be (anti-)monotonic (see Theorem 5.4
in Page 106). These properties are proved for the match function that matches a
pattern φ against a string object S, but take notice that they are also valid when a
pattern φ is matched against a substring object s.

104 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

5.3.1 InsDels Similarity Relation

The LCS similarity constraint MinLCSφ(σ,minLCS), enforcing a large enough LCS
between the strings σ and φ, can be reformulated so that it is no longer directly
dependent on the pattern length |φ|. It is expressed in terms of insertions and is
called a maximum insertions constraint.

Definition 5.5 (Maximum Insertions Constraint) Let LΣ be a string pattern
language, φ be a pattern from LΣ, σ be a reference string, and maxIns ∈ N be a
threshold. Let fix any LCS(φ, σ), and denote the symbols of σ that do not belong
to this LCS as ins. The number of ins, denoted InsLCS(φ, σ), is equal to |σ| −
|LCS(φ, σ)|. Define a maximum insertions constraint, denoted MaxInsφ(σ,maxIns),
to evaluate true, if and only if InsLCS(φ, σ) ≤ maxIns.

Remark 5.2 Notice, that σ can be produced from φ by inserting into φ the symbols
ins and deleting from φ the symbols dels (see Definition 5.2 in Page 93).

Theorem 5.3 Maximum insertions constraint MaxInsφ(σ,maxIns) is monotonic.

Proof 5.4 (Theorem 5.3) Consider the substring patterns φ and φ′, such that φ′ v
φ. Then, LCS(φ′, σ) ≤ LCS(φ, σ) (Lemma 5.1, proved in Page 92), so InsLCS(φ′, σ) ≤
InsLCS(φ, σ). Consequently, if InsLCS(φ′, σ) ≤ maxIns, then InsLCS(φ, σ) ≤
maxIns.

Example 5.5 Consider a reference string σ = tctggga over the alphabet Σ = {a, c, g, t}.
The string patterns φ1 = gcggga and φ2 = ctggaga satisfy MaxInsφ(σ, 2) constraint,
since InsLCS(φ1, σ) = |σ| − |cggga| = 2 and InsLCS(φ2, σ) = |σ| − |ctggga| = 1.
Note, that a string pattern φ3 = attagtgttttgggg also satisfies the MaxInsφ(σ, 2) con-
straint, since InsLCS(φ3, σ) = |σ| − |ttggg| = 2.

This example illustrates that the maximum insertions constraint MaxInsφ(σ,maxIns),
as the minimum LCS constraint MinLCSφ(σ,minLCS), enables to specify the mini-
mum number of matching symbols, but, as we can see in the case of string pattern φ3,
it does not restrict the number of non-matching symbols, and thus is not sufficient
to enforce a similarity. To bound the number of “errors”, i.e., mismatches we will
use the maximum deletions constraint MaxDelsφ(σ,maxDels) (see Definition 5.2 in
Page 93).

Definition 5.6 (InsDels Similarity Relation) Let σ1, σ2 be two strings over a
given alphabet Σ, and maxIns,maxDels ∈ N be two thresholds. The strings σ1 and

5.3. SOFT-FREQUENCY CONSTRAINT 105

σ2 are in the insertions-deletions (InsDels) similarity relation, denoted
simInsDels(σ1, σ2,maxIns,maxDels), if and only if MaxInsφ(σ,maxIns)∧
MaxDelsσ1(σ2,maxDels) = true.

Based on the InsDels similarity relation, we can define the InsDels similarity
constraint.

Definition 5.7 (InsDels Similarity Constraint) Let LΣ be a string pattern lan-
guage, φ be a pattern from LΣ, σ be a reference string, and maxIns,maxDels ∈ N
be two thresholds. Define an InsDels similarity constraint, denoted
InsDelsSimφ(σ,maxIns,maxDels) to evaluate true, if and only if a pattern φ and a
reference string σ are in the insertions-deletions similarity relation
simInsDels(φ, σ,maxIns,maxDels).

5.3.2 Soft-matching through InsDels Similarity Relation

We use the InsDels similarity relation, which is a conjunction of the monotonic and
anti-monotonic subconstraints, and thus can be evaluated efficiently, to find the soft-
occurrences of a string pattern φ, i.e., the objects X that softly match the pattern
φ.

Definition 5.8 (InsDels Match Function) Let UΣ be a universe of strings over
an alphabet Σ, S be a string object from UΣ, and maxIns,maxDels ∈ N be the
thresholds. Let φ be a pattern from a string pattern language LΣ. Define an InsDels
match function matchInsDels(φ, S,maxIns,maxDels) to evaluate true, if and only if
there exists a string σ such that σ v S and simInsDels(φ, σ,maxIns,maxDels) =
true.

Definition 5.9 (InsDels Soft-Frequency) The frequency constraint Fr(φ,D) that
is evaluated using the InsDels match function matchInsDels(φ, S,maxIns,maxDels),
is called an InsDels soft-frequency and is denoted SoftFrInsDels,S(φ,D,maxIns,maxDels).

Definition 5.10 (InsDels Soft-Frequency Constraints) Minimum frequency con-
straint MinFrφ(minFr,D) that uses the InsDels match function is called a minimum
InsDels soft-frequency constraint and is denoted
MinSoftFrInsDels,Sφ (minFr,D,maxIns,maxDels). Maximum frequency constraint
MaxFrφ(maxFr,D) that uses the InsDels match function is called a maximum InsDels
soft-frequency constraint and is denoted
MaxSoftFrInsDels,Sφ (maxFr,D,maxIns,maxDels).

106 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

Example 5.6 Let Σ be the alphabet {a, c, g, t}, LΣ be a string pattern language on
Σ and D = {acg, act, gt, t, gt} be a string data set. There are five string objects in D:
S1 = acg, S2 = act, S3 = gt, S4 = t and S5 = gt. SoftFrInsDels,S(acg,D, 1, 1) is equal
to 2, since there are two string objects (S1 and S2) that contain pattern’s acg soft-
occurrences (cg, act, acg, ac). SoftFrInsDels,S(gt,D, 1, 1) is equal to 5, since there are
five string objects (S1, S2, S3, S4 and S5) that contain the pattern’s gt soft-occurrences
(t, gt, g, ct,cg). MinSoftFrInsDels,Sgt (4,D, 1, 1) and MaxSoftFrInsDels,Sacg (2,D, 1, 1) are
examples of satisfied soft-frequency constraints.

The use of the InsDels match function to find the soft-occurrences of a pattern
φ enables not only to efficiently compute the pattern’s φ soft-frequency, but also,
what is equally important, it guarantees the anti-monotonicity (resp. monotonicity)
properties for the minimum (resp. maximum) soft-frequency constraints.

Theorem 5.4 The minimum InsDels soft-frequency constraint
MinSoftFrInsDels,Sφ (minFr,D,maxIns,maxDels) is anti-monotonic (dually, the max-
imum InsDels soft-frequency constraint
MaxSoftFrInsDels,Sφ (maxFr,D,maxIns,maxDels) is monotonic),
if maxDels ≥ maxIns.

Remark 5.3 The InsDels similarity relation between φ and its soft-occurrence σ,
induced by the match function matchInsDels(φ, S,maxIns,maxDels), is symmet-
ric10, if and only if maxIns = maxDels.

Remark 5.4 In most application domains, it makes sense to use a similarity relation
that is symmetric. When the InsDels similarity relation
simInsDels(φ, σ,maxIns,maxDels) is symmetric (i.e., maxIns = maxDels), the
associated InsDels soft-frequency constraints have the desired (anti-)monotonicity
properties.

Proof 5.5 (Theorem 5.4) The minimum InsDels soft-frequency constraint
MinSoftFrInsDels,Sφ (minFr,D,maxIns,maxDels) is anti-monotonic, if given a string
σ that is a soft-occurrence of a string pattern φ, i.e., such that
simInsDels(φ, σ,maxIns,maxDels) = true, for every pattern φ′ v φ, there exists a
string σ′ v σ, such that it is a soft-occurrence of the pattern φ′, i.e.,
simInsDels(φ′, σ′,maxIns,maxDels) = true. Let take any LCS(φ, σ) and label the
corresponding φ and σ symbols as ins and dels (see Definition 5.5 in Page 104 and
Definition 5.2 in Page 93). Let fix any pattern’s φ = φ1 . . . φn substring φ′ = φk . . . φl.
Note, that the pattern φ′ = φk . . . φl contains at most maxIns insertions ins. There
are four possible cases:

10I.e., if φ is similar to σ, then σ is similar to φ.

5.3. SOFT-FREQUENCY CONSTRAINT 107

1. The symbols φk and φl belong to the LCS(φ, σ), and thus they were not labelled
as ins. Now, fix string’s σ = σ1 . . . σm substring σ′ = σh . . . σj, so that σh

is paired with φk and σj is paired with φl in the LCS(φ, σ). The pattern’s
φ substring φ′ = φk . . . φl contains at most maxIns symbols labelled as ins,
and the string’s σ substring σ′ = σh . . . σj contains at most maxDels symbols
labelled as dels. Notice, that by computing the LCS(φ′, σ′) and relabelling φ′

and σ′ symbols as ins and dels, we can only increase the |LCS(φ′, σ′)|, and
thus decrease the actual number of ins and dels. Therefore, σ′ and φ′ are
necessarily in the relation simInsDels(φ′, σ′,maxIns,maxDels), what means
that the string σ′ is pattern’s φ′ soft-occurrence.

2. The pattern φ′ = φk . . . φl contains only symbols that were labelled as ins.
Note, that |φk . . . φl| ≤ maxIns. Fix any string’s σ = σ1 . . . σm substring
σ′ = σh . . . σj, such that |σ′| = |φ′|. Compute the LCS(φ′, σ′). In the worst
case, when |LCS(φ′, σ′)| = 0, the pattern φ′ contains |φ′| symbols labelled
ins and the string σ′ contains |σ′| = |φ′| symbols labelled dels. Given that
|φk . . . φl| ≤ maxIns and that maxDels ≥ maxIns, σ′ and φ′ are in the re-
lation simInsDels(φ′, σ′,maxIns,maxDels), what means that the string σ′ is a
pattern’s φ′ soft-occurrence.

3. The symbol φk was labelled as ins, and the symbol φl was not labelled as ins,
i.e., φl belongs to the LCS(φ, σ). Fix the first symbol φw that is not labelled
as ins, so that k < w ≤ l. Now fix the string’s σ = σ1 . . . σm substring
σ′ = σh . . . σj, such that in the LCS(φ, σ) σh is paired with φw and σj is paired
with φl. Recall that the pattern φ′ = φk . . . φl contains at most maxIns symbols
that were labelled as ins and that the symbols of φk . . . φw−1 were labelled as ins,
and apply Case 1 for φw . . . φk and σh . . . σj to prove that the number of symbols
labelled as dels in σh . . . σj is at most maxDels. By computing the LCS(φ′, σ′)
and relabelling φ′ and σ′ symbols as ins and dels, we can only increase the
|LCS(φ′, σ′)|, and thus decrease the actual number of ins and dels. Therefore,
σ′ and φ′ are necessarily in the relation simInsDels(φ′, σ′,maxIns,maxDels),
what means that the string σ′ is pattern’s φ′ soft-occurrence.

4. The symbol φk was not labelled as ins, i.e., φk belongs to the LCS(φ, σ), and
the symbol φl was labelled as ins. This case is analogous to Case 3.

Example 5.7 (Counter-example) This example shows that minimum InsDels

soft-frequency constraint MinSoftFrInsDels,Sφ (minFr,D,maxIns,maxDels) is not anti-
monotonic, when maxDels < maxIns.
Let Σ be the alphabet {a, c, g, t}, LΣ be a string pattern language on Σ and D =
{aagc, gc, gc} be a string data set. The MinSoftFrInsDels,Sφ (2,D, 2, 1) constraint (i.e.,
with fault-tolerant matching parameters maxIns = 2 and maxDels = 1) is sat-
isfied for the pattern φ = aagc, but not satisfied for its substring φ′ = aa, since
SoftFrInsDels,S(aagc,D, 2, 1) = 3 and SoftFrInsDels,S(aa,D, 2, 1) = 1.

108 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

5.3.3 Marguerite-SoftFr Generic Solver

The Marguerite-SoftFr generic solver is designed to answer an inductive query
that is a conjunction of anti-monotonic and monotonic minimum and maximum
InsDels soft-frequency constraints11 (see Definition 5.10 in Page 105) with other
(anti-)monotonic on an arbitrary number of string data setsDi. Marguerite-SoftFr12

was built on the FAVST generic solver [DD04], presented in Section 3.2.2.2 in Page 51.

To ease the comprehension, we made an effort to keep the structure of Marguerite-SoftFr
as close as possible to the structure of FAVST (see Algorithm 1 in Page 51). As
FAVST, to simplify the pseudo-code, the Marguerite-SoftFr is written as if one
must specify the minimum and maximum InsDels soft-frequency constraints for
each string data set Di. This is not a case, and a minimum soft-frequency constraint
MinSoftFrInsDels,Sφ (minFri,Di,maxInsi,maxDelsi) can be eliminated by setting the
threshold minFri value equal to 0. Similarly, a maximum frequency constraint
MaxSoftFrInsDels,Sφ (maxFri,Di,maxInsi,maxDelsi) can be eliminated by setting
the threshold maxFri value equal to ∞. Concerning other constraints, the eval-
uation of the syntactic constraints (see Section 2.2.1.2 in Page 35) do not require a
data set scanning, and can be performed efficiently by a simple tree traversal and
adequate labelling. The evaluation of other data-dependent (see Section 2.2.1.1 in
Page 34) constraints would require some constraint-specific modifications.

Algorithm 10 Marguerite-SoftFr
Require: Data sets D1, . . . ,Dn, alphabet Σφ, thresholds minFr1, . . . ,minFrn,
maxFr1, . . . ,maxFrn, maxDels1, . . . ,maxDelsn, maxIns1, . . . ,maxInsn, maxLen

Ensure: VST containing the solution patterns (labelled with ⊕) to the constraint A ∧M
VST ← InitTreeForSoft(D1, Σφ, minFr1, maxFr1, maxDels1, maxIns1, maxLen +
maxDels1)
Prune the VST branches that contain only the nodes labelled with 	
for i = 2 to n do

CountAndUnmarkForSoftFr(R, Di, Σφ, minFri, maxFri, maxDelsi, maxInsi,
maxLen + maxDelsi)
Prune the VST branches that contain only the nodes labelled with 	

end for

Marguerite-SoftFr The algorithm 10 Marguerite-SoftFr starts by calling the
InitTreeForSoft sub-algorithm to construct an initial VST. InitTreeForSoft han-
dles the InsDels soft-frequency during the scan of theD1. Note that, InitTreeForSoft
algorithm, differently from its counterpart Algorithm 2, given in Page 54, do not
prune by the MaxLengthφ(maxLen) constraint during the phase of VST13 grow-

11I.e., with the parameters maxDels ≥ maxIns (see Theorem 5.4 in Page 106)
12For the etymology of the solver name, see Footnote 2 in Page 94.
13Version Space Tree (VST) is a data structure used by FAVST and Marguerite. For more details

on VST, see Section 3.2.1 in Page 46.

5.3. SOFT-FREQUENCY CONSTRAINT 109

ing. Indeed, in order to evaluate the soft-frequency of string(N), one needs to
keep in a VST all the strings that are putative soft-occurrences of string(N). The
soft-occurrence can be of length at most maxLen (maximum pattern’s length) +
maxDels, and therefore VST stores the strings till that length. The MaxLengthφ(maxLen)
constraint, together with others, is verified in sub-Algorithm 19 UnlabelVSTForSoftFr
(Page 115). Then, to reduce the VST, Marguerite-SoftFr prunes the unnecessary
branches, i.e., the branches that contain only the nodes labelled with 	.

After, the CountAndUnmarkForSoft algorithm is invoked to process the soft-
frequency constraints on the remaining string data sets. Note that, differently from
its counterpart Algorithm 6, given in Page 56, CountAndUnmarkForSoft do grow the
VST. The patterns that satisfy the constraints in the previous data sets can have new
soft-occurrences in the current data set Di, which must be stored in the VST. Again,
the branches containing only the nodes labelled with 	 are pruned after scanning
each Di, in order to reduce the number of patterns that need to be processed in the
subsequent iteration.

As in FAVST, each algorithm of Marguerite-SoftFr, InitTreeForSoftFr and
CountAndUnmarkForSoftFr, scans the corresponding string data set Di only once.
Thus, if the data sets Di are disjoint, the algorithm Marguerite scans the whole
data set D =

⋃n
i=1Di only once, and is a single-scan algorithm.

InitTreeForSoftFr The algorithm InitTreeForSoftFr, given in Algorithm 11,
builds a VST data structure so that one can compute InsDels soft-frequency for
the string patterns it contains. This algorithm is indeed very similar to its coun-
terpart Algorithm 2 InitTree, given in Page 54. The only differences between
InitTreeForSoftFr and InitTree, are that it calls the adapted CreateChildForSoftFr,
IncreaseFrequencyForSoft and UnlabelVSTForSoftFr algorithms, and that the
new Algorithm 14 ComputeSoftFr is invoked to compute the soft-frequency.

CreateChildForSoftFr The algorithm CreateChildForSoftFr, given in Algorithm 12,
like its counterpart Algorithm 3 CreateChild (see Page 54), creates and initializes
a new node. To evaluate the soft-frequencies, we make the following change to the
VST structure: each node N is complemented with a soft-frequency of string(N), a
set of identifiers of data strings, on which string(N) occur, and a soft-frequency label.
The only difference between CreateChildForSoftFr and CreateChild algorithm is
that it initializes these new fields of a VST node.

IncreaseFrequencyForSoftFr The algorithm IncreaseFrequencyForSoftFr, given
in Algorithm 13, as its counterpart Algorithm 4 (see in Page 55) IncreaseFrequency,
increments the frequency count for the string(c), represented by a child node c, and
for all its suffixes (i.e., all its substrings). Thanks to this, as in the FAVST algorithm,

110 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

Algorithm 11 InitTreeForSoftFr
Require: Data set D1, alphabet Σφ, thresholds minFr1, maxFr1, maxIns1, maxDels1,
maxLen

Ensure: VST containing the solution patterns (labelled with ⊕) to the constraint
MinSoftFrInsDels,Sφ (minFr,D,maxIns1,maxDels1)∧
MaxSoftFrInsDels,Sφ (maxFr,D,maxIns1,maxDels1) ∧MaxLengthφ(maxLen)
Create VST with the root node R
R.suffix ← >, R.label ← ⊕, R.count ← 0, R.last-id ← undefined
for all string S ∈ D1 with unique id ID do
N ← R
for all symbol ξi ∈ S do

if ξi ∈ Σφ then {ξi is an interesting symbol}
if depth of N ≥ maxLen then {check for the MaxLengthφ(maxLen) }
N ← N .suffix

end if
if N has a child with edge ξi then
c← N .child with edge ξi

else
c← CreateChildForSoftFr(N,ξi)
c.edge← ξi {set edge of a new child node}
Add c to N children

end if
IncreaseFrequencyForSoftFr(c) {increase frequency}
N ← c {current node gets one level deeper}

else {ξi is an uninteresting symbol}
N ← R {break input string, continue from the root}

end if
end for

end for
ComputeSoftFr(R, R, maxFr1, maxIns1, maxDels1)
UnlabelVSTForSoftFr(R, minFr1, maxFr1, maxLen)

5.3. SOFT-FREQUENCY CONSTRAINT 111

Algorithm 12 CreateChildForSoftFr
Require: Parent node N , edge symbol ξi for the child node
Ensure: The newly created node c with the symbol ξi on its edge

Create node c
c.label← ⊕, c.count← 0, c.edge← undefined, c.last-id← undefined
c.softFr← 0, c.occs← ∅, c.softFrLabel← ⊕
sn← N .suffix
if N is a root node R then
c.suffix← N

else
if sn has a child sc with edge ξi then
c.suffix← sc

else {recursively create the necessary suffix nodes}
sc← CreateChild(sn, ξi)
sc.edge← ξi {set edge of a new child node}
Add sc to sn children
c.suffix← sc

end if
end if

the exact-frequency is counted for every string(N) in a VST. However, the goal of
Marguerite-SoftFr is to compute the InsDels soft-frequency of string(N) and thus
to evaluate the InsDels soft-frequency constraint. We remind that a soft-frequency
of a pattern is the number of data strings, where a pattern and its soft-occurrences
are present. In other words, it is the cardinality of the set, containing the data
strings (or rather their unique identifiers), where a pattern and its soft-occurrences
are present. Such set, named ”occs“, is associated with each N . The algorithm
IncreaseFrequencyForSoftFr fills-in that set with the unique identifiers of data
strings, where the corresponding pattern string(N) occurs exactly. Afterwards, we
will see that Algorithms {16,18} FindSoftOccs-Push{M,A} continues to fill-in that
set with the unique identifiers of data strings, where the pattern string(N) occurs
softly. Then, the soft-frequency of a pattern string(N) is simply the cardinality of its
associated ”occs“ set.

Algorithm 13 IncreaseFrequencyForSoftFr
Require: Node c, ID
Ensure: Frequency for string(c) and all its substrings is increased by 1
x← c
while (x is not a root node R) ∧ (x.last-id 6= ID) do
{if it is not a root suffix and its frequency not increased yet}
x.count← x.count + 1
Add ID to x.occs {remember the string of occurrence}
x.last-id← ID
x← x.suffix {also count all c suffixes}

end while

112 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

ComputeSoftFr The algorithm ComputeSoftFr, given in Algorithm 14, goes down
the VST by visiting each node N . For each node N it invokes Algorithm {16,18}
FindSoftOccs-Push{M,A}. Both algorithms perform the same task: they fill-in the
N .occs set with the identifiers of the data strings where the soft-occurrences of
string(N) occur. They differ in whether the monotonic or anti-monotonic similar-
ity sub-constraint is exploited to prune the search space. Depending on the context,
the first strategy or the second one is more efficient. The automatic and dynamic
choice of a better strategy is an open question from the adaptive constraint push-
ing strategies domain. Once the soft-occurrences of a node N are found, and the set
”occs“ is completed, the soft-frequency of string(N) is given by the cardinality of that
N .occs. The Algorithm 15 ResetVSTForSoftFr clears the flag ”softFrLabel“ used
when searching for the soft-occurrences of the current node N , and thus prepares the
VST for the search for the soft-occurrences of the subsequent node. The phase of find-
ing the soft-occurrences, necessary to compute the soft-frequency, is computationally
expensive. Algorithm ComputeSoftFr exploits the anti-monotonicity property of the
InsDels minimum soft-frequency constraint and stops descending in a VST as soon
it encounters a node N , such that the pattern string(N) does not satisfy the given
MinSoftFr constraint - indeed any super-string of string(N) will not satisfy it neither.

Algorithm 14 ComputeSoftFr
Require: N , VST root node R, thresholds minFr, maxIns, maxDels
Ensure: For each N that can satisfy MinSoftFr, its soft-frequency is computed
{if N is not a root and if string(N) satisfy constraints in the previous data sets}
if (N is not a root node R) ∧ (N .label = ⊕) then
{we will search soft-occurrences for the current pattern string(N) }
FindSoftOccs-Push{M,A}(R, string(N), N , maxDels, maxIns)
N .softFr← cardinality(N .occs)
maxLengthOfSoftOcc ← |string(N)|+maxDels
ResetVSTForSoftFr(R, maxLengthOfSoftOcc)

end if
{if string(N) satisfies MinSoftFr or if N is a root}
if (N .softFr) > minFr ∨ (N is a root node R) then

for all child c of N do
ComputeSoftFr(c,minFr,maxIns,maxDels)

end for
end if

FindSoftOccs-Push{M,A} Both, Algorithm 16 FindSoftOccs-PushM and Algorithm 18
FindSoftOccs-PushA, traverse the VST to find the soft-occurrences of a pattern φ
in question. We remind that a string in a VST string(N) is a soft-occurrence of φ if
and only if the conjunction of the monotonic MaxIns and the anti-monotonic MaxDels
(see Definition 5.6 in Page 104) constraints are evaluated to true. The two algorithms
differ in whether they actively exploit the monotonic constraints (thus MaxIns) or the
anti-monotonic constraints (thus MaxDels).

5.3. SOFT-FREQUENCY CONSTRAINT 113

Algorithm 15 ResetVSTForSoftFr
Require: N , depth
Ensure: VST is reset and thus prepared to find soft-occurrences of the subsequent string(N)

if depth of N > depth then
return {used part of VST is already reset}

end if
N .softFrLabel← ⊕ {reset this VST N }
for all child c of N do

ResetVSTForSoftFr(c, depth)
end for

By ascending the VST, FindSoftOccs-PushM pushes the monotonic MinLength
constraint14, and then the monotonic MaxIns constraint. The reason of verifying first
the MinLength constraint is that it allows to reject the patterns that can not satisfy the
MaxIns constraint15. Note that the evaluation of MinLength is straightforward, while
the evaluation of MaxIns is expensive. If the pattern string(N) does not satisfy the
MinLength or MaxIns constraint, the algorithm FindSoftOccs-PushM stops ascending
the VST, invokes Algorithm 17 UnsetAncestorSoftFrLabel, and thereby prunes
the search space. UnsetAncestorSoftFrLabel marks with labels 	 the N ancestor
nodes, which no longer need to be considered due to the MinLength and MaxIns
motonicity property. Remark, that the algorithm FindSoftOccs-PushM also exploit
the anti-monotonic MaxLength constraint, what assures that one does not descends
in a VST too deep, where the soft-occurrences no longer can be found.

By ascending the VST, FindSoftOccs-PushA pushes the anti-mononotonic MaxLength
constraint, and then the anti-monotonic MaxDels constraint. Similarly to the case of
FindSoftOccs-PushM, it is clever to evaluate first the MaxLength constraint, since the
evaluation of the MaxDels constraint is expensive. The algorithm FindSoftOccs-PushA
stops descending in a VST, and thereby prune the search space, when it encounters
a node N , such that the corresponding pattern string(N), does not satisfy one of the
anti-monotonic MaxLength or MaxDels constraints.

UnlabelVSTForSoftFr Algorithm 19 UnlabelVSTForSoftFr traverses the VST to
mark the nodes N , such that their string(N) do not satisfy the soft-frequency or
maximum length constraints, with labels 	. Also the VST is prepared for the sub-
sequent calls for Algorithm 20 CountAndUnmarkForSoftFr by resetting the data set
specific information stored in the nodes.

14Which is an approximation of the MaxIns constraint.
15If the constraint MinLengthφ(|σ| −maxIns) is not satisfied, the constraint MaxInsφ(σ,maxIns)

can not be satisfied neither.

114 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

Algorithm 16 FindSoftOccs-PushM
Require: N , ref. string σ, ref. node rN , maxDels, maxIns
Ensure: N .occs contain all data string IDs, where string(N) has soft-occurrences

maxLengthOfSoftOcc ← |σ|+maxDels {maximum length of a putative soft-occurrence}
if depth of N > maxLengthOfSoftOcc then

return {string(N) can not be soft-occurrence of σ }
end if
if N has children then

for all child c of N do
FindSoftOccs-PushM(c, σ,rN ,maxDels,maxIns)

end for
end if
{if N is not a root and if monotonic MinLength or MaxIns is not already known to be
unsatisfied, then treat this N }
if (N is not a root node N) ∧ (N .softFrLabel 6=) then

if depth of N < (|σ| −maxIns) then {string(N) can not be soft-occurrence of σ }
UnsetAncestorSoftFrLabel(N) {because of MinLength monotonicity}

else
lcs← computeLCS(string(N), σ)
dels← |string(N)| − lcs
ins← |σ| − lcs
if (dels ≤ maxDels) ∧ (ins ≤ maxIns) then {string(N is soft-occurrence of σ) }

if (dels 6= 0) ∧ (ins 6= 0) then {if it is not an exact occurrence}
rN .occs← rN .occs ∪N .occs {union of occurrences sets}

end if
else if ins > maxIns then

UnsetAncestorSoftFrLabel(N) {because of MaxIns monotonicity}
end if

end if
end if

Algorithm 17 UnsetAncestorSoftFrLabel
Require: N
Ensure: softFrLabel is unset for N and all its ancestor nodes
N .softFrLabel← 	 {unset softFrLabel}
{if N is not R, and if its parent softFrLabel is not already unset}
if (N is not a root node R) ∧ (softFrLabel of Nparent is not) then

UnsetAncestorSoftFrLabel(parent of N)

end if

5.3. SOFT-FREQUENCY CONSTRAINT 115

Algorithm 18 FindSoftOccs-PushA
Require: N , ref. string σ, ref. node rN , maxDels, maxIns
Ensure: N .occs contain all data string IDs, where string(N) has soft-occurrences

maxLengthOfSoftOcc ← |σ|+maxDels {max. length of a putative soft-occurrence}
if depth of N > maxLengthOfSoftOcc then

return {string(N) can not be soft-occurrence of σ }
end if
lcs← computeLCS(string(N), σ)
dels← |string(N)| − lcs
ins← |σ| − lcs
if (dels ≤ maxDels) ∧ (ins ≤ maxIns) then {string(N is soft-occurrence of σ) }

if (dels 6= 0) ∧ (ins 6= 0) then {it is not an exact occurrence}
rN .occs← rN .occs ∪N .occs {union of occurrences sets}

end if
end if
if dels ≤ maxDels then {N satisfied anti-monotonic MaxDels}

for all child c of N do {descend in VST}
FindSoftOccs-PushA(c, σ, rN , maxDels, maxIns)

end for
end if

Algorithm 19 UnlabelVSTForSoftFr
Require: R, minFr, maxFr, maxLen
Ensure: Nodes N , such that string(N) does not satisfy

MinSoftFrInsDels,Sφ (minFr,D,maxIns,maxDels)
∧MaxSoftFrInsDels,Sφ (maxFr,D,maxIns,maxDels) ∧MaxLengthφ(maxLen), are labelled
with 	
for all N in VST do {traverse the VST and unlabel}

if (N .softFr < minFr) ∨ (N .softFr > maxFr) ∨ (depth of N > maxLen) then
N .label ← 	

end if
{reset VST for the subsequent CountAndUnmarkForSoftFr traversal}
N .count ← 0
N .occs ← ∅
N .softFr ← 0
N .last-id ← undefined

end for

116 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

CountAndUnmarkForSoftFr Algorithm 20 CountAndUnmarkForSoftFr as its coun-
terpart Algorithm 6 CountAndUnmark, given in Page 56, takes as input the VST,
constructed beforehand, and for the patterns string(N) that satisfy the constraints
in the previous data set Di−1, evaluates the given constraints in the current data
set Di. Differently from CountAndUnmark, the algorithm CountAndUnmarkForSoftFr
does increase the VST by adding the substrings that are putative soft-occurrences in
Di of the patterns that satisfy the constraints on the data sets processed previously.
Indeed, the algorithm CountAndUnmarkForSoftFr is very similar to Algorithm 11
InitTreeForSoftFr. The only difference is that in CountAndUnmarkForSoftFr the
VST root node R is not created to build a new VST, but instead is given by a
parameter, and thereby the existing VST is grown-up, if needed.

Algorithm 20 CountAndUnmarkForSoftFr
Require: R, data set Di, alphabet Σφ, thresholds minFri, maxFri, maxInsi, maxDelsi,
maxLen

Ensure: VST, in which the patterns φ that are not solutions to the constraint
MinSoftFrInsDels,Sφ (minFri,Di,maxIns,maxDels)
∧MaxSoftFrInsDels,Sφ (maxFri,Di,maxIns,maxDels)
for all string S ∈ D1 with unique id ID do
N ← R
for all symbol ξi ∈ S do

if ξi ∈ Σφ then {ξi is an interesting symbol}
if depth of N ≥ maxLen then {check for the MaxLengthφ(maxLen) }
N ← N .suffix

end if
if N has a child with edge ξi then
c← N .child with edge ξi

else
c← CreateChildForSoftFr(N,ξi)
c.edge← ξi {set edge of a new child node}
Add c to N children

end if
IncreaseFrequencyForSoftFr(c) {increase frequency}
N ← c {current node gets one level deeper}

else {ξi is an uninteresting symbol}
N ← R {break input string, continue from the root}

end if
end for

end for
ComputeSoftFr(R, R, maxFri, maxInsi, maxDelsi)
UnlabelVSTForSoftFr(R, minFri, maxFri, maxLen)

5.3. SOFT-FREQUENCY CONSTRAINT 117

5.3.4 Case of a Differential Extraction

The evaluation of the inductive query that is a conjunction of a minimum (soft-
)frequency constraint on one data set and a maximum (soft-)frequency on the other
data set is known as differential extraction in a positive and negative data sets. Such
query, expressed by the following composition of constraints:
MinSoftFrInsDels,Sφ (minFr1,D1,maxIns1,maxDels1)∧

MaxSoftFrInsDels,Sφ (∞,D1,maxIns1,maxDels1)∧
MinSoftFrInsDels,Sφ (0,D2,maxIns2,maxDels2)∧

MaxSoftFrInsDels,Sφ (maxFr2,D2,maxIns2,maxDels2)∧
MaxLengthφ(maxLen)
can be solved Marguerite-SOftFr generic solver (Algorithm 10, Page 108). Marguerite-SoftFr,
being a generic solver, can not provide the constraint combination specific (i.e., ad-
hoc) optimisations. Given that soft-frequency evaluation is computationally expen-
sive, it is practical to provide such optimisations for frequently used constraint com-
binations.

In this section we will consider the case of differential extraction. Take notice, that
the minimum soft-frequency constraint is not pushed in the negative (second) data
set D2. In Marguerite-SoftFr, the constraints on D2 are handled by Algorithm 20
CountAndUnmarkForSoftFr. The soft-frequency is counted by invoking Algorithm 14
ComputeSoftFr. We remind that the algorithm ComputeSoftFr reduces the number
of nodes, for which soft-frequency is evaluated, by exploiting the anti-monotonic
minimum soft-frequency constraint. However, in the differential extraction, there is
no such constraint on the negative data set D2, and thus, there is no pruning at all.
This results in a serious decrease of the extraction efficiency.

The situation can be considerably alleviated by exploiting the monotonic maxi-
mum soft-frequency constraint. To compute the soft-frequency in a negative data
set D2, we propose to ascend the VST by starting from the nodes that consti-
tute the S set (see Definition 2.18 in Page 42 and discussion in Section 3.2.1 in
Page 48) of the solution to the minimum soft-frequency constraint in the positive
data set D1. Then, due to the maximum-soft frequency monotonicity property, one
stops ascending the VST and evaluating the soft-frequency when the soft-frequency
of the current string(N) exceeds the maxFr2 threshold. The corresponding algo-
rithms ComputeSoftFrFromBorder and ComputeSoftFr-PushM are given in Algo-
rithm 21 and Algorithm 22. Thus, to perform an optimized differential extrac-
tion with Marguerite-SoftFr, the algorithm ComputeSoftFrFromBorder have to
be invoked in Algorithm 20 CountAndUnmarkForSoftFr, instead of Algorithm 14
ComputeSoftFr.

118 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

Algorithm 21 ComputeSoftFrFromBorder
Require: VST root node R, thresholds maxFr, maxDels, maxIns
Ensure: For each N in VST, that can satisfy MaxSoftFr, its soft-frequency is computed

border ← S border of the solution, stored in VST
for all N ∈ border do

ComputeSoftFr-PushM(N , R, parMaxFr, maxDels, maxIns)
end for

Algorithm 22 ComputeSoftFr-PushM
Require: N , VST root node R, thresholds maxFr, maxDels, maxIns
Ensure: For each N , and its ancestors, that can satisfy MaxSoftFr, their soft-frequency is

computed
if N .softFr = 0 then {N soft-frequency is not already computed}

FindSoftOccs-Push{M,A}(R, string(N), N , maxDels, maxIns)
N .softFr← cardinality(N .occs)
maxLengthOfSoftOcc ← |string(N)|+maxDels
ResetVSTForSoftFr(R, maxLengthOfSoftOcc)
if N .softFr ≤ maxFr then {satisfy MaxSoftFr}

if N . is not a root node R then {if N is not already a root}
ComputeSoftFr-PushM(parent of N , R, maxFr, maxDels, maxIns)

end if
end if

end if

5.3.5 Pattern with Hamming Match Function Extraction

Note that the minimum Hamming soft-frequency constraint MinSoftFr
H,{s,S}
φ (minFr,D, k)

(see Definition 4.21 in Page 69) is anti-monotonic, since, given a string σ that is a
Hamming soft-occurrence of a string pattern φ, i.e., such that the Hamming distance
similarity relation simHdist(φ, σ, k) = true, for every pattern φ′ v φ, there exists
a string σ′ v σ, such that it is a Hamming soft-occurrence of the pattern φ′, i.e.,
simHdist(φ′, σ′, k) = true. Dually, the maximum Hamming soft-frequency constraint
MaxSoftFr

H,{s,S}
φ (maxFr,D, k) is monotonic.

We developed an instance of Marguerite-SoftFr algorithmic framework, referred
as Marguerite-H, to solve the Hamming soft-frequency constraints. To find the soft-
occurrences of the pattern φ we have to evaluate the Hamming distance similarity
constraint, where the string of reference is φ. Take notice that the Hamming distance
similarity constraint is neither anti-monotonic, nor monotonic, but the search space
is rather restricted (only the strings σ of the same length as φ are its putative soft-
occurrences). Therefore the pattern’s φ soft-occurrences, necessary to evaluate its
Hamming soft-frequency, were found by verifying it for every string of length |φ| in
the VST, constructed with Algorithm 11 InitTreeForSoftFr16.

16I.e., using a constraint post-processing approach

5.3. SOFT-FREQUENCY CONSTRAINT 119

5.3.6 Experimental Validation

To provide an experimental validation of the soft-frequency constraints that em-
ploy the defined InsDels match function matchInsDels(φ, S,maxIns,maxDels) and
thus benefit from the (anti-)monotonicity properties, we performed the extractions
under exact-frequency and InsDels soft-frequency constraints. For the extractions
under the exact-frequency constraints we the solver FAVST (see Section 3.2.2.2 in
Page 51) and for the extractions under the InsDels soft-frequency constraints we
used the solver Marguerite-SoftFr (see Section 5.3.3 in Page 108). For the dif-
ferential extractions we used an optimized ad-hoc instance of Marguerite-SoftFr
(see Section 5.3.4 in Page 117). In all extractions under the InsDels soft-frequency
constraints, to find the soft-occurrences we used Algorithm 16 FindSoftOccs-PushM,
since its constraint pushing strategy was revealed to be more efficient for the used
alphabet size and pattern length. All used solvers are implemented in C and C++ pro-
gramming languages. We processed KDD Cup 2000 real-world clickstream data sets
[KBF+00] on a Intel(R) Pentium(R) M 1.69GHz processor and 1GB main memory.

To produce the time ordered sequences of the templates requested for each session,
we extracted the attributes ”Session ID“, ”Request Sequence“, ”Request Template“.
There are 137 different request templates, i.e., the analyzed sequences of templates are
the strings over an alphabet of 137 symbols. The produced string data set, denoted
DS, contains 234, 954 strings. The shortest string is of length 1, and the largest one
is of length 5, 487. We also extracted the attributes ”Session First Request Day Of
Week“ and ”Session First Request Hour Of Day“. According to these attributes the
string data set DS was split into four string data sets:

• DSWE for sessions requested on Saturday or Sunday (47, 229 strings),

• DSWD for sessions requested on workdays (187, 725 strings),

• DSD for sessions requested from 8 am till 7 pm (137, 593 strings),

• DSN for the sessions requested from 7 pm to 8 am (97, 361 strings).

5.3.6.1 Impact of the Similarity Parameters in InsDels Match Function

The frequency of a pattern φ is the number of objects that pattern φ matches. Thus
the employed match function and the chosen parameters for this function are crucial
to the resulting frequency values. The InsDels soft-frequency constraints use the
InsDels match function matchInsDels(φ, S,maxIns,maxDels), which has two pa-
rameters : maxIns, limiting the allowed number of insertions, and maxDels, limiting
the allowed number of deletions, necessary to produce φ from its soft-occurrence σ
(see Remark 5.2 in Page 104).

120 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

Table 5.4: Frequency w.r.t. soft-frequency and the impact of the different InsDels
match function parameters

F
r v
,S

(φ
,D

S
)

F
r v
,S

(φ
,D

S
)×

1
0
0
%

S
o
ft

F
r I
n
s
D
e
ls
,S

(φ
,D

S
,1
,1

)

F
r v
,S

(φ
,D

S
)×

1
0
0
%

S
o
ft

F
r I
n
s
D
e
ls
,S

(φ
,D

S
,1
,2

)

F
r v
,S

(φ
,D

S
)×

1
0
0
%

S
o
ft

F
r I
n
s
D
e
ls
,S

(φ
,D

S
,2
,1

)

S
o
ft

F
r I
n
s
D
e
ls
,S

(φ
,D

S
,1
,1

)×
1
0
0
%

S
o
ft

F
r I
n
s
D
e
ls
,S

(φ
,D

S
,1
,2

)

S
o
ft

F
r I
n
s
D
e
ls
,S

(φ
,D

S
,1
,1

)×
1
0
0
%

S
o
ft

F
r I
n
s
D
e
ls
,S

(φ
,D

S
,2
,1

)

Mean val 57.89 14.61 12.37 6.9 0.76 0.37
Stand Dev 70.63 21.26 20.6 14.72 0.09 0.18

Min val 23 1.53 1.14 0.54 0.45 0.06
Max val 843 100 100 97.6 1 0.99

To assess the impact of the fault-tolerant matching in general, and the impact of
different similarity parameters in the fault-tolerant match function, we computed the
exact-frequency Frv,S(φ,DS) and the InsDels soft-frequencies SoftFrInsDels,S(φ,DS, 1, 1),
SoftFrInsDels,S(φ,DS, 1, 2) and SoftFrInsDels,S(φ,DS, 2, 1) for the 796 patterns φ that
are the solutions to the inductive query

IQ1 = MinFrv,Sφ (0.01%,DS) ∧MinLengthφ(7) ∧MaxLengthφ(7),

i.e, that occur in at least 0.01% of DS strings and are of length 7. We took the
patterns of the same length so that the soft-frequency would not be influenced by
the variable pattern length, but only by maxIns and maxDels values. A summary
of the results is provided in Table 5.4.

Observe that, in most cases, the exact-frequency of a pattern is quite small
w.r.t. its soft-frequency. Also, SoftFrInsDels,S(φ,DS, 1, 1) tends to be smaller than
SoftFrInsDels,S(φ,DS, 1, 2) and SoftFrInsDels,S(φ,DS, 2, 1). This is explained by the
less restrictive fault-tolerant matching parameters used by the InsDels match func-
tion in the two latter cases. Finally, SoftFrInsDels,S(φ,DS, 2, 1) tends to be greater
than SoftFrInsDels,S(φ,DS, 1, 2). This is explained by the fact that, when more ins
symbols are allowed (see Definition 5.5 in Page 104), the shorter strings σ are ac-
knowledged as soft-occurrences of a pattern φ, and there are more shorter strings
than longer strings.

5.3. SOFT-FREQUENCY CONSTRAINT 121

Figure 5.1: Selectivity of the minimum exact-frequency and minimum InsDels soft-
frequency constraints

5.3.6.2 Selectivity of the Minimum InsDels Soft-Frequency Constraint

Minimum soft-frequency constraints, employing the match functions that allow mis-
matches between a pattern φ and its soft-occurrence σ, decrease the selectivity of a
classical minimum frequency constraint, which employs the exact match function. To
evaluate the selectivity decrease, provided by the InsDels minimum soft-frequency
constraint, we computed the solutions of the following inductive queries:

• IQ2 = MinFrv,Sφ (minFr,DS) ∧MinLengthφ(5) ∧MaxLengthφ(10)

• IQ3 = MinSoftFrInsDels,Sφ (minFr,DS, 1, 1) ∧MinLengthφ(5) ∧MaxLengthφ(10)

• IQ4 = MinSoftFrInsDels,Sφ (minFr,DS, 1, 2) ∧MinLengthφ(5) ∧MaxLengthφ(10)

• IQ5 = MinSoftFrInsDels,Sφ (minFr,DS, 1, 0) ∧MinLengthφ(5) ∧MaxLengthφ(10)

• IQ6 = MinSoftFrInsDels,Sφ (minFr,DS, 1, 2) ∧MinLengthφ(4) ∧MaxLengthφ(10)

The plot of the size of the solutions of these inductive queries against different
minimum frequency thresholds minFr is given in Figure 5.1

For the minimum exact-frequency constraint MinFrv,Sφ (minFr,DS), which em-
ploys the exact match function, we started at minFr value equal to 0.01%. This
is a pretty small value, and in most applications contexts it is fair to consider that
patterns, which do not satisfy this constraint, are not interesting. For the minimum

122 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

Figure 5.2: Number of soft-occurrences

InsDels soft-frequency constraint MinSoftFrInsDels,Sφ (minFr,DS,maxIns,maxDels),
we started at minFr value equal to 0.5%, because of the consumed time restrictions
(see Section 5.3.6.4). For both constraints we increased the minFr value, until the
corresponding solution set became empty. We take notice that in all cases there are
767, 238 patterns φ of length 4 ≤ |φ| ≤ 10 and 727, 873 patterns of length 5 ≤ |φ| ≤ 10.

Observe that MinFrv,Sφ (minFr,DS) constraint with even very small frequency
threshold minFr values drastically prunes, while the same support values for
MinSoftFrInsDels,Sφ (minFr,DS,maxIns,maxDels) are not selective at all. This em-
phasizes the added value of the use of a fault-tolerant match function in frequency
counting: one can assume that at least 1% of the sessions share some common features
in their requested templates, and the MinSoftFrInsDels,Sφ (1%,DS,maxIns,maxDels)

enables to extract these regularities, while MinFrv,Sφ (1%,DS) leads to the empty col-
lection.

Figure 5.2 plots the mean values of the number of soft-occurrences for patterns
that are solutions to IQ3, IQ4, IQ5 and IQ6. It reveals that, in general, the greater
pattern’s soft-frequency, the more soft-occurrences, i.e., similar patterns, it has. This
is however not a theorem17.

17To evaluate the MinSoftFrInsDels,Sφ (minFr,DS,maxIns,maxDels) constraint we count the string
objects S, for which the match function matchInsDels(φ, S,maxIns,maxDels) evaluates true. One
string object may contain many pattern’s φ soft-occurrences σ, but this does not influence the
frequency value.

5.3. SOFT-FREQUENCY CONSTRAINT 123

Table 5.5: Identification of templates

ID Template
A main/home\.jhtm
B main/departments\.jhtml
C main/search results\.jhtml
D products/productDetailLegwear\.jhtml
E main/shopping cart\.jhtml
F main/login2\.jhtml
G main/registration\.jhtml
H main/welcome\.jhtml
I checkout/expressCheckout\.jhtml
J main/boutique\.jhtml
K main/assortment\.jhtml
L main/vendor\.jhtml
M main/leg news\.jhtml
N products/productDetailLegcare\.jhtml

5.3.6.3 Empirical Assessment of Soft-Support Constraint

The fault-tolerant matching is intended to enable to find the valid regularities or pat-
terns, when data or the phenomenon, we would like to capture, is somehow noisy. To
assess this empirically, we analyzed the extracted patterns, which are the contiguous
sequences of requested templates. In the examples below, we denote the template by
the Latin alphabet capital letters (see Table 5.5).

In the previous section we noticed that a minimum soft-frequency constraint en-
ables to identify regularities whose exact-frequency is not discriminant (i.e., the rele-
vant pattern is blurred among many other ones). For instance, among the patterns,
which belong to the solution to inductive query

IQ7 = MinSoftFrInsDels,Sφ (2%,DS, 1, 1) ∧MinLengthφ(5) ∧MaxLengthφ(10),

the highest frequency, equal to 2.9%, there is the pattern ABCCD. Its exact-frequency is
only 0.18%. Similarly, among the patterns, which belong to the solution to inductive
query

IQ8 = MinSoftFrInsDels,Sφ (0.5%,DS, 1, 1) ∧MinLengthφ(7) ∧MaxLengthφ(10),

the highest frequency, equal to 0.8%, there is the pattern DCDDDDD. Its exact-frequency
is 0.06% only. To get some empirical feedback on the ratio of soft-support and its
corresponding exact-support, we evaluated the query

124 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

IQ9 = MinSoftFrInsDels,Sφ (0.5%,DS, 1, 1) ∧MinLengthφ(5) ∧MaxLengthφ(10).

We retrieved the exact-frequency and the InsDels soft-frequency of the patterns
satisfying IQ9 and computed the ratio Frv,S(φ,DS)

SoftFrInsDels,S(φ,DS,1,1) . Table 5.6 gives the
number of patterns for the different intervals of this ratio. Observe that the value of
the exact-frequency is not discriminant for the major part of the solutions to IQ9.

In a number of cases, the exact-frequency and the soft-frequency of a pattern φ do
not coincide. When looking for data set characteristic patterns, exact-frequencies can
differ significantly, while soft-frequencies are similar. For example, when searching
for the patterns that are characteristic to the data set DSWE, composed of sessions,
requested on weekends, w.r.t. the data set DSWD, composed of sessions, requested on
workdays, with the inductive query

IQ10 = MinFrv,Sφ (0.01%,DSWE) ∧MaxFrv,Sφ (0.005%,DSWD) ∧
MinLengthφ(4) ∧MaxLengthφ(10),

the pattern ADDD is among the extracted ones. However its soft-frequency in both data
sets is quite similar: SoftFrInsDels,S(ADDD,DSWE, 0, 1) = 0.5% and SoftFrInsDels,S(ADDD,
DSWD, 0, 1) = 0.4%18. Similarly, when searching for the patterns that are character-
istic to the data set DSN, composed of sessions, requested from 7 pm to 8 am, w.r.t.
the data set DSD, composed of sessions, requested on from 8 am to 7 pm, with the
inductive query

IQ11 = MinFrv,Sφ (0.1%,DSN) ∧MaxFrv,Sφ (0.05%,DSD) ∧
MinLengthφ(4) ∧MaxLengthφ(10),

the pattern AMALA belongs to the solution, but

SoftFrInsDels,S(AMALA,DSN, 0, 1) = 0.5%

and

SoftFrInsDels,S(AMALA,DSD, 0, 1) = 0.4%19.

Exact-frequency and soft-frequency values can be even contradictory. For in-
stance, the patterns DBDBN and ABDBDB belong to the solution set to the inductive
query

IQ12 = MinFrv,Sφ (0.1%,DSN) ∧MaxFrv,Sφ (0.07%,DSD) ∧
MinLengthφ(4) ∧MaxLengthφ(10),

but their soft-frequencies are

18 We set the stricter fault-tolerance parameters setting maxIns = 0 and maxDels = 1, since the
length of the pattern ADDD is only 4.

19 We allowed the fault-tolerance parameters setting maxIns = 1 and maxDels = 1, since the
length of the pattern ADDD is 5.

5.3. SOFT-FREQUENCY CONSTRAINT 125

Table 5.6: Number of patterns for exact-support/soft-support intervals

r = Frv,S(φ,DS)
SoftFrInsDels,S(φ,DS,1,1) Nb of patterns

0.0002 ≤ r < 0.001 2131
0.001 ≤ r < 0.01 3159
0.01 ≤ r < 0.1 1720
0.1 ≤ r < 0.5 419

r ≥ 0.5 5

SoftFrInsDels,S(DBDBN,DSN, 1, 1) = SoftFrInsDels,S(ABDBDB,DSN, 1, 1) = 0.3%

and

SoftFrInsDels,S(DBDBN,DSD, 1, 1) = SoftFrInsDels,S(ABDBDB,DSD, 1, 1) = 0.8%

These examples illustrate that soft-frequency constraints are needed to avoid mis-
leading hypothesis, when characterizing data set.

5.3.6.4 Time Efficiency

The time needed to solve the inductive queries IQ2, IQ3, IQ4, IQ5, and IQ6

with different minimum frequency threshold minFr values is plotted in Figure 5.3.
The constraint MinSoftFrInsDels,Sφ (minFr,D,maxIns,maxDels) evaluation is time-
demanding because of the following reasons. The minimum soft-frequency constraint

Figure 5.3: Time efficiency

126 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

Figure 5.4: Number of candidates to soft-occurrences

is far less selective than the minimum exact-frequency constraint, famous for its
pruning capacity (see Figure 5.1). In addition to this, the calculation of the soft-
frequency SoftFrInsDels,S(φ,D,maxIns,maxDels) is much more expensive than the
exact-frequency counting: it requires to find pattern’s φ soft-occurrences by evalu-
ating the similarity constraint InsDelsSimφ(σ,maxIns,maxDels) (see Definition 5.7
in Page 105 and Algorithm 14 in Page 112). Even if we push its (anti)-monotonic
conjunctions MaxDelsφ(σ,maxDels) and MaxInsφ(σ,maxIns) deeply into the extrac-
tion phase, the number of candidates for which InsDelsSimφ(σ,maxIns,maxDels)
still has to be evaluated can be huge (e.g., hundreds of thousands, see Figure 5.4).

The evaluation of the similarity relation simInsDels(φ, σ,maxIns,maxDels) when
solving the constraint InsDels similarity constraint InsDelsSimφ(σ,maxIns,maxDels)
is expensive as well: it requires to compute the LCS of two given strings. To
compute the LCS, we implemented a classical dynamic programming approach of
time complexity O(nm) [Hir75]. However, this step can be optimized (see, e.g.,
[Apo97] for a survey). Also, when the fault-tolerance parameters are such that
maxIns = maxDels, one can exploit the symmetric property of the underlying
similarity relation. The computations can be also tuned by choosing dynamically the
order of constraints to push.

Notice however that, even though soft-frequency counting may take hours (as
we see in Figure 5.3), it does not prevent from optimizing the sequences of in-
ductive queries involving the soft-frequency constraints. Indeed, it is possible to
evaluate once the patterns’ soft-frequency with some minimum frequency thresh-
old minFr value α (resp. maximal maximum frequency threshold maxFr value
β), before solving the queries which involve the minimum soft-frequency constraints
MinSoftFrInsDels,Sφ (minFr,D,maxIns,maxDels), such that minFr ≥ α (resp. max-

5.4. DISCUSSION 127

Figure 5.5: Time efficiency of solving maximum InsDels soft-frequency constraint
in differential extraction

imum soft-frequency constraints MaxSoftFrInsDels,Sφ (maxFr,D,maxIns,maxDels),
such that maxFr ≤ β).

When evaluating the conjunction of constraints

MinSoftFrInsDels,Sφ (minFr,D,maxIns,maxDels) ∧
MaxSoftFrInsDels,Sφ (maxFr,D,maxIns,maxDels),

the calculation of the maximum InsDels soft-frequency constraint is far less ex-
pensive, since the search space is already pruned by the anti-monotonic minimum
InsDels soft-frequency constraint and the S set is available (see Section 5.3.4 in
Page 117). Figure 5.5 plots the time needed to evaluate each constraint of the con-
junction

MinSoftFrInsDels,Sφ (0.5%,D,maxIns,maxDels) ∧
MaxSoftFrInsDels,Sφ (maxFr,D,maxIns,maxDels),

with the fault-tolerance parameters settingsmaxIns = 0,maxDels = 1 andmaxIns =
1,maxDels = 1, and the maxFr ranging from 1% to 5%.

5.4 Discussion

The leading motivation of this contribution was to propose the generic solvers ca-
pable to handle the similarity and the soft-frequency constraints and their arbitrary
conjunctions with other (anti-)monotonic constraints. Thanks to the observed stable
relation between the length of the longest common subsequence between the ref-

128 CHAPTER 5. SIMILARITY AND SOFT-FREQUENCY CONSTRAINTS

erence and candidate strings and the substrings of the candidate string, we define
the similarity constraint as a conjunction of an anti-monotonic and monotonic con-
straints. Such similarity constraint can be solved using the existing generic strategies
for string mining. We implemented the corresponding generic solver in C program-
ming language. The experimental validation confirms that the algorithm scales well
both in time and space, and that the approach of pushing the similarity constraint
allows to go far away beyond the limits of the approach of the similarity constraint
post-processing. The empirical validation of the defined similarity constraint con-
firms that it enforces an useful similarity measure, since it allows to recover in data,
perturbed by some random noise, all occurrences of the patterns that hold in the
data initially. Concerning the soft-frequency constraint, is important to note that,
when a soft-match function is used and thereby the soft-occurrences are taken into
account, the associated minimum frequency constraint is, in general, no longer anti-
monotonic. When searching how to solve it efficiently, we observe that the step of
finding the pattern’s soft-occurrences resumes indeed to an extraction under a simi-
larity to a pattern of reference constraint. Thanks to our previous contribution, we
know how to solve that constraint efficiently. We slightly reformulate the previously
defined similarity constraint to use it as a soft-match function. Then, interestingly,
when this soft-match function is used, the associated soft-frequency constraints are
guaranteed to be (anti-)monotonic, provided that a (sensible) condition on similarity
constraint parameters is satisfied. We implemented the corresponding generic solver
in C and C++ programming languages. The experimental validation confirms that
the selectivity of the soft-frequency constraint is significantly decreased w.r.t. the
selectivity of the exact frequency constraint, what allows to recover the regularities
whose exact frequency is not discriminative. The computations are expensive due to
the decreased selectivity and the cost of evaluating the similarity, however, the time
efficiency can be improved by optimizing the sequences of inductive queries, e.g., by
hashing the intermediate querying results.

Chapter 6

Studying the Twilight Zone

6.1 Problem Setting

Motivation

Numerous local pattern types (e.g., substrings, regular expression patterns, struc-
tured patterns, episode rules, subtrees, subgraphs, etc.) and constraints (e.g., simi-
larity and soft-frequency constraints employing various match functions) have been
extensively studied so far to suit better with user expectations and the application
domain (see Chapter 4 for an example). New pattern and constraint types that sup-
port domain driven mining tasks make patterns more actionable and therefore are of
crucial interest. Obviously, it does not solve all the problems. Providing the solvers
for the pattern extraction is only one step in the process of knowledge discovery.
When applying these solvers to answer the questions in the real-life applications, we
are faced to the following problems: (1) how to set the extraction parameters in order
to obtain an interesting collection of patterns, and (2) how to measure the pattern’s
interest, once a collection of patterns is extracted.

Concerning the first problem, an interesting parameter setting is, generally, the
one that results in an exploitable collection of patterns, i.e., a collection that contains
a reasonable number of patterns. To find these parameters values means to balance
the stringency of constraints. A common practise to set the extraction parameters
is to try several extractions, and, based on the results, guess (extrapolate) what
could be the interesting parameters values. This guess is feasible in simple extraction
contexts, where an inductive query is composed of one constraint. The inductive
queries that express real-life questions are often expressed as combinations of several
constraints. For example, to find the putative transcription factor binding sites that
are characteristic to a given biological situation, the biologist want to identify the the
patterns that are frequent in a positive data set D+ and not frequent in the negative

129

130 CHAPTER 6. STUDYING THE TWILIGHT ZONE

data set D−. This question can be expressed by the following inductive query:

MinSoftFrH,Sφ (minFr,D+, k) ∧ MaxSoftFrH,Sφ (maxFr,D−, k) ∧
MinLengthφ(minLen) ∧MaxLengthφ(maxLen),

where minLen = maxLen, and MinSoftFrH,Sφ , MaxSoftFrH,Sφ are the soft-frequency
constraints, with the Hamming match function1.

Such inductive query gives rise to a multidimensional parameter space

{minFr,maxFr, k,minLen = maxLen},

where it is difficult to guess the number of extracted patterns. Even after having
found a parameter setting that results in a collection containing a reasonable number
of patterns, all interesting patterns are not necessarily inside. Indeed, when the
domain knowledge alone does not allow to derive the a priori interesting extraction
paremeters values, most probably, an application domain analyst is interested in the
first patterns that are extracted with the most stringent parameters of the constraints.
Therefore one would seek to identify that border in the parameters space where the
first patterns appear. A possible approach to identify that border is to serialize the
extractions to probe the parameters space. However the extractions allowing for fault-
tolerance are costly, and therefore this approach is rarely acceptable for the routine
usage. The alternative approach is to estimate the expected number of patterns that
satisfy the given constraints with the specified vectors of parameter values.

The second problem concerns measuring the pattern’s interest. Even if the pa-
rameters for an extraction are sophistically tuned, among the extracted patterns
there are many irrelevant ones (see, e.g., [CZ06]), what is the bottleneck of most
local pattern extraction methods. In general, a pattern is interesting, if it is ex-
tracted not due to noise. Noise can be the random background or already known
structure in the data. For example, when mining patterns in data streams without
a priori knowledge, all except random patterns are interesting. When mining DNA
sequences, nucleotide frequencies are in general known, and one can be interested in
all patterns except those that are due only because of the differences in nucleotide
frequencies. When mining Web page browsing sequences, the frequencies of the clicks
are in general known, and patterns due to first order Markov dependencies between
the linked pages can be considered as not interesting.

Such spurious patterns can be discarded using the statistical measures, and, in
turn, the statistical constraints. These constraints, generally, cannot be fully/easily
described by means of combinations of monotonic and anti-monotonic local con-
straints and thus cannot be efficiently pushed deeply to an extraction phase. Even if
they do not have the nice monotonic properties, it would be of great interest to know
whether a given pattern or a given collection of patterns is statistically unexpected

1See Section 4.3.1.1 in Page 69

6.1. PROBLEM SETTING 131

given an input data set and some parameter values. For doing that, we can get in-
spired of [KP02b, GMMT07], which proposed to assess local patterns (respectively
substrings and frequent itemsets) relevancy comparing the number of extracted pat-
terns in the input data set with the number of patterns, extracted in random data
sets exhibiting the same features (structural properties of the data set, e.g., size of
the data set, number of sequences/items, length of the sequences/itemsets) as the
original data set. The issue here is to be able to estimate the expected number of
patterns that satisfy the given constraints in a random data set, modeling the noise.

Observe, that to solve both problems: the one of setting the extraction parameters
and the one of evaluating pattern’s interest, we need to know the expected number
of patterns that satisfy the given constraints: under a data model, if we are setting
the parameters, and under a noise model, if we are evaluating the patterns interest.

Research Context

Estimating the expected number of patterns that satisfy a constraint, is in general
much more difficult than estimating the probability that a given pattern satisfies such
a constraint. This second problem has received a lot of attention, leading to many
statistical measures to assess the interestingness of the patterns. Concerning the first
problem, only a few solutions have been proposed. [RMZ03] and [LRS05] analyze the
feasible distributions of frequent itemsets (also of closed itemsets for [LRS05] and of
maximal itemsets for [RMZ03]). [RMZ03] focuses on the kind of distributions one
can expect for various kinds of data sets. They answer the question whether there
exists a frequent or maximal frequent itemset collection that has a given number of
frequent itemsets of a given length. [LRS05] computes the average number of frequent
(closed) itemsets using probabilistic techniques. These authors especially focus on
the minimum frequency threshold and how it influences the number of extracted
patterns, considering fixed and/or proportional thresholds. Another approach has
been proposed by Geerts et al. [GGdB05], providing a tight upper bound on the
number of candidate patterns that can arise while mining frequent patterns in a
level-wise setting. Given the current level and the current set of frequent patterns,
they propose a tight bound of the maximal number of candidate patterns that can
be generated on the next level. In the domain of string mining, [KP02b] designs an
estimate of the number of patterns due to the random background, and that are likely
to be extracted with respect to a frequency constraint and according to the structure
of the data set. The so-called Twilight Zone (TZ) was defined as the set of values of
the scoring function for which we can expect to have some random patterns exhibiting
such score values. We propose to consider the notion of extraction parameters in a
broad sense, including structural properties of the data set (e.g., number of sequences,
length of the sequences) and the constraints thresholds. Then, the TZ can be seen
as a region (or set of regions) in the parameter space, where we are likely to obtain

132 CHAPTER 6. STUDYING THE TWILIGHT ZONE

random patterns among the extracted patterns, these random patterns having scores
as good (or even better) as the interesting patterns. All these proposals uses a
global analytical model to compute the estimations. Analytical approach has many
advantages, however it becomes particularly difficult when extending it to consider
more complicated data sequences model, handle additional constraints or different
semantics for pattern occurrences.

Problem Statement

The objective is to estimate the expected number of string patterns with the Ham-
ming match function2 that satisfy a conjunction of a minimum soft-frequency con-
straint and a maximum soft-frequency constraint3 in two data sets of random strings
and syntactic constraints. To answer this question, there are three main approaches
that can be considered:

1. One can extract and count the patterns that occur in random string data sets,
generated with the desired features.

2. One can compute an analytical estimate of the expected number of extracted
patterns from the features of the data set.

3. One can compute an estimate of the expected number of extracted patterns
from pattern space samples and analytical formulas.

There is a clear trade-off between the time efficiency and the accuracy of the
estimate. The first method, while providing a good estimate of the expected number
of patterns (as long as we are able to generate random data sets exhibiting the desired
properties) is too time consuming, since extractions allowing for fault-tolerance are
costly and numerous complete extractions have to be performed, both to probe the
parameters space in order to set the parameters sophistically, and to compute a
measure of interest of the extracted patterns (since this measure have to be computed
for a number of patterns). Therefore we focus on the two remaining alternatives, and
develop the formulas that compute that estimate analytically (see Section 6.2) and
the approach to evalute that estimate on pattern space samples (see Section 6.3).

6.2 Analytical Estimation

In this section we present our contribution on computing analytically, from the fea-
tures of the data set, an estimate of the expected number of patterns, published

2See Section 4.3.1.1 in Page 69
3I.e., a differential extraction

6.2. ANALYTICAL ESTIMATION 133

in [MRS+08].

We study the string patterns φ with the Hamming match functionmatchH,s(φ, s, k)
(see Definition 4.19 in Page 69). We remind that the Hamming distance is finite,
and therefore the Hamming match function is defined, if the pattern φ and its soft-
occurrence is of the same length. We denote that length by l. In the following we
will refer the string patterns φ with the Hamming match function as exact match-
ing patterns (EMP), if the errors threshold k = 04, otherwise we will refer them as
soft-matching patterns (SMP). We consider data strings of the same length L on the
alphabet containing n symbols. As in [KP02b], we suppose that the data strings
are composed of independent and uniformly distributed symbols, having the same
occurrence probability, and that the overlapping of the occurrences of the patterns
has a negligible impact on the number of patterns extracted (since l� L). We want
to estimate the number of EMPs and SMPs of length l that will be extracted by the
differential extraction, expressed by the following inductive query

MinSoftFrH,Sφ (minFr,D+, k) ∧ MaxSoftFrH,Sφ (maxFr,D−, k) ∧
MinLengthφ(minLen) ∧MaxLengthφ(maxLen),

where minLen = maxLen,

for the given thresholds values minFr, maxFr and k.

Additionally, we suppose that the two data sets, the positive one D+, and the
negative one D−, are independent.

6.2.1 Occurrences at a given position

The hypotheses made on the distribution of the symbols imply that the probability
that a pattern φ of length l has an exact occurrence starting at a given position in a
string5 is P (exact occ. of φ at one position) = 1

nl
.

From an exact occurrence of φ, one can construct the soft-occurrences of φ
within an Hamming distance k by placing i substitutions in

(
l
i

)
possible ways, with

i ∈ {0, . . . k}. Since we have n symbols, then for each position, where we have a
substitution, we have n − 1 different possible substitutions. Thus, for a pattern φ,
there are

∑k
i=0

(
l
i

)
× (n − 1)i substrings that are soft-occurrences of φ. Then, the

probability that a pattern has a soft-occurrence starting at a given position in a data

string is P (soft occ. of φ at one position) =
Pk
i=0

(
l
i

)
×(n−1)i

nl
. In the following, we

4Note, that with the errors threshold k = 0, the Hamming match function is equivalent to
exact string match function (see Definition 1.21 in Page 21). Therefore, to simplify the notations,
where convenient, in this chapter we refer the exact string match function and the exact-frequency
constraints as the Hamming match function and the Hamming soft-frequency constraints with errors
threshold k = 0.

5Except the last l − 1 positions.

134 CHAPTER 6. STUDYING THE TWILIGHT ZONE

also need the probability that a pattern φ has a strict soft-occurrence starting at a
given position (a strict soft-occurrence of φ, is a soft-occurrences of φ that is not
an exact occurrence). In this case we have simply P (strict soft occ. of φ at one

position) =
Pk
i=1

(
l
i

)
×(n−1)i

nl
.

6.2.2 Occurrences in a data string

In a data string there are (L− l + 1) possible positions to place the beginning of an
occurrence of φ. Since l � L, for the sake of simplicity we approximate the number
of possible positions by L. Then, the probability that there is no soft-occurrence of
φ in a random data string is P (no soft occ. of φ in a string) = (1 − P (soft occ. of
φ at one position))L. Thus, the probability that there is at least one soft-occurrence
of φ in a data string is P (exists soft occ. of φ in a string) = 1 − (1 − P (soft occ.
of φ at one position))L. Similarly, the probability that there is at least one strict
soft-occurrence of φ is P (exists strict soft occ. of φ in a string) = 1 − (1 − P (strict
soft occ. of φ at one position))L, and the probability that there is at least one exact
occurrence is P (exists exact occ. of φ in a string) = 1− (1− 1

nl
)L.

6.2.3 Minimum Hamming Soft-Frequency Constraint

To determine P (φ sat. min. H. soft-fr.), i.e., the probability of φ to satisfy the mini-
mum hamming soft-frequency constraint, let us define X as the number of strings, in
the positive data set, that contains at least one exact occurrence of φ. The probabil-
ity P (φ sat. min. H. soft-fr.) can be decomposed using the conditional probability
of φ sat. min. H. soft-fr. given the value of X, as follows:

P (φ sat. min. H. soft-fr.) =
N+∑
i=1

(P (X = i)× P (φ sat. min. H. soft-fr.|X = i)),

(6.1)
where N+ is the number of strings in the positive data set. Notice that the sum
starts at i = 1, and not at i = 0, since the pattern must have at least one exact
occurrence in the positive data set.

The variable X follows a binomial distribution B(N+, P (exists exact occ. of φ in
a string)), thus we have: P (X = i) =

(
N+

i

)
×P (exists exact occ. of φ in a string)i×

(1− P (exists exact occ. of φ in a string))N
+−i.

P (φ sat. min. H. soft-fr.|X = i) is the probability that φ satisfies the minimum
Hamming soft-frequency constraint, given that exactly i strings contain at least one
exact occurrence of φ. This also means that (N+ − i) strings do not have any exact
occurrence of a pattern. Then according to i there are two cases:

6.2. ANALYTICAL ESTIMATION 135

1. if i ≥ minFr then P (φ sat. min. H. soft-fr.|X = i)) = 1 since the constraint is
already satisfied by the i strings that contain each at least one exact occurrence
of φ.

2. if i < minFr then P (φ sat. min. H. soft-fr.|X = i) is equal to the probability
that at least (minFr− i) of the (N+− i) remaining strings contain at least one
strict soft-occurrence. This number of strings that contain at least one strict
soft-occurrence of φ also follows a binomial distribution B(N+ − i, P (exists
strict soft occ. of φ in a string)). Then we have: P (φ sat. min. H. soft-
fr.|X = i)) =

∑N+−i
z=minFrmin−i(

(
N+−i
z

)
× P (exists strict soft occ. of φ in a

string)z × (1− P (exists strict soft occ. of φ in a string))N
+−i−z).

Thus, we can obtain P (φ sat. min. H. soft-fr.) by computing the sum in equation 6.1
and P (φ sat. min. H. soft-fr.|X = i) according to the two cases above.

6.2.4 Maximum Hamming Soft-Frequency Constraint

Let Y be the number of data strings that contain the occurrences of φ in the nega-
tive data set. A pattern φ satisfies the maximum Hamming soft-frequency constraint
with threshold maxFr if Y ≤ maxFr. The variable Y follows a binomial distribu-
tion B(N−, P (exists soft occ. of φ in a string)), where N− is the number of data
strings in the negative data set. Then the probability that φ satisfies the maximum
Hamming soft-frequency constraint is P (φ sat. max. supp.)) =

∑maxFr
z=0

(
N−

z

)
×

P (exists soft occ. of φ in a string)z × (1− P (exists soft occ. of φ in a string))N
−−z.

6.2.5 Frequency Constraints for Differential Extraction

Given our hypothesis that the positive and negative data sets are independent,
the probability that a pattern satisfies a conjunction of minimum Hamming soft-
frequency and maximum Hamming soft-frequency constraints is P (φ sat. min. and
max. supp.) = P (φ sat. min. supp.)× P (φ sat. max. supp.).

6.2.6 Number of Expected Patterns and Twilight Zone Indicator

Let ENP (l,minFr,maxFr, k) be the Expected Number of Patterns of length l that
will be extracted under the thresholds minFr, maxFr and k, i.e., the approximate
we seek to compute analytically. Since there are nl possible patterns of length l,
and from the hypothesis that the overlapping of the occurrences of the patterns
has a negligible impact on the number of patterns extracted, we can approximate
ENP (l,minFr,maxFr, k) by P (φ sat. min. and max. soft. H. freq.)× nl.

136 CHAPTER 6. STUDYING THE TWILIGHT ZONE

Given a pattern φ with the Hamming soft-frequencies SoftFrH,S(φ,D+, k) and
SoftFrH,S(φ,D−, k) for a given threshold k, its Twilight Zone Indicator, denoted
TZI(φ) is defined as ENP (|φ|, SoftFrH,S(φ,D+, k),SoftFrH,S(φ,D−, k), k).

6.2.7 Experimental validation

To validate empirically the computation of the TZI, i.e., of the expected number of
patterns, we compared it with the number of patterns extracted from random string
data sets and gene promoter sequences data sets. The gene promoter sequences data
sets, denoted R and A, are described in Section 7.1.2.2 in Page 157, were provided
by our biologist collaborator Dr. Olivier Gandrillon and his group BM2A in the
Center for Molecular and Cellular Genetics (CNRS UMR 5534). We precise that
each sequence is a string of length of 4000 symbols over an alphabet of size 46.
Two pairs of random data sets that mimic the biological data sets R and A were
constructed using the tool RanDNA [PP06]: (1) pair 〈R∗, A∗〉, where R∗ (resp. A∗)
have the same number of data strings and the same total number of nucleotides per
string as R (resp. A), and are built from independent and uniformly distributed
nucleotides with a homogeneous nucleotide composition (i.e., 25% of A, C, G and
T); (2) pair 〈R∗∗, A∗∗〉, where R∗∗ and A∗∗ are generated using the same constraints
as 〈R∗, A∗〉, except for the relative nucleotide composition. For R∗∗ (resp. A∗∗) the
relative nucleotide composition is the same as the one of R (resp. A). Moreover, the
same sequencing uncertainties (N regions)7 as in R (resp. A) have been implanted in
R∗∗ (resp. A∗∗).

The graphs in the left column in Figure 6.1 depict the number of EMPs, satisfying
the constraints

MinSoftFrH,Sφ (minFr,R, 0) ∧ MaxSoftFrH,Sφ (minFr,A, 0) ∧
MinLengthφ(minLen) ∧MaxLengthφ(maxLen)8,

They were extracted using our implementation of the FAVST solver [DD04] (see Sec-
tion 3.2.2.2 in Page 51).

The graphs in the right column in Figure 6.1 depict the number of SMPs, satis-
fying the constraints

MinSoftFrH,Sφ (minFr,R, k) ∧ MaxSoftFrH,Sφ (minFr,A, k) ∧
MinLengthφ(minLen) ∧MaxLengthφ(maxLen),

6DNA sequences are composed of 4 nucleotides: adenine, guanine, thymine, cytosine. There-
fore such sequences and patterns in them can be seen as strings over the alphabet of 4 symbols
{A,C,G, T}.

7Notice that Marguerite does not require a predefined alphabet, and can therefore handle se-
quences containing undefined bases, denoted by the symbol N.

8Or, equivalently, MinFrv,Sφ (minFr,R) ∧ MaxFrv,Sφ (maxFr,A) ∧ MinLengthφ(minLen) ∧
MaxLengthφ(maxLen).

6.2. ANALYTICAL ESTIMATION 137

where k > 0.

They were extracted using our generic solver’s instance Marguerite-H (see Sec-
tion 5.3.5 in Page 118).

The frequency and pattern length threshold values were chosen to be pertinent
w.r.t. the associated biological problem9 (see Chapter 7). The value of minFr
varies from 1 to 29, and maxFr is set to 7, whereas the pattern length is restricted
by minLen = 5 and maxLen = 11. Since we use a correct and complete pattern
extraction approach, there is no need to run it several times with the same parameter
values (contrarily to approaches based on incomplete heuristics). For each parameter
setting, minFr, maxFr (and k for SMPs), we compute the number of expected
patterns due to the random background using the TZI formula.

The graphs depicted in Figure 6.1 allows to compare the expected number of
patterns with the number of patterns extracted in random and biological data sets
(the extractions used for the illustration are representative, i.e., the behaviour remains
the same also for other minFr values). The number of patterns extracted in data
sets 〈R∗, A∗〉 coincides with the expected number (graphs A vs. B and E vs. F in
Figure 6.1).

This argues in favor of the correctness of the hypothesis made concerning the
limited impact of the overlapping of the occurrences of the patterns on the number
of extracted patterns. The number of patterns extracted in the data sets 〈R∗∗, A∗∗〉
(with the exceptions of the EMP of length 6 and of the SMP of length 8) is still well
modeled by the computed number of expected patterns (graphs A vs. C and E vs. G
in Figure 6.1). This confirms that the simplification of considering an equiprobable
nucleotide distribution and not taking into account the sequencing uncertainties do
not modify the counts significantly. The number of patterns extracted in the biologi-
cal data sets R, A deviates more from the expected number and is greater than in the
random data sets, but the estimations still model well the tendencies, especially in
the range of parameters that are interesting to our problem, i.e., when αmin is large
and αmax is small (graphs D and H in Figure 6.1). This indicates that at least a part
of the hidden structure of the biological data set pair 〈R,A〉 (absent from the model
of random background and absent from the random data sets) seems to be captured
by the extracted patterns.

We used this analytically computed expected number of patterns in our applica-
tion to promoter sequences analysis (Section 7.1) to guide the extraction parameters
tuning (see Section 7.1.2.4 in page 160) and to select the patterns according TZI (see
Section 7.1.2.3 in page 159).

9These settings are also representative, and other settings lead to a similar global behaviour.

138 CHAPTER 6. STUDYING THE TWILIGHT ZONE

 0.1

 1

 10

 100

 1000

 10000

 100000

 3 6 9 12 15 18 21 24 27

nb
 o

f e
xp

ec
te

d
E

M
P

min suppAAAAA

Length 5
Length 6
Length 7
Length 8
Length 9

Length 10
Length 11
All lengths

 0.1

 1

 10

 100

 1000

 10000

 100000

 3 6 9 12 15 18 21 24 27

nb
 o

f e
xp

ec
te

d
S

M
P

min suppE

 0.1

 1

 10

 100

 1000

 10000

 100000

 3 6 9 12 15 18 21 24 27

nb
 o

f E
M

P
 in

 <
R

*,
A

*>

min suppB

 0.1

 1

 10

 100

 1000

 10000

 100000

 3 6 9 12 15 18 21 24 27

nb
 o

f S
M

P
 in

 <
R

*,
A

*>

min suppF

 0.1

 1

 10

 100

 1000

 10000

 100000

 3 6 9 12 15 18 21 24 27

nb
 o

f E
M

P
 in

 <
R

**
,A

**
>

min suppC

 0.1

 1

 10

 100

 1000

 10000

 100000

 3 6 9 12 15 18 21 24 27

nb
 o

f S
M

P
 in

 <
R

**
,A

**
>

min suppG

 0.1

 1

 10

 100

 1000

 10000

 100000

 3 6 9 12 15 18 21 24 27

nb
 o

f E
M

P
 in

 <
R

,A
>

min suppDDDD

 0.1

 1

 10

 100

 1000

 10000

 100000

 3 6 9 12 15 18 21 24 27

nb
 o

f S
M

P
 in

 <
R

,A
>

min suppHHHHHHHH

Figure 6.1: In the left column: number of EMPs, satisfying a conjunction of a
minimum exact-frequency constraint in a positive data set and a maximum exact-
frequency constraint in a negative data set. In the right column: number of SMPs,
satisfying a conjunction of a minimum Hamming soft-frequency constraint in a posi-
tive data set and a maximum Hamming soft-frequency constraint in a negative data
set.

6.3. ESTIMATION THROUGH PATTERN SAMPLING 139

6.3 Estimation through Pattern Sampling

Analytical estimation of the expected number of patterns that satisfy the constraints
becomes very difficult when the data model or the inductive query is more compli-
cated, e.g., when considering non-equiprobable symbol distributions or when adding
syntactic constraints. Analytical estimation is difficult since we have to compute the
probability that an abstract pattern (i.e., any pattern from the pattern language)
satisfies the constraints. It is much more easier to compute this probability for a pat-
tern at a hand (i.e., a given concrete pattern). Based on this observation, we propose
to compute the expected number of patterns from the samples of the pattern space.
This work is published in [BRMB08].

As in the previous section, we study the string patterns φ with the Hamming
match function matchH,s(φ, s, k) (see Definition 4.19 in Page 69), and we refer such
string patterns as exact matching patterns (EMP), if the errors threshold k = 010,
otherwise we will refer them as soft-matching patterns (SMP). Let SC be the set
of patterns in L that satisfy the inductive query, expressed through the following
constraint conjunction C

MinSoftFrH,Sφ (minFr,D+, k) ∧ MaxSoftFrH,Sφ (minFr,D−, k) ∧ Csynt,
where Csynt is a syntactic constraint11.

In this section, we present a simple method to estimate the cardinality of the set
SC by sampling the pattern space L and using a function that gives the probability
of a pattern φ to satisfy the constraint C, denoted P (φ sat. C).

We chose three symbol distributions for the symbols of the input sequences, to
show that our method can be used with different models. However, this choice is not
central in the contribution, and depending on the application domain, other dedicated
models that would be more accurate could be used to provide a better estimate.

The three retained models of distributions here are:

• µE : independence of all occurrences of the symbols with equal occurrence fre-
quencies of each symbol;

• µD: independence of all occurrences of the symbols with different occurrence
frequencies of the symbols;

• µM : a first-order Markov chain.

For each of the three models mentioned above, it is easy to compute the probabil-
ity for a given pattern φ to occur in a string, then to obtain the probability to satisfy

10See Footnote 4 in Page 133.
11See Section 2.2.1.2 in Page 35.

140 CHAPTER 6. STUDYING THE TWILIGHT ZONE

a frequency constraint using a binomial law, and to finally determine P (φ sat. C).

6.3.1 Expected Number of Patterns that Satisfy Constraints in a
Sample

Let us associate to each pattern φ a random variable Xφ, such that Xφ = 1 when
φ satisfies C and Xφ = 0 otherwise. Then |SC | =

∑
φ∈LXφ. Considering the

expected value of |SC |, by linearity of the expectation operator we have E(|SC |) =∑
φ∈LE(Xφ). Since E(Xφ) = 1 × P (Xφ = 1) + 0 × P (Xφ = 0), then E(|SC |) =∑
φ∈L P (φ sat. C). Let SCsynt be the set of patterns in L that satisfy Csynt. As

P (φ sat. C) = 0 for all patterns that do not satisfy Csynt , we have E(|SC |) =∑
φ∈SCsynt

P (φ sat. C).

Computing this sum over SCsynt would be prohibitive, since we want to obtain
E(|SC |) for a large number of points in the parameter space. Thus we estimate
E(|SC |) using only a sample of the patterns in SCsynt . Let Ssamp be such a sample,
then we use the following value as an estimate of E(|SC |):

|SCsynt |
|Ssamp|

×
∑

φ∈Ssamp

P (φ sat. C)

In practice, many techniques can be used to compute the sample. In the experi-
ments, presented in the next section, we use the following process:

• Step 1: build an initial sample Ssamp of Csynt (sampling with replacement) of
size 5% of |Csynt| and compute the estimate of E(|SC |).

• Step 2: go on sampling with replacement to add 1,000 elements to Ssamp.
Compute the estimate, and if the absolute value of the difference between the
new estimate and the previous one is greater than 5% of the previous estimate,
then repeat Step 2.

Since the variables Xφ are not independent (the occurrence of a pattern has an
impact on the possibility of occurrence of other patterns), there is no straightforward
analytical confidence bound of the estimate. It is out of the scope of this chapter to
further discuss this issue. However, in the next section, we show that the estimate is
quite accurate in practice.

6.3. ESTIMATION THROUGH PATTERN SAMPLING 141

6.3.2 Experimental validation

6.3.2.1 Empirical evaluation of the estimate

To empirically assess our method, we have to check both its efficiency in terms of
running time and accuracy. Recall that we may need to estimate the expected num-
ber of patterns satisfying a user-defined constraint for a large number of values in
parameter domains.

We generated three pairs of random strings data sets D+ and D−, and on each
pair we performed a set of experiments. Each pair is based on a different symbol
distribution and/or on a different data set structure. The symbol distributions used
for the estimate were the same as the ones used for the generation. For each set of
experiments, we present graphics to compare the estimate of the expected number of
patterns versus the real number of patterns extracted in the data sets when using the
same parameters. In the experiments, we explore different regions in the parameter
space, at different scales, and we do not try to focus on parameter ranges that lead
to the best estimates.

In the experiments, we extracted all EMPs, satisfying the inductive query

MinSoftFrH,Sφ (minFr,D+, 0) ∧ MaxSoftFrH,Sφ (minFr,D−, 0) ∧
MinLengthφ(minLen) ∧MaxLengthφ(maxLen)12,

where minLen = maxLen,

They were extracted using our implementation of the FAVST solver [DD04] (see Sec-
tion 3.2.2.2 in Page 51).

We also extracted all SMPs, satisfying the inductive query

MinSoftFrH,Sφ (minFr,D+, k) ∧ MaxSoftFrH,Sφ (minFr,D−, k) ∧
MinLengthφ(minLen) ∧MaxLengthφ(maxLen),

where k = 1 and minLen = maxLen.

They were extracted using our generic solver’s instance Marguerite-H (see Sec-
tion 5.3.5 in Page 118).

In all graphics, the isolated dots represent the estimates, the dots linked by a
line represent the real number of extracted patterns. On the horizontal axis we have
the minimal frequency thresholds, and on the vertical axis we have the associated
number of patterns (for the sake of readability, we use for some of the graphics a log
scale axis). The settings used for the three sets of experiments are the following:

12Or, equivalently, MinFrv,Sφ (minFr,D−) ∧ MaxFrv,Sφ (maxFr,D−) ∧ MinLengthφ(minLen) ∧
MaxLengthφ(maxLen).

142 CHAPTER 6. STUDYING THE TWILIGHT ZONE

• First set of experiments (Figure 6.2): 4 symbols with distribution µD (frequen-
cies of the symbols are 0.4, 0.1, 0.2 and 0.3), data sets D1 and D2 contain 100
strings of length 1,000.

• Second set of experiments (Figure 6.3): 4 symbols with distribution µM , data
sets D+ and D− contain 100 strings of length 1,000. The arbitrary conditional
probabilities Prob(φi = Y |φi−1 = X) used for the Markov chain (with symbols
A, B, C and D) are given by the table:

X / Y A B C D
A 0.2 0.28 0.18 0.34
B 0.04 0.36 0.3 0.3
C 0.32 0.08 0.2 0.4
D 0.2 0.24 0.24 0.32

• Third set of experiments (Figure 6.4): 8 symbols with distribution µE , data
sets D1 and D2 contain 100 strings of length 30,000. In four of the graphics,
the estimates are so close to the real values that the corresponding dots are
superimposed.

In all experiments, the estimates closely follow the trends of the real extractions,
and in most cases, the estimates are sufficiently accurate to give a reasonable picture
of the shape of the extraction landscape. For each experiment, only between 4, 000
and 8, 000 sampled patterns were necessary to converge to a stable estimate, i.e., the
difference between two successive estimates is smaller than 5% of the first one.

The experiments were run on a Linux platform with an Intel 2Ghz processor and
1Gb of RAM.

The estimate of the number of patterns, based on the pattern space sampling, was
implemented in Perl. For each single EMPs extraction, the running time was about
a few tens of seconds to a few minutes. In the case of SMPs, an extraction takes
from a few tens of minutes to several hours to complete, while for the sampling-based
estimate, computing one estimate requires between 1 and 30 seconds.

6.3. ESTIMATION THROUGH PATTERN SAMPLING 143

Figure 6.2: Experiments under µD distribution (with symbol frequencies 0.4, 0.1,
0.2 and 0.3). In the left column we have the exact-frequency threshold values on the
horizontal axis and the number of resulting EMPs. In the right column we have the
Hamming soft-frequency threshold values on the horizontal axis and the number of
resulting SMPs.

144 CHAPTER 6. STUDYING THE TWILIGHT ZONE

Figure 6.3: Experiments under µM distribution (1st-order Markov chain). In the left
column we have the exact-frequency threshold values on the horizontal axis and the
number of resulting EMPs. In the right column we have the Hamming soft-frequency
threshold values on the horizontal axis and the number of resulting SMPs.

6.3. ESTIMATION THROUGH PATTERN SAMPLING 145

Figure 6.4: Experiments under µE distribution (same frequency for symbols) and
string size 30,000. In the left column we have the exact-frequency threshold values
on the horizontal axis and the number of resulting EMPs. In the right column we
have the Hamming soft-frequency threshold values on the horizontal axis and the
number of resulting SMPs.

146 CHAPTER 6. STUDYING THE TWILIGHT ZONE

6.3.3 Application to Promoter Sequences Data Sets

We use two data sets of DNA sequences that are promoter sequences of genes. These
gene promoter sequences data sets, denoted R and A and described in Section 7.1.2.2
in Page 157, were provided by our biologist collaborator Dr. Olivier Gandrillon and
his group BM2A in the Center for Molecular and Cellular Genetics (CNRS UMR
5534). We precise that each sequence is a string of length of 4000 symbols over an
alphabet of size 413

We look for SMPs, satisfying the inductive query

MinSoftFrH,Sφ (minFr,R, k) ∧ MaxSoftFrH,Sφ (minFr,A, k) ∧
MinLengthφ(minLen) ∧MaxLengthφ(maxLen),

where k = 1 and minLen = maxLen.

Such a conjunction of constraints, with soft-frequency definition based on the
Hamming distance, has been shown to be useful in practice for transcription factor
binding sites identification (see Chapter 7).

The estimates were computed with distribution µD, using as symbol frequencies
their respective frequencies in the data (0.23, 0.26, 0.27, 0.24 respectively for A,C,G,
and T). In this case, the model is more a description of the random background
than a description of the biological organisation along the sequences. Representative
graphics obtained using these estimates, and depicting portions of the extraction
landscape, are presented in Figure 6.5, on the right. A typical use of such graphics
is, for instance, to look for points, in the parameter space, corresponding to a large
frequency on R, but a low frequency on A, a large pattern length, and a rather
small number of expected patterns (since here the distribution represents the random
background). Such a point, that can be used as an initial guess of the parameters to
perform real extractions, is for instance: pattern length l = 10, minimal Hamming
soft-frequency threshold minFr on R of 15 and maximal Hamming soft-frequency
maxFr on A of 5 (the graphic in the middle on the right indicates that, for this
setting, only about 1 pattern due to the random background is expected).

For the sake of completeness, in Figure 6.5 on the left, we give the real numbers
of extracted patterns. In practice, these graphics are not easily accessible to the user,
since in these experiments the running time of a single extraction ranges from several
tens of minutes to several hours (while for an estimate, only a few tens of seconds is
needed). Even though the global trends correspond to the estimates, they are impor-
tant differences in some portions of the parameter space (these differences could be
expected since the distribution used does not incorporate complex biological knowl-
edge). However, the estimates can still be used to help to choose initial parameter

13DNA sequences are composed of 4 nucleotides: adenine, guanine, thymine, cytosine. There-
fore such sequences and patterns in them can be seen as strings over the alphabet of 4 symbols
{A,C,G, T}.

6.4. DISCUSSION 147

values in an exploratory mining stage, and moreover, finding such differences, when
running the real extractions, can also be a useful piece of information in itself. For
example, for the setting l = 10, minFr = 15 and maxFr = 5, we have about 100
patterns really extracted, while we expected only one. If we suppose that the pattern
space sampling can provide reasonable estimates when the data satisfy distribution
µD (as supported by the experiments of Section 6.3.2.1), then the 100 patterns ob-
tained are likely to be due to a particular unknown structure in the data and not to
the distribution µD only. This suggest that it makes sense to look for patterns in this
region of the parameter space, since we can expect to obtain some interesting/useful
patterns (not only patterns due to the random background captured by µD).

6.4 Discussion

Two answer both problems, the one of setting the extraction parameters and the one
of measuring the pattern’s interest, we need to estimate the number of patterns that
satisfy the given constraints. Concerning the first problem, the expected number of
patterns that are extracted with each point (vector) in the parameters space allows
to identify the border in the parameters space where the first patterns are extracted.
A domain analyst, in general, will want to analyse the collections of these first pat-
terns, extracted with the most stringent values of constraint parameters, when the
application domain knowledge is not sufficient to derive the a priori interesting pa-
rameters for the extraction. Concerning the second problem, the minimum number
of patterns that will be extracted due to the noise with a pattern in question (the
so-called TZI) can be used as a sensible measure of pattern’s interest - the bigger
the TZI, the more indistinguishable from the noise the pattern is. Our contribution
consists of estimating the number of patterns that satisfy the given constraints in
the data sets under a given sequence model: under a data sequences model, if we are
setting the parameters, and under a noise model, if we are evaluating the pattern’s
interest.

We develop an analytical estimation of the number of patterns that satisfy a
conjunction of the minimum and maximum soft-frequency constraints, where the
Hamming match function is used, and the length constraints. The data sequences
model assumes that the sequences are of the same length, the symbols are independent
and equiprobable, and the overlapping occurrences are not taken into account. The
analytical estimation becomes particularly difficult if the data sequences model is
more complicated or if there is a need to take into account additional constraints,
e.g., syntactic constraints. The difficulty of the analytical approach resides in the fact
that we have to compute the probability that any pattern (i.e., an abstract pattern)
satisfies the constraints. It is much more easier to compute this probability for a

148 CHAPTER 6. STUDYING THE TWILIGHT ZONE

Figure 6.5: Number of expected and extracted SMPS, using two promoter sequence
data sets. Horizontal axis: minimum support, vertical axis: number of patterns.

6.4. DISCUSSION 149

concrete given pattern. Based on this observation we develop the estimation through
sampling the pattern space. The different data sequences models and the syntactic
constraints can be easily taken into account in this approach of estimation through
sampling. We performed the experimental validation to compare the extracted and
the estimated number of patterns using three different sequence models. We used
both generated and real-world (gene promoter sequences) data sets. The experiments
show that the estimations model well the reality, and thus confirm that we sample in
the right way.

150 CHAPTER 6. STUDYING THE TWILIGHT ZONE

Part III

Application

151

Chapter 7

Genomic Sequence Analysis

In this chapter we present our application of the developed solvers and the TZI
(Twilight Zone Indicator) measure of pattern interest to the gene promoter sequence
analysis, published in [MRS+08]. We also present an opening to the application to
comparative genomics.

7.1 Promoter Sequence Analysis

7.1.1 Background

Application Context

We applied

• our implementation of FAVST solver [DD04]1 to perform correct and complete
differential extractions under exact frequency constraints,

• our generic solver’s instance Marguerite-H2 to perform the correct and com-
plete differential extractions under Hamming soft-frequency constraints3,

• the developed pattern interest measure Twilight Zone Indicator (TZI)4, en-
abling to assess the interest of the patterns obtained by such extractions,

1See Section 3.2.2.2 in Page 51
2See Section 5.3.5 in Page 118
3See Section 4.3.1.1 in Page 69
4See Section 6.2.6 in Page 135

153

154 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

to find the signature motifs5 in promoter sets of differentially expressed genes. This
work is accomplished in a close collaboration with Dr. Olivier Gandrillon and his
group Molecular Basis of Self-Renewal (BM2A) in the Center for Molecular and
Cellular Genetics (CNRS UMR 5534).

Self-renewal, which is a characteristic property of stem cells, the molecular basis
of which is still elusive, is the research topic of our collaborator BM2A group. Dereg-
ulation of this process occurs frequently during cancer generation. The BM2A team
investigates this process through the discovery of differentially expressed genes by us-
ing the SAGE technique [VEVK95] on the primary model of T2ECs, that are normal
chicken erythroid progenitors [GSBS99]. These cells can be induced to self-renew or
to differentiate when normal. The expression of the v-erbA oncogene induces trans-
formation by blocking their differentiation process [GJP+89]. Therefore the BM2A
team decided to identify the v-erbA target genes responsible for the transformation
process induced by v-erbA. For this they compared the transcriptome of T2ECs, ex-
pressing an oncogenic form of v-erbA, with the transcriptome of T2ECs, expressing
the S61G mutant of v-erbA. This mutant is defective in its ability to inhibit differenti-
ation and to induce erythroid transformation [SP91]. Thus, the comparison between
the transcriptome of cells, expressing either the transforming form of v-erbA or the
S61G mutant of v-erbA, allowed to generate a list of 110 differentially expressed genes
between these two conditions [BKF+07].

We used these v-erbA data sets to extract exact and soft-matching patterns un-
der a differential extraction. We selected the most exceptional patterns based on the
developed measure of interest TZI. The biological evaluation of such patterns con-
firm their putative functional role and thereby exemplify the potential of our motif
discovery method. In order to assess the generality of our approach, we also applied
our method to a second data set, made from a set of promoters of genes, showing dif-
ferential expression, as assessed by SAGE, between self-renewing and differentiating
erythroid progenitors [DKGG+04].

Research Context

To understand the regulation of the gene expression remains one of the major chal-
lenges in molecular biology. One of the elements through which the regulation works
is the initiation of the transcription by the interaction between gene promoter ele-
ments at the level of the DNA sequence and multiple activator and repressor pro-
teins called Transcription Factors (TFs). This interaction occurs when a TF binds
on its binding site on a gene promoter. Numerous efforts have given rise to a va-
riety of computational methods to discover putative Transcription Factors Binding
Sites (TFBSs) in sets of promoters of co-regulated genes. Among them two fam-

5In this chapter we use the term motif to denote a pattern in DNA sequences that is known or
supposed to exhibit a biological function.

7.1. PROMOTER SEQUENCE ANALYSIS 155

ilies can be distinguished: statistical or stochastic approaches, and combinatorial
approaches [VMS99a].

Concerning the family of statistical and stochastic approaches, a recent review
of the most widely used algorithms exhibits rather limited results [TLB+05], and
concludes to the necessity to go on exploring alternative methods. There are several
reasons for their limited success, but it seems that the difficulty to separate the pat-
terns from the random background is among the principal ones. Statistical methods
make hypothesis about the distribution models and assumptions for computational as
well as statistical reasons, but no one knows the correct stochastic process that nature
uses, and what is the biological randomness. Moreover, this stochastic process seems
to be different from species to species: many tools perform much better on the yeasts
data sets than on other species [TLB+05, DD07]. In addition to this, considering the
employed measures of interest, statistical significance is very dependent on the choice
of the length of the promoter sequences: considering longer promoters would allow to
identify regulatory elements located further upstream, but conversely then random
motifs become statistically as significant as the regulatory elements [KP02b].

We focused on the family of combinatorial approaches that aims at an exhaus-
tive motif extraction6 without a priori hypothesis on the underlying stochastic pro-
cess. Exhaustive algorithms enumerate all objects they were built to find. Ac-
cording to [KP02a], probably the best tools for finding consensus based motifs in
DNA sequences are the pattern-driven algorithms that test all the 4l different pat-
terns7 of length l, score each pattern by the number of approximate occurrences
and find the high-scoring patterns. The exhaustive search through all these 4l

patterns becomes impractical for large l, but the length of binding sites in pro-
moter sequences is estimated to be between 5 and 15 base-pairs (bp) [Bul03] and
the mean of these lengths in Transfac R© [MFG+03] is 14.3 bp with standard de-
viation 4.7 bp [FWV+05]. These rather reasonable values of l turn the search to
be tractable in practice. However, the exhaustive methods are often not selective
enough to discriminate true sites from false positives, and thus, because of the
large number of patterns obtained, the user has to rank them by different statis-
tical measures of interest computed under different hypothesis. An effort on devel-
oping exhaustive and optimal approaches (i.e., with guarantee to find all the pat-
terns having the highest or demanded fitness values) for the discovery of patterns in
biosequences has resulted in a number of algorithms to search for putative TFBS,
e.g., [QWK82, WAG84, Sta89, SEVS95b, SV96b, BJVU98b, RF98a] (a systematized
survey of main algorithmic ideas can be found in [BJEG98b]). In practice, they all
require some fitness measure used as a ranking and/or a selection criterion to help
the user to differentiate the true positive patterns from the false positive ones. Many

6I.e., correct and complete extractions (see discussion in Page 26).
7DNA sequences are composed of 4 nucleotides: adenine, guanine, thymine, cytosine. There-

fore such sequences and patterns in them can be seen as strings over the alphabet of 4 symbols
{A,C,G, T}.

156 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

different measures have been proposed, e.g., statistical significance [WAG84, RF98a],
information content [Sta89, WFHW96], ratio of the score of a pattern in a positive
data set divided by the score of the same pattern in a random data set [BJVU98b].
The approach of [DD07] takes one step further and, after having ranked the extracted
patterns according to a measure of fitness, use the most significant ones as the seeds
to build the motifs modelling the TFBSs (in the concrete, the position specific scoring
matrices (PSSMs)).

Motivation

Having in mind the difficulties to model statistically the biological randomness, we
propose to postpone the phase of significant pattern selection, based on a statis-
tical measure, and to use beforehand the supplementary biological information to
constraint the search and thereby reduce the number of extracted patterns. This ad-
ditional information comes in the form of a second data set representing an opposite
biological situation. To collect this information, the method starts with a classical
operation used in molecular biology: the search for differentially expressed genes8.
This allows to obtain two groups of genes from which one can derive two sets of pro-
moters. To look for putative TFBSs regulating the overexpressed genes, we choose
the first set (the promoters of the over-expressed genes) to be used as a positive
set, and the second set as a negative one9. Then our method consists in finding
the patterns occurring on at least minFr promoters from the positive set and on at
most maxFr promoters from the negative set, where the parameter minFr (resp.
maxFr) is supposed to be a large (resp. small) frequency constraint threshold value.
The originality of the proposed method w.r.t the other combinatorial algorithms,
which allow to extract patterns from several data sets (e.g., SPEXS [BJVU98b] or
DRIM [ELYY07]), is that the maximal frequency threshold is set explicitly. This is
particularly interesting, when there is a clear semantic cut between a positive and
negative data sets, and the negative data set has an opposite biological sense (pres-
ence/absence of a mutation; addition or not of a given drug, etc.), and does not just
represent random background. Two kinds of patterns are handled by our method:
patterns having exact matches in the sequences and patterns having approximate
matches (through Hamming match function, see Definition 4.19 in Page 69). In-
terestingly, in both cases, the enrichment of the pattern discovery context, using a
negative data set, reduces the size of the solution set by several orders of magnitude.
Even then, the set of the extracted patterns remains large, and thus we developed a
set of complementary solutions to help to tune the parameters in order to focus on
a manageable and potentially interesting set of patterns. In the next step, we select

8 It consists in comparing two biological situations, A and B, in order to obtain two groups of
genes: one that is up-regulated, and the other one that is down-regulated, when going from A to B.

9 Notice that to characterize the promoters of the repressed genes, one simply has to choose the
repressed genes as the positive set.

7.1. PROMOTER SEQUENCE ANALYSIS 157

the exceptional patterns according to the measure of subtlety [KP02b]: a pattern φ is
considered to be subtle if we expect that some random patterns could occur at least
as often as φ in the positive data set and at the same time no more often than φ in
the negative data set. Then, we verify which patterns are known TFBSs. Identifi-
cation of the TFs that can bind on the patterns specific to the positive data set can
help to discover new regulators of the concerned biological process. Patterns that do
not correspond to known TFBSs are equally interesting since they can be unknown
elements of regulation.

7.1.2 Finding Signature Motifs

7.1.2.1 The Choice of The Solvers

To extract the exact matching patterns (EMP) we used our implementation of the
FAVST solver [DD04] (see Section 3.2.2.2 in Page 51) and to extract the soft matching
patterns (SMP) we used our generic solver’s instance Marguerite-H (see Section 5.3.5
in Page 118). These solvers enable to evaluate arbitrary Boolean combinations of
(anti-)monotonic constraints, including, correspondingly exact-frequency (see Defini-
tion 1.23 in Page 22) and Hamming soft-frequency constraints (see Definition 4.21 in
Page 69). Among them, through a conjunction of a minimum frequency constraint
on a positive data set and of a maximum frequency constraint on a negative data set,
they perform differential extractions.

Other approach to perform differential extractions is to use only a minimum
frequency constraint on a positive data set D+ and to filter the patterns according
to a score, which is a ratio of data strings, containing a pattern in D+, divided by
a ratio of sequences, containing a pattern in a negative data set D− [BJVU98b].
These two approaches are not equivalent. The latter one is convenient, when D− is a
random data set, since it pick out the patterns that are overrepresented in D+ w.r.t.
D−. However, when D− represents an opposite biological situation, and we want to
extract patterns that are not implied in a biological process of that situation, we need
to explicitly push an upper bound for the pattern frequency in D−.

Notice that our solvers we use do not use a predefined alphabet, and can be used,
for instance, on sequences containing extra symbols, like the symbol N to indicate
undefined bases.

7.1.2.2 Taking into Account Biological Information in Combinatorial Pat-
tern Extraction

This work is based on the hypothesis that the transforming activity of v-erbA arises
from the repression of a set of genes and that at least some these genes share some

158 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

regulating TFs, that are absent from most genes activated by v-erbA. The motivation
underlying the development of the method presented here is to help to discover the TF
that participate in the v-erbA-induced transformation process. A classical approach
would consist of identifying the genes repressed by v-erbA and then extracting the
putative TFBS that are the patterns shared by the promoter sequences of these genes.
The problem is that a combinatorial pattern extraction in such a context results in
a large solution set containing many false positives. It is then very hard to pick out
manually true positives in such a plethora of extracted patterns. Our approach is
to first refine the pattern extraction task by introducing a negative data set that
represents the opposite biological situation and thereby reduce the number of false
positives.

In order to find signature motifs for v-erbA target genes, we first created two sets
of promoter sequences of differentially expressed genes:

• a data set denoted R, for the genes repressed by the v-erbA oncogene, composed
of 29 promoters

• a data set denoted A, for the genes activated by of v-erbA, composed of 21
promoters.

Promoter sequences were extracted as previously described in [BKF+07]. If the se-
quences are too short, or if we have a very small number of sequences then many TF-
BSs will be absent from the data, or poorly represented, and the random background
itself will be underrepresented. As this can only degrade the result of differential ex-
tractions, we selected the largest data sets available. However, the data sets should
not be too large, in the sense that they must remain specific to TFBSs locations and
to biological situations. Thus the selected genes (29 in the positive data set and 21
in the negative one, out of the 110 differentially expressed genes) are chosen because
there are known to play a role in the corresponding biological situations. Concerning
the parts of the genes retained to form the sequences, we should avoid to incorporate
in the data sets portions that are not likely to contain binding sites, thus we selected
sequences composed of 3000 bp upstream and 1000 bp downstream, a portion known
to be rich in TFBSs [WHA+03], and thus are composed of 4000 bp.

Data sets R and A represent two biologically opposite situations of interest, and
are used respectively as the positive and the negative data set. A priori interesting
patterns are strings that have many (soft-)occurrences in the positive data set but
only a few in the negative data set. We focus the search on putative TFBSs that
could be used to regulate the transcription of the genes of the positive data set while
they are not likely to have an important impact on the regulation of the genes of the
other set10. To find such putatively interesting patterns we performed differential

10However, we keep in mind that a single TF might be both an activator in the positive set and

7.1. PROMOTER SEQUENCE ANALYSIS 159

extractions of the fault-tolerant string patterns with Hamming match function11,
expressed by the following inductive query

MinSoftFrH,Sφ (minFr,R, k) ∧ MaxSoftFrH,Sφ (minFr,A, k) ∧
MinLengthφ(minLen) ∧MaxLengthφ(maxLen),

where k > 0.

We remind that the solutions to this inductive query are referred as soft matching
patterns (SMPs). We also performed the differential extractions of exact matching
patterns (EMPs) with exact string match function (see Definition 1.21 in Page 21),
expressed by the following inductive query

MinFrv,Sφ (minFr,R) ∧ MaxFrv,Sφ (maxFr,A)
MinLengthφ(minLen) ∧MaxLengthφ(maxLen).

Both SMPs and EMPs are necessary: SMPs allow to gather the degenerated TFBSs
while EMPs are dedicated to pick out the conserved ones.

Figure 7.1 shows the reduction in the number of patterns when using two data
sets (positive and negative) instead of using the positive one only. Graph A (resp.
B) gives the number of EMPs (resp. SMPs) satisfying only a minimum exact (resp.
soft) frequency constraint in the positive data set R w.r.t. the number of EMPs (resp.
SMPs) satisfying both an exact (resp. soft) frequency constraint in the positive data
set R and a maximum exact (resp. soft) frequency constraint in the negative data
set A. The plots represent the number of patterns of length from 5 to 11, extracted
when the minimum frequency threshold minFr varies from 1 to 29, and the maximum
frequency threshold maxFr is set to 7. In the case of SMPs, the allowed Hamming
distance k is set to 1.

7.1.2.3 Selecting Patterns by a Measure of Twilight Zone Indicator

Even if refining the extraction context with a negative data set, corresponding to the
opposite biological situation, reduces the number of extracted patterns up to several
orders of magnitude, there are still too many of them to be verified manually. A
classical approach is to associate to the patterns a measure of interest and select
those having the most relevant measure value. In order to assess the significance of a
pattern we used the notion of Twilight Zone (TZ) [KP02b], presented in Chapter 6,
to build a Twilight Zone Indicator (TZI) (see Section 6.2.6 in Page 135). We remind
that a TZ is a zone in the parameter space, where we are likely to obtain patterns
produced by the random background. Let φ be a pattern of length |φ|, occurring

inhibitor in the negative one (the role of a TF can be determined by the molecular context around
its binding site), but in this case we can detect its influence only if it has a TFBS in the positive
data set different from its TFBS in the negative data set.

11See Definition 4.19 in Page 69

160 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

 0.1

 1

 10

 100

 1000

 10000

 100000

 3 6 9 12 15 18 21 24 27

nb
 o

f E
M

P

min suppAA

min supp
min supp max supp

 0.1

 1

 10

 100

 1000

 10000

 100000

 3 6 9 12 15 18 21 24 27

nb
 o

f S
M

P

min suppBBB

Figure 7.1: Reduction in the number of patterns when using two data sets (positive
and negative) instead of using the positive one only

in SoftFrH,S(φ,D+, k) sequences of the positive data set and in SoftFrH,S(φ,D−, k)
sequences of the negative data set. Then TZI(φ) is an estimate of the minimum
number of patterns of length |φ| that will be extracted together with φ due to the
random background. This minimum value is obtained in the most stringent conditions
(i.e., with the most stringent constraint thresholds) that still lead to the extraction
of φ. These conditions are obtained when we choose minFr = SoftFrH,S(φ,D+, k)
and maxFr = SoftFrH,S(φ,D−, k). We remind that the computation of the TZI is
based on the same hypothesis made in [KP02b]: the data strings are composed of
independent and uniformly distributed nucleotides, and the possible overlapping of
the occurrences of the patterns is considered to have a limited impact on the number
of extracted patterns. In addition, we suppose that the positive and the negative
data sets are independent.

An empirical validation of the TZI on the data sets R and A is given in Sec-
tion 6.2.7 in Page 136.

7.1.2.4 Rising Patterns

Even if we use some domain knowledge to construct a positive and a negative data
sets, a poor constraint setting can lead to the extraction of many patterns likely to be
due to the random background. Therefore we want to choose the parameter values
that focus on the patterns satisfying the most stringent constraints (i.e., having a
large support on the positive data set and a small one on the negative data set).
Such patterns, denoted rising patterns, are interesting, since they are exceptionally
conserved in the context of positive and negative data sets, and thus might be there
to accomplish a biological function.

To find these patterns, we use a parameter tuning method based on the following
remark. When minFr is very large and maxFr is very small, we are likely to

7.1. PROMOTER SEQUENCE ANALYSIS 161

have no pattern satisfying the two constraints. Then if we decrease minFr and/or
increase maxFr (i.e., weaken the constraints) we go towards points in the parameter
space for which we will start to obtain some patterns. Consistently, if from one of
these points we go on decreasing minFr and/or increasing maxFr, we reach points
in the parameter space for which we obtain more and more patterns satisfying the
constraints. The parameter tuning method is based on the notion of rising pattern
defined as follows. For a given value of minFr we consider the minimal value of
maxFr such that we have at least one pattern φ, satisfying SoftFrH,S(φ,D+, k) ≥
minFr and SoftFrH,S(φ,D−, k) ≤ maxFr. The patterns obtained for this minFr
and maxFr values are the rising patterns, i.e., there is no pattern for lower maxFr
values, and for larger minFr values we will have more patterns (or at least an equal
number). Thus the rising patterns are located in the parameter space along a border
that corresponds to the most stringent constraints that still lead to the extraction of
at least one pattern.

Procedure to Find Rising Patterns To find these rising patterns and the cor-
responding parameter values we run an automated serialisation of extractions. Let
Tmin (resp. Tmax) be a set of possible values for minFr (resp. maxFr) ordered by
increasing values. Finding the rising patterns in the parameter space Tmin×Tmax, is
performed as follows:

1. Let minFr (resp. maxFr) be the first element in Tmin (resp. Tmax).

2. Let Sp be the set of patterns obtained when running an extraction with the
constraint parameters minFr and maxFr.

3. If Sp is empty and maxFr is not the last element in Tmax then set maxFr to
the next value in Tmax. Goto step (2).

4. Output Sp as a set of rising patterns.

5. If minFr is not the last element in Tmin then set minFr to the next value in
Tmin. Goto step (2).

It should be noticed that if the set S is empty for a conjunction of minimum and
maximum frequency constraints with the given thresholds minFr and maxFr, then
S is also empty for this conjunctions with thresholds minFr′ and maxFr, where
minFr′ ≥ minFr. The procedure avoids the test of such useless conjunctions.

A more formal way of finding rising patterns, would be to consider it as a multi-
objective optimisation problem [Ste85]: maximizing minFr, minimizing maxFr, un-
der the constraint N > 0, where N is the number of patterns satisfying the minFr
and maxFr thresholds. However, in practice, a pure maximisation of minFr is too
restrictive, because a value of minFr, that is slightly smaller than an optimal one,

162 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

1
3 1 1

2

1
8 2

1
3 1 1

1

101010 8 4 3 2 1
3 2 1

2
2 1

Figure 7.2: Number of rising patterns and number of expected random patterns

can lead to a few more patterns, and can also be interesting. Thus, we consider as
rising patterns (in their definition and in the procedure to find them) the points in
the parameter space that are the solutions of this optimisation problem (the Pareto
optimal set), and also points that are suboptimal solutions (for each minFr value
we find the minimal maxFr such that N > 0) and extract the patterns for all these
points in the parameter space.

Rising Patterns in the Data Sets R and A The graphs A and B in Figure 7.2
give the numbers of rising EMPs and SMPs found in the data sets 〈R,A〉 (the ex-
ploration of the parameter is not made for minFr values smaller than 15, since we
are not likely to be interested in patterns occurring in less than 15 strings out of
29). For a point 〈min supp,max supp〉 in the parameter space the color in the back-
ground corresponds to the log10 of the number of expected random patterns (i.e.,
the log10 of the TZI value for minFr = min supp and maxFr = max supp) in
the data sets 〈R,A〉. The values in the white in graph A (resp. B) circles give the
number of rising EMPs (resp. SMPs) that were extracted with the minimum exact-
frequency (resp. Hamming soft-frequency) constraint threshold minFr = min supp
and maximum exact-frequency (resp. Hamming soft-frequency) constraint threshold
maxFr = max supp. The dashed line indicates the border of the TZ. We observe
that, consistently with the notion of TZI, the rising patterns are situated outside or
in the very beginning of the estimated TZ.

The graph A in Figure 7.2 gives the numbers of rising EMPs of length 6 found in
the data sets 〈R,A〉 and the graph B in Figure 7.2 gives the numbers of rising SMPs
of length 8 with errors threshold k = 1 in the same data sets.

The graphs in Figure 7.2 give a global picture of the parameter space and are
used to guide the setting of the parameters. For instance, if we are looking for an
EMP with a high frequency in the positive data set (e.g., minFr = 27), we have

7.1. PROMOTER SEQUENCE ANALYSIS 163

to accept a rather high frequency in the negative data set (maxFr = 10). Or, on
the contrary, we can use this graph to choose a moderate frequency in the positive
data set (e.g., minFr = 17), and in this case we know that we can get some patterns
having a low support (maxFr = 4) on the negative data set. Moreover, since this
point (minFr = 17,maxFr = 4) in the parameter space is not in the TZ, we can
decide to increase a little the maxFr value and to run an extraction to try to get a
few more patterns. Of course, in this case we will enter the beginning of the TZ, and
thus, among the patterns that will be obtained, several of them are likely to be due
to the random background.

The length of the patterns is also a parameter in itself, and in order to ease its
setting we used Marguerite-H solver (see Section 5.3.5 in Page 118) that performs
an exhaustive extraction within a range of length (from minLen to maxLen). In
practice, no pattern, or no interpretable pattern was found for a length out of the
range minLen = 6 and maxLen = 10. Finally, the last parameter k (used for
SMPs) should be kept as low as possible. When k increases, a pattern matches the
occurrences that are more degenerated, and then is likely to be less specific to one
of the two data sets and/or to be harder to interpret. In this study, the reasonable
choice for k is limited to k = 1 or 2, and patterns that we could interpret, in a useful
way, were found only for k = 1.

Locating the Rising Patterns Analytically It should be noticed that for the
SMPs the increase of execution time12 can, in some cases, prevent the possibility to
run the extractions in a systematic way to explore the parameter space. In this situ-
ation we can still compute very efficiently the expected number of random patterns
using the TZI and thus locate the TZ border. Then, the points along this border can
be used as initial guess to find the rising patterns and their corresponding parameter
settings. Moreover, the rising patterns are located along a rather regular contour,
thus if the extraction time for SMPs is really too high, we can compute them only
for a few minFr values, and still have an idea of the whole curve.

7.1.2.5 Workflow of the Motif-Discovery Process

Finding signature motifs, characteristic of a given positive promoter set w.r.t. a
negative set, is only the first step of the process. The diagram given in Figure 7.3
depicts the complete workflow ultimately designed to find putative TFBSs specific
for a given promoter set.

12Due to the soft occurrences handling and to the decreased minimum frequency constraint selec-
tivity because of the soft-matching [MB07].

164 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

2 sets of promoters:
positive and negative

Marguerite: extraction of EMPs

For each EMP compute its TZI

For each EMP compute its ratio of supports Cluster the SMPs

For each cluster compute the mean of the TZIs

MultAlin: for each cluster perform a multiple
alignment of the SMPs in the cluster to find its

consensus SMP

consensus SMPsEMPs Transfac®

Patchlike: check if the EMPs
correspond to TFBSs reported in Transfac®

EMPs that
are known TFBSs

and their TFs

EMPs that
are not known

TFBSs

consensus
SMPs that are
known TFBSs
and their TFs

consensus
SMPs that are
 not known

TFBSs

Marguerite: extraction of SMPs

For each SMP compute its TZI

Patchlike: check if the consensus SMPs
correspond to TFBSs reported in Transfac®

Figure 7.3: Diagram depicting the steps of the whole motif-discovery process

EMPs and SMPs Extraction Using the solver Marguerite-H we extract EMPs
(resp. SMPs), specific to the positive data set, i.e., all patterns satisfying a minimum
exact-frequency (resp. Hamming soft-frequency) constraint in the positive data set
and maximum exact-frequency (resp. Hamming soft-frequency) constraint in the
negative one.

Measures of Interest for EMPs The TZI measure (see Section 6.2.6 in Page 135)
is computed for every extracted EMP. For EMPs, we also compute as an additional
measure the following ratio: the pattern frequency in the positive data set divided by
the pattern frequency in the negative data set. The higher is the value of this ratio,
the more specific to the positive data set is the pattern.

7.1. PROMOTER SEQUENCE ANALYSIS 165

SMPs Clusters The TZI measure is also computed for every extracted SMPs.
However, the number of extracted SMPs is much larger than the number of EMPs
(see graphs H and D in Figure 6.1), and many SMPs are similar to other SMPs
obtained at the extraction (due to the fault-tolerant matching). Thus, we grouped
the similar SMPs by performing a hierarchical clustering of the patterns. The hier-
archical clustering of the SMPs patterns is computed by the hclust function of the
package stat of the R environment [r]. The proximity between clusters is computed
using the complete linkage method. To construct a distance matrix we estimate the
dissimilarity of each pair of SMPs as follows. For each pair 〈φ1, φ2〉 we compute its
optimal pairwise global alignment [NW70a] with the following parameters: the score
for a mismatch is 1, the score for a match is 0, the insertions and deletions inside
an alignment are not allowed, the terminal gaps are not penalized, and the length
of an alignment (terminal gaps are not included in the alignment length) must be at
least a half of the shortest pattern in the pair (i.e., must be of size greater or equal
to min(|φ1|, |φ1|)/2). Then, the dissimilarity of the pair of SMPs is computed as
the score of the best alignment divided by its length. To ameliorate the quality and
efficiency of the clustering we process the SMPs by groups of patterns having the
same length.

Measure of Interest of SMPs Clusters The measure of interest of each SMPs
cluster is the average of the TZI of the patterns in the cluster.

Consensus of the SMPs Cluster To find the representative (consensus) pattern
of each cluster of SMPs we align the patterns in each cluster using the multiple
alignment tool MultAlin [Cor88]. We use the following alignment scoring parameters:
gap creation and extension penalty is −5, terminal gaps are not penalized, score for
a match is 2, and score for any mismatch is 0. Once a consensus SMP is computed
we can use Patchlike or consult Transfac R© to check whether it is a known TFBS.
Figure 7.4 gives an example of a cluster whose consensus SMP is a binding site of
the TF c-Myb-isomorf1.

EMPs and Consensus SMPs that are the known TFBSs Finally, for both
EMPs and consensus SMPs, we use the tool Patchlike to check with respect to
the Transfac R© database, which patterns are known TFBSs. Patchlike is a tool,
developed in our biologist collaborator team BM2A in the Center for Molecular and
Cellular Genetics. It not only mimics13 but also serializes the search that can be

13To analyse the biological sequences the BM2A team uses a Macintosh platform. The programs
coming with TransfacR© are platform dependent, and unfortunately there is neither compiled dis-
tribution for the Macintosh platform nor source code available. Therefore, to obtain the Patch-like
functionality, the Patchlike tool was developed (it is written in Perl language).

166 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

 Alignment TZI

 .CGGCCGTT... 23.94
 .GCGCCGTT... 0.68
 ...GCCGTTAT. 4.4
 CCGTTCGT 4.4
 ...GCCGTTCG. 23.75
 CCGTTAGG 0.68
 TTGGCCGT.... 23.75
 ...GCCGTAAC. 107.37
 ..TGCCGTAA.. 0.58
Consensus ...gCCGTt...
Transfac: cMybisoform1
Mean of TZI: 21.06

Figure 7.4: Example of a cluster of SMPs and its consensus computed by a multiple
alignment. The concensus corresponds to a binding site of the TF c-Myb-isomorf1.
A base is weakly conserved if it is shared by at least 50% of the patterns and highly
conserved if it is shared by at least 90% of the patterns. The bases that are highly
conserved appear in red in the patterns and as uppercase letters in the consensus.
Bases that are weakly conserved appear in green in the patterns and as lowercase
letters in the consensus. Not conserved bases appear in black in the patterns. The
positions with no conserved bases are indicated by dots in the consensus.

7.1. PROMOTER SEQUENCE ANALYSIS 167

made with the tool PatchTM14 : Patchlike takes a collection of strings as input
(in our case, they are the extracted patterns) and searches in these strings for the
TFBSs, listed in the Transfac R© data files. For a given string (pattern φ), Patchlike
retains the TFBSs that are contained in φ (i.e., equal to φ or substrings of φ). In
Patchlike we only vertebrate data files are used. The mismatches between an input
string (pattern) and a TFBS are not allowed. In spite of that, the searches can
result in a quite large number of TFBSs that might burden the analysis. Therefore
we retrieve only the longest TFBS that are contained in φ. Patchlike considers an
input sequence and its reverse complement to look for the TFBSs in forward and
reverse direction.

We are particularly interested in patterns that are the binding sites of the TFs,
involved in the v-erbA transforming activity. Untill this point, the extraction process
does not rely upon any collection of known motifs. It is therefore obvious that some
of the extracted motifs will not correspond to any known TFBS, either in Transfac R©

or in any other database. Those motifs can be qualified as putative unknown binding
sites, and are candidates for experimental analysis.

7.1.3 Results

7.1.3.1 Patterns that are Putative Binding Sites of TFs Involved in v-
erbA Transforming Activity

The particularity of our method to use both a positive and a negative data set,
representing opposite biological situation, is a major reason why it would not be
relevant to test our algorithm on a classical benchmark, such as [TLB+05] or [HK05],
which uses only one set of sequences. Furthermore, as pointed by [DD07], we lack an
absolute standard against which to measure the correctness of any motif-finding tool.
Therefore, to assess our approach, we concentrated on the biological interpretation
of some of the extracted patterns.

EMPs We first extracted rising EMPs (see Section 7.1.2.4in Page 160) of length
from 5 to 10 within an interval of thresholds for minimum frequency from 15 to 29
(corresponding to a relative frequency ranging from 51.7% to 100% of the sequences)
in data set R and an interval of thresholds for maximum frequency from 0 to 11
(corresponding to a relative frequency ranging from 0% to 52.4% of the sequences)
in data set A. These intervals are rather large, and the worst case (minFr = 15 and
maxFr = 11) is likely to lead to uninteresting patterns (not biologically founded).

14PatchTM is a tool integrated in TransfacR© which identifies known TFBSs in a given string. One
can verify whether the extracted patterns are known TFBSs by supplying them as input to PatchTM.
The database TransfacR© is distributed in plain text files altogether with a graphic interface written
in Perl CGI and C programs that implements various functionalities, including PatchTM.

168 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

EMP Supp Ratio TZI TFBS TF
in R Supp in R

Supp in A

GGAAACA 18 6 0.02 GGAAAC (+) Net
TGTTTC (–) AR, GR-alpha

CGCTGCG 17 5.67 0.09 GCTGC (+) CTCF
TGCAAAC 17 5.67 0.09 GTTTG (–) ZEB (1124 AA)
CAGTTA 19 4.75 0.1 CAGTTA (+) c-Myb, c-Myb-isoform1

TAACTG (–) c-Myb
TAACT (–) RXR-alpha

AGATAT 17 4.25 0.2 AGATAT (+) GATA-3/3 isoform 1/
4/5A/5B/6A/6B

ATATCT (–) GATA-1/1 isoform 1/
3/3 isoform-1

AGATA (+) GATA-1/3/4/6
TATCT (–) GATA-1

Table 7.1: Rising EMPs that are putative TFBSs bound by TFs involved in the
v-erbA transforming activity. The sign indicates the direction of the match: (+)
forward and (–) reverse complement.

However on data sets, containing an underlying structure, the procedure to find rising
patterns does not reach such extreme cases, since rising patterns are obtained before,
for more interesting minFr and maxFr values. This is actually the case for the
data sets R and A, where, for the rising patterns, minFr was always greater than
2.4 × maxFr. In these extractions we obtained 33 rising EMPs, for each of them
we computed its TZI measure and its frequency ratio (i.e., frequency in data set R
divided by its frequency in data set A), and looked at putative binding TFs with
Patchlike. After visual inspection of these information, the biologist collaborators
from the BM2A group selected five rising EMPs as candidates for further biological
explorations, because they had a high frequency in the positive data sets R, a high
frequency ratio, an interesting TZI value (i.e., low value) and meaningful putative
binding TFs (Table 7.1).

These patterns were extracted for the following (minFr,maxFr) pairs: (17,3),
(18,3) and (19,4). Some other EMPs have quite high frequency ratio, high frequency
in data set R, and low TZI value, but are not known TFBS in Transfac R© (not
shown). This is one of the benefit of such unsupervised approach to allow such
unknown motif discovery. Since our knowledge of TFs-TFBSs relationship is still
very incomplete, the best rated of those motifs could be used for functional assay
using reporter gene transfection, and may lead to the discovery of new TFs, relevant
for v-erbA-induced transformation.

7.1. PROMOTER SEQUENCE ANALYSIS 169

Among the EMPs, displayed in Table 7.1, one of the most interesting for our bi-
ologist collaborators is CAGTTA, which is a known binding site for the transcription
factor c-Myb. This pattern has a quite high frequency ratio (4.75), a high frequency
in data set R (19 out of 29 promoters), and an interesting TZI value (0.1). Since this
pattern appeared in a previous exploration of the same set of promoters, we had the
opportunity to assess its putative relevance for the v-erbA-induced transformation
process. The biologists indeed could demonstrate the existence of a functional inter-
action between v-erbA and c-myb [BKF+07], thereby demonstrating the biological
relevance of this approach. Other patterns, given in Table 7.1, were also reported as
interesting ones, since they can be expected knowing the molecular action of v-erbA
(for detailed analysis see our paper [MRS+08]).

Take notice that a similar search can of course be performed using the A set of
promoter sequences as the positive set. In this case, one should note that, although
patterns are, by construction, specific of a given promoter set, TFs binding those
patterns can appear on both data sets (of course, in this case, the same TF will
bind different patterns in the two sets). The user can perform both searches using
sequentially both promoter sets as the positive set, and then either focus only on
set-specific TFs or on TFs shared by the two sets.

SMPs In the case of SMP, we estimated analytically (as described in Section 7.1.2.4
in Page 163) that with minimum Hamming soft-frequency threshold equal to 17 (it
corresponds to 58.6% in relative frequency) on a data set R∗ and maximum Hamming
soft-frequency threshold equal to 10 (it corresponds to 47.6% in relative frequency)
on a data set A∗ the SMP of length between 7 and 11 are outside or in the beginning
of the TZ. Thus we extracted the SMPs satisfying the length and Hamming soft-
frequency constraints with these parameters in data sets R and A.

Table 7.2 gives five consensus SMPs that have the best mean of TZI and are
known TFBSs. These consensus SMPs are issued from hierarchical clustering of the
SMPs of length 8 using the complete linkage method and a cut-off level of 50% (see
Paragraph SMPs Clusters in Page 165).

One can note an extensive similarity between the TFs binding to the SMPs and
those binding to the EMPs. This concerns both the sites bound by nuclear receptors
(RXR, RAR and GR) and those bound by GATA-1. Among the unexpected factors,
the biologist collaborators found the HoxA9 homeogene. For the BM2A group it
opens some several interesting hypothesis to examine (see our paper [MRS+08] for
details).

170 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

Consensus Nb of SMP Mean of TFBS TF
SMP in cluster TZI

ta.cTaTg 9 16.7 TAACT (+) RXR-alpha
TATCT (+) GATA-1
AGATA (–) GATA-1/4/6

TaGttag 11 24 TAACT (–) RXR-alpha
aTagTg.t 13 34.9 AGTGGT (+) GR, GR-alpha
t.TCAACt 6 35.8 TCAACT (+) CAR2:RXR-alpha

CAR/PXR:RXR
AGTTGA (–) RAR-alpha1, RXR-alpha
CAACT (+) c-Myb-isoform1

aCgTt.a 17 36.9 TGAACG (–) HOXA9
TAACG (–) c-Myb-isoform1
GTTCA (+) RAR-alpha1, T3R-alpha

Table 7.2: Consensus SMPs that are putative TFBSs bound by TFs involved in
the v-erbA transforming activity. The sign indicates the direction of the match: (+)
forward and (–) reverse complement.

7.1.3.2 Patterns that are Putative Binding Sites of TFs Involved in the
Self-Renewal of Eryhroid Progenitors

In order to assess the generality of our approach, the biologist collaborator group
BM2A also applied the presented method to a second data set, made from the pro-
moters of genes showing differential expression, as assessed by SAGE, between self-
renewing and differentiating erythroid progenitors [DKGG+04]. In this case we only
applied the EMP-based strategy, in order to isolate TFBSs specific for the promoters
of genes significantly more expressed in the self-renewal condition than after induc-
ing differentiation. The data set was made of 28 promoter sequences in the positive
set, denoted AR, and of 16 promoter sequences in the negative set, denoted Diff
(promoters of genes whose the expression is up-regulated during the first 24 hours
of differentiation [DKGG+04]). An exhaustive search for rising EMPs returned 55
different motifs. As previously described, patterns were selected for further analysis
based upon : 1) their TZI value, 2) their frequency ratio in a positive and negative
data sets, and 3) their Transfac R© identification. This left us with 4 motifs (Ta-
ble 7.3), the biological significance of them was further assessed by the BM2A group
(see our paper [MRS+08]).

7.1. PROMOTER SEQUENCE ANALYSIS 171

EMP Supp Ratio TZI TF
in AR Supp in AR

Supp in Diff

CAGTTCT 16 5.3 0.41 c-Myb
CTGCTGG 21 3.5 .000042 c-Maf (long form)
ATGCAGC 17 5.7 0.078 CTCF
CACCCAC 15 7.5 1.05 EKLF

Table 7.3: Rising EMPs that are putative TFBSs bound by TFs involved in the
self-renewal of normal erythroid progenitors.

7.1.4 Discussion

An important research effort has been dedicated to the extraction of motifs to find
putative TFBSs, but even the best today techniques report limited results in prac-
tice [TLB+05, HK05, DD07]. These techniques, based on combinations of efficient
extraction strategies together with dedicated statistical measures, often still suffer
from high false positive rates and/or from the difficulty to select appropriated pa-
rameters. We have used a new method, that incorporates as a central aspect the use
of background knowledge, in the extraction algorithm itself, to reduce the number
of false positives, and that makes use of an effective parameter tuning strategy. To
help the user to pick up the most promising patterns among the ones extracted, the
whole process also includes the two following additional steps:

1. the computation of an interestingness measure based on the notion of the Twi-
light Zone [KP02b] (see Chapter 6 and in particular Section 6.2.6 in Page 135),

2. the automated retrieval of the TFBSs known in Transfac R© (together with the
corresponding TFs), for the TFBSs that are similar to the extracted patterns.

The current knowledge about TFs and TFBSs does not permit to determine the
set of true positive (the set of TFBSs in a gene promoter sequence involved in the
regulation of this gene), and thus we do not provide an estimate of the number of
true positive TBFSs that may be missed by the method.

The major strength of the whole approach is that it does not only rely on a
model of the random background to assess the interestingness of the patterns, but
uses one data set in which the patterns are searched, and incorporates as background
knowledge a second data set in which the patterns of interest are not likely to appear.
Although it seems simple, this strategy is not supported by the state of the art
techniques to find putative TFBSs. In fact, putting at work this strategy is not
straightforward in practice, in particular we have to face a large parameter spaces
(one frequency threshold for each of the two data sets, the size of the patterns,

172 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

the degree of approximated matching allowed) and selecting appropriated parameter
values is a difficult task that may even turn to be prohibitive. Thus, the second main
point of the proposed method is to provide an explicit parameter tuning technique,
that turns out to be effective in practice.

This approach was assessed by using two pairs of sets of promoters, each pair
consisting in positive examples, and negative ones, derived from differential gene
expression experiments. The results of this study provided our biologist collaborators
with new hypothesis and insights in the self-regulation mechanism (they are detailed
in our paper [MRS+08]).

7.2 Starting an Application to Comparative Genomics

7.2.1 Background

The domain of comparative genomics concerns the relationship of genome structure
and function across different biological species or strains. Informally, comparative
genomics can be seen as an attempt to take advantage of the information provided
by the signatures of selection to understand the function and evolutionary processes
that act on genomes. One of the comparative genomics tools is to identify the common
parts of genomes of the different biological species.

In this section we present an opening to the application of correct and complete
fault-tolerant pattern extraction to the comparative genomic analysis. In the con-
crete, we considered the extraction of frequent InsDels fault-tolerant patterns15 that
are common to the four species of yeast: S. cerevisiae, S. bayanus, S. mikatae and S.
paradoxus. To extract such patterns we applied our generic solver Marguerite-SoftFr16.
This work was carried out in a collaboration with the IQ (FP6-516169) project collab-
orator, biologist and computer scientist Dr. Ross D. King (Department of Computer
Science, University of Aberystwyth).

7.2.2 Mining Yeasts Genomes

The task of finding frequent InsDels fault-tolerant patterns that are common to the
four yeats genomes S. cerevisiae, S. bayanus, S. mikatae and S. paradoxus can be
expressed by the following inductive query:

IQyeasts = MinSoftFrInsDels,Sφ (minFr,S. cerevisiae,maxIns,maxDels)∧
MinSoftFrInsDels,Sφ (minFr,S. bayanus,maxIns,maxDels)∧

15See Section 5.3.2 in Page 105.
16See Section 5.3.3 in Page 108

7.2. STARTING AN APPLICATION TO COMPARATIVE GENOMICS 173

Table 7.4: S. cerevisiae, S. bayanus, S. mikatae and S. paradoxus genomes data
description

Nb of seqs Min Length Max Length
S. cerevisiae 5306 360 23820
S. bayanus 4492 360 29400
S. mikatae 4525 480 39900
S. paradoxus 4788 420 99360

MinSoftFrInsDels,Sφ (minFr,S. mikatae,maxIns,maxDels)∧
MinSoftFrInsDels,Sφ (minFr,S. paradoxus,maxIns,maxDels)∧
MinLengthφ(minLen) ∧MaxLengthφ(maxLen)

We performed the extraction for various minFr values. We extracted the patterns
of length 6 and 7 (i.e., minLen = 6 and maxLen = 7): the shorter patterns tend to
be an artifact and the extraction of longer patterns becomes costly in time efficiency.
We estimated that for this pattern length the adequate fault-tolerance thresholds,
establishing a symmetric similarity relation, are maxIns = 1 and maxDels = 1.

7.2.2.1 Data

We downloaded the genome sequences, composed of the Open Reading Frames17

(ORFs) and the intergenic regions, of S. cerevisiae, S. bayanus, S. mikatae and S.
paradoxus from Broad Institute of MIT and Harvard 18. These genomes have suf-
ficient sequence similarity and enough sequence divergence to recognize conserved
functional elements [KPE+03].

Table 7.4 gives the number of sequences, minimal and maximal sequence length
for each such genome.

7.2.2.2 Number of Patterns in ORFs and Intergenic Regions

The graph in Figure 7.5 depicts the number of patterns satisfying the inductive
query IQyeasts (see in Section 7.2.2 in Page 172), i.e., a minimum InsDels soft-
frequency constraint in all four genomes of S. cerevisiae, S. bayanus, S. mikatae and
S. paradoxus, with varying minimum frequency threshold minFr. We separately
extracted patterns in the ORFs and intergenic regions.

17An open reading frame is a portion of an organism’s genome which contains a sequence of bases
that could potentially encode a protein.

18http://www.broad.mit.edu/annotation/fungi/comp yeasts/downloads.html

174 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

 50

 100

 150

 200

 250

 300

 50 60 70 80 90 100

n
u
m
b
e
r

o
f

p
a
t
t
e
r
n
s

soft supp, %

intergenic
orf

Figure 7.5: Number of patterns common to all four yeasts genomes with different
soft-frequency thresholds

We observe that there are far less patterns in the intergenic regions than in the
ORFs. This is biologically coherent since ORFs tend to be highly conserved, and
intergenic regions are prone to mutations.

7.2.2.3 Distribution of Locations of Patterns

We refer the position in a genomic sequence, where pattern’s soft-occurrence (i.e. a
string that is in a InsDels similarity relation19 with a pattern) as the location of a
pattern. We recall that an occurrence that is equal to a pattern, called the exact-
occurrence, is also its soft-occurrence (it is certainly similar enough to a pattern).

By a distribution of locations of patterns we mean the distribution of soft-occurrences
of patterns in sequences. To study such distribution, we divide sequences into inter-
vals of 20 nucleotides (symbols), and we count how many soft-occurrences of extracted
patterns are placed in each interval. Take notice that if several soft-occurrences of the
same pattern are placed in the same interval on the same sequence, we increment a
count for that interval by one (and not by a number of soft-occurrences in question).

19See Definition 5.6 in Page 104

7.2. STARTING AN APPLICATION TO COMPARATIVE GENOMICS 175

We remind that we extracted patterns that satisfy a minimum InsDels soft-
frequency constraint in all four yeasts genomes, and we want to estimate the dis-
tribution of locations of these patterns in sequences of S. cerevisiae, S. bayanus, S.
mikatae and S. paradoxus.

Distribution of Locations in ORFs We divide each ORF into virtual intervals
of 20 nucleotides, and we count the number of locations of patterns’ soft-occurrences
in such an interval.

ORF

ORF

2 31

1 2 3 4

A, A1 A2

A, B A, B1

Figure 7.6: Distribution of locations of patterns in ORF

Example 7.1 Assume that φ1 and φ2 are extracted patterns. Let A, A1 and A2 de-
note the soft-occurrences of φi (note that exact-occurrences are also soft-occurrences),
and B, B1 denote the soft-occurrences of φ2. Consider Figure 7.6, which depicts the
locations of φ1 and φ2 in the ORFs of two DNA sequences, divided into intervals.
According to our approach to examine the distribution of locations of extracted pat-
terns, one can see that in the first sequence interval numbered 1 has no locations,
intervals 2, 3 have one location of pattern φ1, and in the second sequence intervals
1, 3 have no locations, and intervals 2, 4 contain one location of φ1 and one of φ2.
When counting a number of these locations for intervals, we get that interval 1 has
no locations, interval 2 has three locations, interval 3 has one location, and interval
4 has two locations.

The length of ORFs in DNA sequences of studied genomes is variable, and con-
sequently the number of intervals of 20 nucleotides in each DNA sequence is also
variable. Some sequences that have very long ORFs and thus many intervals, but
there are very few of them (a number of sequences for a number of intervals is plotted
in Figure 7.7).

To estimate the distribution of locations of extracted patterns we decided to look
at intervals that are present in (supported by) at least 70% of sequences in corre-
sponding genomes. The number of intervals and the number of sequences containing
them is depicted in Figure 7.8.

176 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700

n
u
m
b
e
r

o
f

s
e
q
u
e
n
c
e
s

number of interval

S.Cer
S.Bay
S.Mik
S.Par

Figure 7.7: Number of sequences that contain a given number of ORF intervals

If the distribution of patterns’ locations is strongly correlated with the corre-
sponding curves given in Figure 7.8, then the number of patterns’ locations in ORF
intervals could be explained only by the number of sequences having these intervals
in their ORFs. This would mean that there is any evidence whether the extracted
patterns capture the regularities, common to the four genomes due to their evolu-
tional relationship. To investigate this, we took the patterns, satisfying the minimum
InsDels soft-frequency constraint in the four genomes with the minFr threshold of
70%, and computed the distribution of their locations. There are 239 such patterns
of length 6 ≤ l ≤ 7.

The number of patterns’ locations present in the ORF intervals is plotted in
Figure 7.9. We observe that the number of locations decrease constantly but not
linearly when the interval goes away from the start of ORF. It is interesting that the
peak of the number of locations is not in the very begining of the ORF, and after
that peak we observe a quite deep decrease, while the number of sequences containing
these parts of ORFs (Figure 7.8) decreases in a very slow and stable manner. The
peaks alter the decreases during all the way of the curves of locations’ number, and
they all follow the same pattern of movement. One can also see that it is the curve
of S. paradoxus that reproduces the most closely the behaviour of the curve of S.
cerevisiae. This is encouraging since phylogenetically S. cerevisiae and S. paradoxus

7.2. STARTING AN APPLICATION TO COMPARATIVE GENOMICS 177

 3000

 3500

 4000

 4500

 5000

 5500

 5 10 15 20 25 30 35 40 45 50

n
u
m
b
e
r

o
f

s
e
q
u
e
n
c
e
s

number of interval

S.Cer
S.Bay
S.Mik
S.Par

Figure 7.8: Number of sequences that contain a given number of ORF intervals that
are present in at least 70% sequences

are most closely related [KPE+03]. Another most close relative of S. cerevisiae is S.
mikatae. All these observations make part of arguments that distribution of extracted
patterns is not uniform but reflects some biological reality.

Distribution of Locations in Intergenic Regions To estimate the distribution
of locations of soft-occurrences of patterns in the intergenic regions we proceeded in
a manner analogous to the one used for ORFs.

Intergenic regions were divided into intervals of 20 nucleotides. As intergenic
regions are DNA parts that precedes and follows an ORF, to number them we consider
that an ORF is a zero point, first 20 nucleotides preceeding an ORF constitutes an
interval nb. −1, second 20 nucleotides preceeding an ORF constitutes an interval
nb. −2, etc. ; first 20 nucleotides following an ORF constitutes an interval nb. 1,
second 20 nucleotides following an ORF constitutes an interval nb. 2, etc. We count
a number of locations of extracted patterns in these intervals.

Example 7.2 Assume that φ1 and φ2 are extracted patterns. Let A, A1 and A2 de-
note the soft-occurrences of φi (note that exact-occurrences are also soft-occurrences),

178 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

 120000

 140000

 160000

 180000

 200000

 220000

 5 10 15 20 25 30 35 40 45 50

n
u
m
b
e
r

o
f

p
a
t
t
e
r
n
s
’

l
o
c
a
t
i
o
n
s

number of interval

S.Cer
S.Bay
S.Mik
S.Par

Figure 7.9: Number of locations present in a corresponding interval in ORF

and B, B1 denote the soft-occurrences of φ2. Consider Figure 7.10, which depicts
the locations of φ1 and φ2 in the intergenic regions of two DNA sequences, divided
into intervals. According to our approach to examine the distribution of locations of
extracted patterns, one can see that in first sequence intervals numbered 3,−1,−3,−4
have no pattern locations, interval 1 has one location of φ1 and one of φ2, interval
2 has one location of φ2, and interval −2 has one location of φ1; and in the second
sequence intervals numbered 1, 3,−1 have no locations, interval 2 has one location of
φ1 and one of φ2, and interval −2 has a location of φ2. When counting a number
of these locations for intervals, we get that intervals 3,−1,−3,−4 have no locations,
intervals 1,−2 has two locations, and interval 2 has three locations.

Again, as the length of ORFs in DNA sequences of studied genomes varies, the
number of intervals of 20 nucleotides in the intergenic regions of different DNA se-
quences is also variable. Some sequences have very long intergenic regions and thus
many intervals, but there are quite few of them (a number of sequences for a number
of intervals is plotted in Figure 7.11).

To estimate the distribution of locations of extracted patterns we looked at the
intervals that are present in (supported by) at least 70% of sequences in corresponding
genomes. The numbered intervals and the number of sequences containing them is

7.2. STARTING AN APPLICATION TO COMPARATIVE GENOMICS 179

ORF

ORF

1 2 3−1−2−3−4

2 31−1−2

A1, A2, B, B1B

A1, A2 A, B, B1 B

Figure 7.10: Distribution of locations of patterns in intergenic regions

 1

 10

 100

 1000

-1000 0 1000 2000 3000 4000 5000

n
u
m
b
e
r

o
f

s
e
q
u
e
n
c
e
s

number of interval

S.Cer
S.Bay
S.Mik
S.Par

Figure 7.11: Number of sequences that contain a given number of intergenic intervals

depicted in Figure 7.12.

We took the patterns satisfying the minimum InsDels soft-frequency constraint
in the four genomes with the minFr threshold of 70% to compute the distribution
of their locations. There are 17 such patterns of length 6 ≤ l ≤ 7. A number of
patterns’ locations present in intervals of intergenic region is plotted in Figure 7.13.

We observe that the distribution of patterns’ locations in the intervals of inter-
genic regions can not be explained only by the number of sequences containing these
intervals (see Figure 7.12). The largest peak of patterns’s locations is at small dis-
tance from the start of an ORF, followed by the largest decrease just before an ORF

180 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

 3000

 3500

 4000

 4500

 5000

 5500

-20 -15 -10 -5 0 5 10 15 20

n
u
m
b
e
r

o
f

s
e
q
u
e
n
c
e
s

number of interval

S.Cer
S.Bay
S.Mik
S.Par

Figure 7.12: Number of sequences that contains a number of intergenic intervals that
are present in at least 70% sequences

(note that the number of sequences increases in that part of intervals). The curves
for different genomes follows the same pattern of movement. These observations sug-
gest that the distribution of the extracted patterns is not uniform but reflects some
biological reality.

7.2.3 Discussion

The obtained results suggest that the extracted patterns that are common and fre-
quent in all four genomes of S. cerevisiae, S. bayanus, S. mikatae and S. paradoxus
captures and reflects their conserved genome structure. Note that to assess this sug-
gestion one should validate that these results is not the artifact of having divided the
sequences into the intervals of 20 nucleotides.

7.2. STARTING AN APPLICATION TO COMPARATIVE GENOMICS 181

 5000

 10000

 15000

 20000

 25000

 30000

 35000

-20 -15 -10 -5 0 5 10 15 20

n
u
m
b
e
r

o
f

p
a
t
t
e
r
n
s
’

l
o
c
a
t
i
o
n
s

number of interval

S.Cer
S.Bay
S.Mik
S.Par

Figure 7.13: Number of locations present in a corresponding interval in the intergenic
regions

182 CHAPTER 7. GENOMIC SEQUENCE ANALYSIS

Part IV

Conclusions and Perspectives

183

Conclusions

In this doctoral research work, we focused on Knowledge Data Discovery in string
data with an application on promoter sequence analysis. The state-of-art in the
beginning of our work could be resumed as

(a) recent advantages in inductive databases research have given rise to a generic
solver capable to solve the inductive queries that are arbitrary Boolean com-
binations of anti-monotonic and monotonic constraints to mine generic pat-
terns (i.e., the patterns from any pattern language) [DJDM02, DD03]; the in-
stance of this generic solver is available to mine string patterns from string data
sets [DJDM02, DD04];

(b) the research work in the domains of signal processing, error correction, text
and information retrieval, and especially bioinformatics have given a number of
approaches to represent and extract the fault-tolerant patterns in string data;
the resulting solvers are ad-hoc solvers, i.e., they are dedicated to evaluated one
tight combination of constraints;

(c) the generic solvers exploit the search space pruning strategies that are based
on the property of (anti-)monotonicity; the fault-tolerant patterns rely on the
similarity constraint, which is fundamentally neither anti-monotonic, nor mono-
tonic, because of the non-transitivity of the similarity relation.

We decided to study the perspective of the generic solver to mining fault-tolerant
patterns in string data. Subsequently we faced the problem of evaluating the inter-
estingness of the extracted (fault-tolerant) string patters - the local pattern discovery
should not overwhelm the domain experts with the huge collections of patterns con-
taining predominantly irrelevant patterns. Irrelevancy must be understood in terms
of both objective and subjective interestingness. We propose to evaluate it by esti-
mating the expected number of (fault-tolerant) string patterns that will be extracted
with the given extraction parameters. The main results of this doctoral research work
concern these two research topics and can be summarized as following:

• Similarity and Soft-Frequency Constraints [MB06, MB07]

185

186 Conclusions

It is common that real life data contains errors due to technological issues con-
cerning data collection, storage and transmission. In some application domains
they may be also due to somewhat exploratory alphabet design. Also, data
representing real world phenomenon is often intrinsically degenerated. To cap-
ture knowledge when working with such data, a fault-tolerance is needed.
The objective was to formulate similarity and soft-frequency constraints so that
they are Boolean combinations of monotonic and anti-monotonic primitive con-
straints. We present two alternative ways of tackling fault-tolerance by means
of (anti)-monotonic constraints using the notion of similarity.

We designed the generic solver Marguerite-{Sim,SoftFr} that employs the ef-
ficient generic strategies [DJDM02, DD03, DD04] for solving arbitrary combina-
tions of similarity and/or soft-frequency constraints with other (anti)-monotonic
constraints.

• Twilight Zone [BRMB08, MRS+08]
Within the Inductive DataBase (IDB) framework, the constraints being an
interesting medium to define the kind of local patterns we are looking for, we
do not have much information about how to fix the constraint parameters. In
other words, if the constraint thresholds setting is too lax then a huge collection
of potentially irrelevant patterns is provided to the domain expert, and if the
constraint thresholds setting is too stringent then no pattern is extracted. A
common practice is to count the number of patterns obtained for a few different
parameter settings to guess what could be the interesting parameter values for
a deeper investigation. When considering a conjunction of primitive constraints
giving rise to a large multidimensional parameter space, we cannot afford to
run hundreds or thousands of experiments to probe such a space.
The objective is to estimate the expected number of string patterns that satisfy
a conjunction of minimum and maximum (soft-)frequency constraints.
We proposed two approaches to estimate the expected number of patterns: (1)
computing an analytical estimate of the expected number of extracted patterns
from the features of the data set and (2) computing an analytical estimate of
the expected number of extracted patterns from pattern space samples.

• Application to promoter sequence analysis [MRS+08]
To understand the regulation of gene expression remains one of the major chal-
lenges in molecular biology. We collaborated with biologist of the BM2A group
working on ”Molecular Basis of Self-Renewal”. Self-renewal is a characteristic
property of stem cells. Therefore the BM2A team decided to identify v-erbA
target genes responsible for the transformation process induced by v-erbA. We
used these v-erbA data sets to extract the exact and soft-matching patterns
under a differential extraction.
We selected the most exceptional patterns based on the developed measure
of interest TZI. The biological evaluation of such patterns confirm their puta-

Conclusions 187

tive functional role and thereby exemplify the potential of our motif discovery
method. The results of this work also provided our biologist collaborators with
the new hypothesis and insights in the self-regulation mechanism).

188 Conclusions

Perspectives

We now provide some perspectives of these doctoral work.

Generic Solver to Mine the Structured Patterns

In this thesis work we considered the generic solver to mine fault-tolerant patterns,
expressing the regularities composed of one element. In some cases the regulari-
ties can be compound of several such elements, separated by gaps (also referred as
non-conserved regions). This is typically a case for the transcription factors, which
often work in groups and thereby binds a number of sites to launch the expression
of a gene. Marie-France Sagot et al. considered the structured fault-tolerant pat-
terns language, allowing to capture such compound regularities and proposed an
algorithm to extract such structured patterns under the minimum frequency con-
straint20 [MS00a, MS00b]. The proposed algorithm being an ad-hoc solver, one can
not use it solve a different combination of constraints, e.g., to mine the structured
patterns satisfying the minimum frequency constraint in a positive data set and the
maximum frequency constraint in a negative data set. One of the perspectives of this
thesis is to search for the generic solver instances for other fault-tolerant pattern lan-
guages, e.g., the structured fault-tolerant patterns. The algorithm of [MS00a, MS00b]
exploits the underlying suffix tree data structure, which is a close cousin of the VST
data structure21, employed by the generic solver instances FAVST and Marguerite.
This holds a promise of the presumed success on this research perspective.

Tune for the Promoter Sequence Analysis

The close collaboration between the computer scientists TURING group in LIRIS and
biologists group BM2A in CMCG opened a possibility to apply the obtained results
in the domain of data mining to the biological sequence analysis, in the concrete,

20See Section 4.3.5 in Page 83
21See Section 3.2.1 in Page 46

189

190 Perspectives

to search the gene promoter sequences for the putative transcription factor binding
sites (TFBS). The fault-tolerance offered by the developed InsDels pattern matching
function, which concerns the operations of a symbol insertion and deletion, does not
coincide well with the widely accepted and assessed model to represent the TFBS
variability. The use of the Hamming match function was a good trade-off between
the need to express the TFBS variability (where the symbol substitutions are much
more common then the insertions and deletions) and the difficulty to handle the re-
sulting fault-tolerance by a generic solver. We successfully applied the corresponding
solver Marguerite-H to mine the promoter sequences and among the extracted fault-
tolerant patterns found the binding sites of the factors that are known or expected
to regulate the associated biological process.

Despite of this success, the generic solver that resulted from our contribution is a
general-purpose extractor, and not a tool for the promoter sequence analysis. To tune
these contributions for the identification of the regulatory elements in the promoter
sequences is a perspective in its-own.

In bioinformatics, the concept of consensus sequence (also known as consensus
motif) has been widely used to represent the specificity of the transcription fac-
tors [Sto00]. It is however arbitrary how a consensus sequence is defined. In general
it refers to a sequence that matches all of the known (or supposed) binding sites
closely, but not necessarily exactly. A consensus sequence that represents the bind-
ing sites of a transcription factor must account a trade-off between the number of
allowed mismatches, the ambiguity in the consensus sequence, the sensitivity and
precision of the representation [Sto00]. The so called weight matrices is an alterna-
tive way to represent the TFBS. In such a matrix there is a score for each nucleotide
at every position of a binding site. Thereby, each particular binding site is given a
score, which is the sum of the matrix values for each position in that site. Any bind-
ing site that differ from the consensus, implicitly represented by the weight matrix,
will have a lower score, but the decrease depends on the differences in question. As
remarks [Sto00], a consensus sequence can always be converted into a weight matrix,
such that the same set of examples will be matched, but the converse is not true.

Take notice, that the InsDels fault-tolerant patterns that we proposed and the
Hamming fault-tolerant patterns are consensus sequences. The difficulty to use them
for the TFBS extraction resides in that fact the match function used in these con-
sensus sequences

• does not correspond well the state of art hypothesis in biology how a transcrip-
tion factor matches (or recognizes) its binding site;

• is different from the implicit match function used to represent (specify) the
known binding sites by weight matrices in Transfac R© database.

The match function that would better account the binding of transcription fac-

Perspectives 191

tors would be the one that uses the generalized edit distance22, i.e., an edit distance
with the weighted costs of substitutions, insertions and deletions. Neither the sim-
ilarity nor the soft-frequency constraints based on such match function is neither
anti-monotonic not monotonic. We did not find an equivalent expression of these
constraints through a Boolean combination of (anti-)monotonic constraints. How-
ever one can search for the Boolean combination of (anti-)monotonic constraints that
are the relaxations C ′23 of the constraints in question. Such relaxation can be soundly
solved by the generic solver Marguerite. Our optimism regarding this research per-
spective is also motivated by the fact that the Galibot similarity constraint24, based
on a version of the generalized edit distance, where the operations are associated with
rewarding scores instead of penalizing costs, which are multiplied instead of being
summed, is convertible anti-monotonic [CBM02b].

Last but not least, the tool for the TFBS extraction must consider the question of
the visualisation/representation of the extracted fault-tolerant patterns, or, so called,
consensus sequences. For a biologist, assessing the interest of the fault-tolerant, it is
indispensable to see what are the soft-occurrences of this pattern, if speaking in data
mining terms, or what are the binding sites that match this consensus sequence, if
speaking in bioinformatics terms. Among such representations possibilities are, for
example the use of the standard set of ambiguity codes, each representing one charac-
ter from their respective nucleotide subset (e.g., R stands for {A,G}), or converting
the consensus sequence to weight matrix.

TZI to Evaluate the Cost of a Query Plan

The solution set Th(L,D, C) to an inductive query with the constraint C that is a
Boolean expression over the primitive constraints can be obtain by applying the set
operations on the solution sets of the subconstraints of C. When the constraint C is
an Boolean expression over the anti-monotonic and monotonic primitive constraints,
the solution set Th(L,D, C) is a generalized version space [DJDM02]. The generalized
version spaces are closed under the set operations [DD03]. The resulting algebraic
framework can be used for inductive query plan optimisation. Take notice that a
single query can be solved using different execution plans. Consider, for example the
inductive query of the form

IQ = (A1 ∨ A2) ∧M,

where A1 = MinFrv,Sφ (50%,D1), A2 = MinFrv,Sφ (80%,D2) and M = MinLengthφ(6).

Among the possible execution plans are the following:

22See Definition 4.8 in Page 62
23See Paragraph Constraint Relaxation in Page 25
24See Section 4.2.3 in Page 66

192 Perspectives

• Using one call to a solver, compute the solution set Th(LΣ, (D1,D2), IQ);

• Compute the sets Th(LΣ,D1,A1), Th(LΣ,D1,A2) and Th(LΣ,−,M). Com-
pute the union of Th(LΣ,D1,A1) and Th(LΣ,D1,A2), and intersect the ob-
tained result with Th(LΣ,−,M).

• Compute the set Th(LΣ, (D1,D2),A1 ∨ A2) and the set Th(LΣ,−,M), and
intersect them.

• Note that the inductive query IQ can be equivalently written as (A1∧M)∨(A2∧
M). Compute the set Th(LΣ,D1,A1 ∧M) and the set Th(LΣ,D2,A2 ∧M).
Produce their union.

Generally, the different execution plans exhibit different efficiencies to solve the same
inductive query. An inductive query optimizer is intended to generate different exe-
cution plans, estimate the cost of each such plan and choose the one with the min-
imal cost. This problem is similar to the query optimisation problem in relational
databases.

This optimisation problem involves two research problems: (1) how to find a
suitable execution plan in a reasonable amount of time, knowing that the number
or semantically equivalent but syntactically different inductive queries (Boolean ex-
pressions over constraints25) increases exponentially with the number of the involved
primitive constraints; and (2) how to estimate the cost of an execution plan. Con-
cerning the latter one can, as observed in [DD03], an example of a cost function can
be the product of the expected number of data scans and of the size of the data set.
Another example of a cost function is a number of times, where a match function is
evaluated. One can equally assume that a call to a conjunctive query A∧M26 solver
is unit and the only allowed set operation is union. Then the cost of an execution
plan is the number of times, where a solver is invoked. The query plan optimisation
problem under such assumption was solved in [DJDM02], which proposes the strat-
egy of decomposing an the constraint of an inductive query into n disjuncts of the
form A ∧M, so that n is minimal.

The challenging question what is the best execution plan cost function (and sub-
sequently what is the best optimisation strategy) is open. One must take into account
that the queries can be related (especially in the interactive querying sessions [BP99]),
and that the subqueries of a single query can be also related.

The latter case is extensively exploited by the SQL queries optimizers, which uses
a mathematical model of query execution costs that relies heavily on estimates of the
cardinality, or number of tuples, flowing through each edge in a query plan. The use
of the expected number of patterns, satisfying the parts of an inductive query, can be

25A constraint is a synonym of predicate
26A denotes an anti-monotonic constraint and M denotes an monotonic constraint

Perspectives 193

also exploited to optimize an inductive query. For example, one can anticipate that,
given an inductive query C1 ∧ C2, where the solution set Th(L,D, C1) is expected
to contain 1000 patterns and the solution set Th(L,D, C2) is expected to contain 5
patterns, the execution plans of

• evaluate first C1 and then, exploiting the obtained results, evaluate C2; and

• evaluate first C2 and then, exploiting the obtained results, evaluate C1;

are not equivalent (and we expect the second one to be more efficient). The Twilight
Zone Indicator, developed during this thesis research work27, estimates the expected
number of patterns, satisfying the subqueries, and can be exploited to evaluate the
query plan cost and thereby to optimize the inductive queries.

27See Chapter 6

194 Perspectives

Bibliography

[AAL+00] A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein, and N. Lewen-
stein. Pattern matching with swaps. J. Algorithms, 37(2):247–266,
2000.

[AB03] H. Albert-Lorincz and J.-F. Boulicaut. Mining frequent sequential pat-
terns under regular expressions: a highly adaptative strategy for push-
ing constraints. In Proceedings 3rd SIAM SDM’03, pages 316–320, San
Francisco, CA, 2003.

[AG87] A. Apostolico and C. Guerra. The longest common subsequence problem
revisited. Algorithmica, 2:315–336, 1987.

[AGM+90] J. F. Altschul, W. Gish, W. Miller, E. W. Miller, E. W. Myers, and D. J.
Lipman. Basic local alignment search tool. J. Mol. Biol., 215:403–410,
1990.

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules
between sets of items in large databases. In SIGMOD, pages 207–216,
Washington, D.C., USA, 1993. ACM Press.

[ALB03] H. Albert-Lorincz and J-F. Boulicaut. Mining frequent sequential pat-
terns under regular expressions: a highly adaptative strategy for push-
ing constraints. In Proc. SIAM DM’03, pages 316–320, 2003.

[AP04] A. Apostolico and L. Parida. Incremental paradigms of motif discovery.
J. Comp. Biol., 11(1):15–25, 2004.

[Apo97] A. Apostolico. String editing and longest common subsequences. In
Handbook of Formal Languages, volume 2 Linear Modeling: Back-
ground and Application, pages 361–398. Springer-Verlag, 1997.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules in large databases. In VLDB’94, Proceedings of 20th International
Conference on Very Large Data Bases, September 12-15, 1994, Santiago
de Chile, Chile, pages 487–499. Morgan Kaufmann, 1994.

195

196 BIBLIOGRAPHY

[AS95] R. Agrawal and R. Srikant. Mining sequential patterns. In 11th
International Conference on Data Engineering, pages 3–14, Taipei, Tai-
wan, 1995. IEEE Computer Society Press.

[Bay98] R. J. Bayardo. Efficiently mining long patterns from databases. In
SIGMOD ’98: Proceedings of the 1998 ACM SIGMOD international
conference on Management of data, pages 85–93, Seattle, Washington,
United States, 1998. ACM.

[Bay02] R. Bayardo. Constraints in data mining. Special issue of SIGKDD
Explorations, 4(1):1–15, 2002.

[BBMM04] M. Botta, J-F. Boulicaut, C. Masson, and R. Meo. Query languages
supporting descriptive rule mining: a comparative study. In Database
Technologies for Data Mining - Discovering Knowledge with Inductive
Queries, volume 2682 of LNCS, pages 27–56. Springer Verlag, 2004.

[BCF+08] H. Blockeel, T. Calders, E. Fromont, B. Goethals, A. Prado, and C. Ro-
bardet. An inductive database prototype based on virtual mining views.
In Proceedings ACM SIGKDD’08, pages 1061–1064. ACM Press, 2008.

[BCFY05] D. Burdick, M. Calimlim, J. Flannick, and T. Yiu. Mafia: A maximal
frequent itemset algorithm. IEEE Trans. on Knowl. and Data Eng.,
17(11):1490–1504, 2005. Member-Johannes Gehrke.

[BCKL02] D. Braga, A. Campi, M. Klemettinen, and P. Lanzi. Mining association
rules from xml data. In Proceedings of the 4th International Conference
on Data Warehousing and Knowlege Discovery, volume 2454 of LNCS,
pages 133–156. Springer, 2002.

[BDM05] Jean-François Boulicaut, Luc De Raedt, and Heikki Mannila, editors.
Constraint-Based Mining and Inductive Databases, volume 3848 of
LNCS. Springer, 2005.

[BDM06] J-F. Boulicaut, L. De Raedt, and H. Mannila, editors. Constraint-based
mining and inductive databases, volume 3848 of LNCS. Springer, 2006.

[BDMR90] D. L. Brutlag, J.-P. Dautricourt, S. Maulik, and J. Relph. Improved sen-
sitivity of biological sequence database searches. Comput Appl Biosci.,
6(3):237–245, 1990.

[BH03] M. R. Berthold and D. J. Hand, editors. Intelligent Data Analysis.
Springer, 2003.

[BJ00] J-F. Boulicaut and B. Jeudy. Using constraint for itemset mining:
should we prune or not? In Proceedings BDA’00, pages 221–237, Blois,
F, 2000.

BIBLIOGRAPHY 197

[BJEG98a] A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert. Approaches to
the automatic discovery of patterns in biosequences. J. Comp. Biol.,
5(2):277–304, 1998.

[BJEG98b] A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert. Approaches to
the automatic discovery of patterns in biosequences. J. Comp. Biol.,
5(2):277–304, 1998.

[BJUV96] A. Brazma, I. Jonassen, E. Ukkonen, and J. Vilo. Discovering pat-
terns and subfamilies in biosequences. In Proceedings of the Fourth
International Conference on Intelligent Systems for Molecular Biology,
pages 34–43. AAAI Press, 1996.

[BJVU98a] A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen. Predicting gene regu-
latory elements in silico on a genomic scale. Genome Res., 8(11):1202–
1215, 1998.

[BJVU98b] A. Brazma, Inge Jonassen, Jaak Vilo, and Esko Ukkonen. Predicting
gene regulatory elements in silico on a genomic scale. Genome Res.,
8(11):1202–1215, 1998.

[BKF+07] C. Bresson, C. Keime, C. Faure, Y. Letrillard, M. Barbado, S. San-
filippo, N. Benhra, O. Gandrillon, and S. Gonin-Giraud. Large-scale
analysis by SAGE revealed new mechanisms of v-erba oncogene action.
BMC Genomics, 8(390), 2007.

[BKM98] J-F. Boulicaut, M. Klemettinen, and H. Mannila. Querying inductive
databases: a case study on the mine rule operator. In Principles of
Data Mining and Knowledge Discovery, volume 1510 of LNCS, pages
194–202, Nantes, France, 1998. Springer-Verlag.

[BKM99] J-F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling kdd pro-
cesses within the inductive database framework. In Data Warehousing
and Knowledge Discovery (DaWak), volume 1676 of LNCS, pages 293–
302, 1999.

[BM05] J-F. Boulicaut and C. Masson. Data mining query languages. In O. Mai-
mon and L. Rokach, editors, The Data Mining and Knowledge Discovery
Handbook, pages 715–727. Springer, 2005.

[BMS07] M. R. Berthold, K. Morik, and A. Siebes, editors. Parallel Universes and
Local Patterns, volume 07181 of Dagstuhl Seminar Proceedings. Inter-
nationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany, 2007.

[BP99] E. Baralis and G. Psaila. Incremental refinement of mining queries.
In DaWaK ’99: Proceedings of the First International Conference on

198 BIBLIOGRAPHY

Data Warehousing and Knowledge Discovery, pages 173–182. Springer-
Verlag, 1999.

[BPB+07] S. Blachon, R. Pensa, J. Besson, C. Robardet, J.-F. Boulicaut, and
O. Gandrillon. Clustering formal concepts to discover biologically rele-
vant knowledge from gene expression data. In Silico Biology, 7(0033):1–
15, 2007.

[BRBR05] J. Besson, C. Robardet, J-F. Boulicaut, and S. Rome. Constraint-
based concept mining and its application to microarray data analysis.
Intelligent Data Analysis, 9(1):59–82, 2005.

[BRMB08] J. Besson, C. Rigotti, I. Mitasiunaite, and J.-F. Boulicaut. Param-
eter tuning for differential mining of string patterns. In ICDMW ’08:
Proceedings of the 2008 IEEE International Conference on Data Mining
Workshops, pages 77–86. IEEE Computer Society, 2008.

[BS07] R. Bathoorn and A. Siebes. Finding composite episodes. In Mining
Complex Data MCD’07 Revised Selected Papers, volume 4944 of LNCS,
pages 157–168, 2007.

[Bul03] M. L. Bulyk. Computational prediction of transcription-factor binding
site locations. Genome Biol., 5(201), 2003.

[BUV96] A. Brazma, E. Ukkonen, and J. Vilo. Discovering unbounded unions
of regular pattern languages from positive examples (extended ab-
stract). In ISAAC ’96: Proceedings of the 7th International Symposium
on Algorithms and Computation, pages 95–104, London, UK, 1996.
Springer-Verlag.

[CBM02a] M. Capelle, J-F. Boulicaut, and C. Masson. Extraction de motifs
séquentiels sous contrainte de similarité. In Actes EGC’02, pages 65–76,
Montpellier (F), janvier 2002.

[CBM02b] M. Capelle, J-F. Boulicaut, and C. Masson. Mining frequent sequential
patterns under a similarity constraint. In Proceedings IDEAL’02, pages
1–6. Springer-Verlag, 2002.

[Cob94] A. L. Cobbs. Fast identification of approximately matching sub-
strings. In CPM ’94: Proceedings of the 5th Annual Symposium on
Combinatorial Pattern Matching, pages 64–74. Springer-Verlag, 1994.

[Cod70] E. F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387, 1970.

[Cor88] F. Corpet. Multiple sequence alignment with hierarchical clustering.
Nucl. Acids Res., 16(22):10881–10890, 1988.

BIBLIOGRAPHY 199

[CS04] M. Crochemore and M.-F. Sagot. Motifs in sequences: Localization and
extraction. In A. K. Konopka and M. J. C. Crabbe, editors, Handbook
of Computational Chemistry, pages 47–97. Marcel Dekker, New York,
2004.

[CZ06] Longbing Cao and Chengqi Zhang. Domain-driven actionable knowl-
edge discovery in the real world. In Proceedings PAKDD’06, volume
3918 of LNCS, pages 821–830. Springer, 2006.

[Dam64] F. J. Damerau. A technique for computer detection and correction of
spelling errors. Commun. ACM, 7(3):171–176, 1964.

[DD03] S. Dan Lee and L. De Raedt. An algebra for inductive query evaluation.
In Proceedings IEEE ICDM’03, pages 147–154, 2003.

[DD04] S. Dan Lee and L. De Raedt. An efficient algorithm for mining string
databases under constraints. In Proceedings KDID’04, pages 108–129.
Springer-Verlag, 2004.

[DD07] M. K. Das and H.-K. Dai. A survey of dna motif finding algorithms.
BMC Bioinformatics, 8(Suppl 7), 2007.

[DFG+97] G. Das, Ru. Fleischer, L. Gasieniec, D. Gunopulos, and J. Kärkkäinen.
Episode matching. In CPM ’97: Proceedings of the 8th Annual
Symposium on Combinatorial Pattern Matching, pages 12–27. Springer-
Verlag, 1997.

[DJDM02] L. De Raedt, M. Jaeger, S. Dan Lee, and H. Mannila. A theory of
inductive query answering. In Proceedings IEEE ICDM’02, pages 123–
130, 2002.

[DKGG+04] F. Damiola, C. Keime, S. Gonin-Giraud, S. Dazy, and O. Gandrillon.
Global transcription analysis of immature avian erythrocytic progeni-
tors: from self-renewal to differentiation. Oncogene, 23:7628–7643, 2004.

[DLT94] D. D. Lopresti and A. Tomkins. On the searchability of electronic
ink. In Proceedings of the 4th International Workshop on Frontiers
in Handwriting Recognition, pages 156–165, Taipei, Taiwan, 1994.

[DSO78] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolu-
tionary change in protein. Atlas of Protein Sequences and Structure,
5:345–352, 1978.

[EG01] G. M. Edelman and J. A. Gally. Degeneracy and complexity in biological
systems. Proc Natl Acad Sci USA, 98(24):13763–13768, 2001.

[EH88] A. Ehrenfeucht and D. Haussler. A new distance metric on strings
computable in linear time. Discrete Appl. Math., 20(3):191–203, 1988.

200 BIBLIOGRAPHY

[ELYY07] E. Eden, D. Lipson, S. Yogev, and Z. Yakhini. Discovering motifs in
ranked lists of DNA sequences. PLOS Computational Biology, 3(3):508–
522, 2007.

[FHK05] J. Fischer, V. Heun, and S. Kramer. Fast frequent string mining using
suffix arrays. In ICDM ’05: Proceedings of the Fifth IEEE International
Conference on Data Mining, pages 609–612. IEEE Computer Society,
2005.

[FHK06] J. Fischer, V. Heun, and S. Kramer. Optimal string mining under
frequency constraints. In PKDD ’2006, 10th European Conference on
Principles and Practice of Knowledge Discovery, pages 139–150, 2006.

[FWV+05] G. B. Fogel, D. G. Weekes, G. Varga, E. R. Dow, A. M. Craven, H. B.
Harlow, E. W. Su, J. E. Onyia, and C. Su. A statistical analysis of the
TRANSFAC database. Biosystems, 81(2):137–154, 2005.

[GEW85] D. Galas, M. Eggert, and M. Waterman. Rigorous pattern-recognition
methods for dna sequences. analysis of promoter sequences from es-
cherichia coli. J. Mol. Biol., 186(1):117–128, 1985.

[GGdB05] F. Geerts, B. Goethals, and J. Van den Bussche. Tight upper bounds on
the number of candidate patterns. ACM Trans. on Database Systems,
30(2):333–363, 2005.

[GJP+89] O. Gandrillon, P. Jurdic, B. Pain, C. Desbois, J. J. Madjar, M. G.
Moscovici, C. Moscovoco, and J. Samarut. Expression of the v-erba
product, an altered nuclear hormone receptor, is sufficient to transform
erythrocytic cells in vitro. Cell, 58(1):115–121, 1989.

[GLW00] G. Grahne, L. V. S. Lakshmanan, and X. Wang. Efficient mining of
constrained correlated sets. In ICDE ’00: Proceedings of the 16th
International Conference on Data Engineering, pages 512–521. IEEE
Computer Society, 2000.

[GMMT07] A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas. Assessing data
mining results via swap randomization. ACM Trans. KDD, 1(3), 2007.

[GRS99] M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern
mining with regular expression constraints. In VLDB’99: Proceedings
of the 25th International Conference on Very Large Data Bases, pages
223–234. Morgan Kaufmann Publishers Inc., 1999.

[GSBS99] O. Gandrillon, U. Schmidt, H. Beug, and J. Samarut. Tgf-beta co-
operates with tgf-alpha to induce the self-renewal of normal erythro-
cytic progenitors: evidence for an autocrine mechanism. EMBO J.,
18(10):2764–2781, 1999.

BIBLIOGRAPHY 201

[Ham50] R. Hamming. Error-detecting and error-correcting codes. Bell System
Technical Journal, 29(2):147–160, 1950.

[Han02] D. J. Hand. Pattern detection and discovery. In D. J. Hand, N. M.
Adams, and R. J. Bolton, editors, Pattern Detection and Discovery,
volume 2447 of LNCS, pages 1–12. Springer, 2002.

[HFW+96] J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: A data
mining query lmeopsailaceri96vldbanguage for relational databases.
In SIGMOD’96 Workshop on Research Issues in Data Mining and
Knowledge Discovery (DMKD’96), Montreal, Canada, 1996.

[HH92] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from
protein blocks. Proc Natl Acad Sci USA, 89(22):10915–10919, 1992.

[Hir75] D. S. Hirschberg. A linear space algorithm for computing maximal
common subsequences. CACM, 18(6):341–343, 1975.

[Hir91] H. Hirsh. Theoretical underpinnings of version spaces. In Proc. of the
12th IJCAI, pages 665–670, Sidney, Australia, 1991.

[Hir94] H. Hirsh. Generalizing version spaces. Mach. Learn., 17(1):5–46, 1994.

[HK05] J. Hu and D. Kihara. Limitations and potentials of current motif dis-
covery algorithms. Nucleis Acids Res, 33:4899–4913, 2005.

[HMS01a] D. Hand, H. Mannila, and P. Smyth, editors. Principles of Data Mining.
MIT Press, 2001.

[HMS01b] D. J. Hand, H. Mannila, and P. Smyth. Principles of Data Mining,
chapter Models and Patterns. MIT Press, 2001.

[HPY00] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. SIGMOD Rec., 29(2):1–12, 2000.

[HWLT02] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top.k frequent closed
patterns without minimum support. In ICDM ’02: Proceedings of the
2002 IEEE International Conference on Data Mining (ICDM’02), page
211. IEEE Computer Society, 2002.

[IM96] T. Imielinski and H. Mannila. A database perspective on knowledge
discovery. Communications of the ACM, 39(11):58–64, November 1996.

[IV99] T. Imieliński and A. Virmani. MSQL: A query language for database
mining. Data Mining and Knowledge Discovery, 3(4):373–408, 1999.

[Jeu02] B. Jeudy. Optimisation de requêtes inductives: Application à
l’extraction sous contraintes de règles d’association. PhD thesis, In-
stitut National des Sciences Appliquèes de Lyon, 2002.

202 BIBLIOGRAPHY

[KBF+00] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. KDD-
Cup 2000 organizers’ report: Peeling the onion. SIGKDD Explorations,
2(2):86–98, 2000. http://www.ecn.purdue.edu/KDDCUP.

[KG85a] S. Karlin and G. Ghandour. Multiple-alphabet amino acid sequence
comparisons of the immunoglobulin kappa-chain constant domain. Proc.
Natl. Acad. Sci. USA, 82(24):8597–8601, 1985.

[KG85b] S. Karlin and G. Ghandour. The use of multiple alphabets in kappa-gene
immunoglobulin dna sequence comparisons. EMBO. J., 4(5):1217–1223,
1985.

[KMR72] R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identification of
repeated patterns in strings, trees and arrays. In STOC ’72: Proceedings
of the fourth annual ACM symposium on Theory of computing, pages
125–136. ACM, 1972.

[KP02a] U. Keich and P. A. Pevzner. Finding motifs in the twilight zone.
Bioinformatics, 18(10):1374–1381, 2002.

[KP02b] U. Keich and P. A. Pevzner. Subtle motifs: defining the limits of motif
finding algorithms. Bioinformatics, 18(10):1382–1390, 2002.

[KPE+03] M. Kellis, N. Patterson, M. Endrizzi, B. Birren, and E. S. Lander.
Sequencing and comparison of yeast species to identify genes and regu-
latory elements. Nature, 423:241–254, 2003.

[KRH01] S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining
in hiv data. In KDD ’01: Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
136–143, San Francisco, California, 2001. ACM.

[KS95] J. Kececioglu and D. Sankoff. Exact and approximation algorithms for
the inversion distance between two permutations. Algorithmica, 13:180–
210, 1995.

[LAC89] A. M. Landraud, J. F. Avril, and P. Chretienne. An algorithm for
finding a common structure shared by a family of strings. IEEE Trans.
Pattern Anal. Mach. Intell., 11(8):890–895, 1989.

[Lev65] V. I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. Doklady Akademii Nauk SSSR, 163(4):845–848,
1965. English translation in Soviet Physics Doklady, 10(8):707-710,
1966. Doklady is Russian for ”Report”, sometimes transliterated in En-
glish as Doclady or Dokladi.

BIBLIOGRAPHY 203

[LKPC97] J.-S. Lee, D. K. K., K. Park, and Y. Cho. Efficient algorithms for ap-
proximate string matching with swaps (extended abstract). In CPM ’97:
Proceedings of the 8th Annual Symposium on Combinatorial Pattern
Matching, pages 28–39. Springer-Verlag, 1997.

[LP81] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of
Computation. Prentice Hall., Inc., 1981.

[LRS05] L. Lhote, F. Rioult, and A. Soulet. Average number of frequent (closed)
patterns in bernouilli and markovian databases. In Proceedings IEEE
ICDM’05, pages 713–716, 2005.

[LWS+93] R. Lathrop, T. Webster, R. Smith, P. Winston, and T. Smith.
Integrating AI with sequence analysis, pages 210–258. American As-
sociation for Artificial Intelligence, 1993.

[Mac67] J. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In L. M. Le Cam and J. Neyman, editors,
Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability - Vol. 1, pages 281–297. University of California Press,
Berkeley, CA, USA, 1967.

[Mas05] C. Masson. Contribution au cadre des bases de donnèes inductives :
formalisation et èvaluation de scènarios d’extraction de connaissances.
PhD thesis, Institut National des Sciences Appliquèes de Lyon, 2005.

[MB06] I. Mitasiunaite and J.-F. Boulicaut. Looking for monotonicity properties
of a similarity constraint on sequences. In Proceedings of ACM SAC’06,
Special Track on Data Mining, pages 546–552. ACM Press, 2006.

[MB07] I. Mitasiunaite and J.-F. Boulicaut. Introducing softness into inductive
queries on string databases. In O. Vasilecas, J. Eder, and A. Caplinskas,
editors, Databases and Information Systems IV, volume 155 of Frontiers
in Artificial Intelligence and Applications, pages 117–132. IOS Press,
2007.

[MBS05] K. Morik, J-F. Boulicaut, and A. Siebes, editors. Local Pattern
Detection, International Seminar Dagstuhl Castle Revised Selected
Papers, volume 3539 of LNCS. Springer, 2005.

[MFG+03] V. Matys, E. Fricke, R. Geffers, E. Gössling, M. Haubrock, R. Hehl,
K. Hornischer, D. Karas, A. E. Kel, O. V. Kel-Margoulis, D.-U.
Kloos, S. Land, B. Lewicki-Potapov, H. Michael, R. Münch, I. Reuter,
S. Rotert, H. Saxel, M. Scheer, S. Thiele, E., and Wingender. Transfac
: transcriptional regulation, from patterns to profiles. Nucl. Acids Res.,
31(1):374–378, 2003.

204 BIBLIOGRAPHY

[Mit82] T. M. Mitchell. Generalization as search. Artif. Intell., 18(2):203–226,
1982.

[MLK04] R. Meo, P. L. Lanzi, and M. Klemettinen, editors. Database Support
for Data Mining Applications: Discovering Knowledge with Inductive
Queries, volume 2682 of LNCS. Springer, 2004.

[MPC96] R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining
association rules. In VLDB ’96: Proceedings of the 22th International
Conference on Very Large Data Bases, pages 122–133, Bombay, India,
1996. Morgan Kaufmann Publishers Inc.

[MPC98] R. Meo, G. Psaila, and S. Ceri. An extension to SQL for mining as-
sociation rules. Data Mining and Knowledge Discovery, 2(2):195–224,
1998.

[MR04] N. Méger and C. Rigotti. Constraint-based mining of episode rules and
optimal window sizes. In Proceedings PKDD’04, volume 3202 of LNCS,
pages 313–324. Springer, 2004.

[MRS+08] I. Mitasiunaite, C. Rigotti, S. Schicklin, L. Meyniel, J.-F. Boulicaut, and
O. Gandrillon. Extracting signature motifs from promoter sets of differ-
entially expressed genes. In Silico Biology, 8(43), 2008. Bioinformation
Systems e.V.

[MS00a] L. Marsan and M.-F. Sagot. Algorithms for extracting structured motifs
using a suffix tree with application to promoter and regulatory site
consensus identification. J. Comput. Biol., 7(3/4):345–360, 2000.

[MS00b] L. Marsan and M.-F. Sagot. Extracting structured motifs using a suf-
fix tree—algorithms and application to promoter consensus identifica-
tion. In RECOMB ’00: Proceedings of the fourth annual international
conference on Computational molecular biology, pages 210–219. ACM,
2000.

[MT97] H. Mannila and H. Toivonen. Levelwise search and borders of theories in
knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241–
258, 1997.

[MTP04] Florent Masseglia, Maguelonne Teisseire, and Pascal Poncelet. Ex-
traction de motifs séquentiels. problèmes et méthodes. Ingénierie des
Systèmes d’Information, 9(3-4):183–210, 2004.

[MTV97] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent
episodes in event sequences. Data Min. Knowl. Discov., 1(3):259–289,
1997.

BIBLIOGRAPHY 205

[MY60] R. McNaughton and H. Yamada. Regular expressions and state graphs
for automata. IRE Transactions on Electronic Computers, 9(1):39–47,
1960.

[Nav01] G. Navarro. A guided tour to approximate string matching. ACM
Computing Surveys, 33(1):31–88, 2001.

[NLHP98] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory
mining and pruning optimizations of constrained associations rules.
SIGMOD Rec., 27(2):13–24, 1998.

[NR07] S. Nijssen and L. De Raedt. Iql: A proposal for an inductive query lan-
guage. In Proceedings of the 5th International Workshop on Knowledge
Discovery in Inductive Databases, volume 4747 of LNCS, pages 189–207.
Springer, 2007.

[NW70a] S. Needleman and C. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J.
Mol. Biol., 48(3):443–453, 1970.

[NW70b] S. B. Needleman and C. D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins.
J. Mol. Biol., 48(3):443–453, 1970.

[OS06] J. Oncina and M. Sebban. Learning stochastic edit distance: application
in handwritten character recognition. Pattern Recognition, 39(9):1555–
1812, 2006.

[PAA03] J. Pelfrene, S. Abdeddaim, and J. Alexandre. Extracting approximate
patterns (extended abstract). In Combinatorial Pattern Matching: 14th
Annual Symposium, CPM 2003, pages 328–347. Springer-Verlag, 2003.

[PCGS02] N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot. A basis for
repeated motifs in pattern discovery and text mining. Technical report,
IGM 2002-10, Institut Gaspard-Monge, Univ. of Marne-la-Vallée, 2002.

[PCGS03] N. Pisanti, M. Crochemore, R. Grossi, and M. Sagot. A basis of tiling
motifs for generating repeated patterns and its complexity for higher
quorum. In Math. Foundations of Computer Science (MFCS), pages
662–631. Springer-Verlag, 2003.

[PCGS05] N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot. Bases of motifs
for generating repeated patterns with wild cards. IEEE/ACM Trans.
Comput. Biol. Bioinformatics, 2(1):40–50, 2005.

[PH00] J. Pei and J. Han. Can we push more constraints into frequent pat-
tern mining? In KDD ’00: Proceedings of the sixth ACM SIGKDD

206 BIBLIOGRAPHY

international conference on Knowledge discovery and data mining, pages
350–354, Boston, Massachusetts, United States, 2000. ACM.

[PHL01] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent item sets
with convertible constraints. In Proceedings of the 17th International
Conference on Data Engineering, pages 433–442. IEEE Computer Soci-
ety, 2001.

[PHW02] J. Pei, J. Han, and W. Wang. Mining sequential patterns with con-
straints in large databases. In CIKM ’02: Proceedings of the eleventh
international conference on Information and knowledge management,
pages 18–25, McLean, Virginia, USA, 2002. ACM.

[PP06] F. Piva and G. Principato. RanDNA : a random dna sequence generator.
In Silico Biol., 6(3):253 – 258, 2006.

[PRF+00] L. Parida, I. Rigoutsos, A. Floratos, D. Platt, and Y. Gao. Pattern
discovery on character sets and real-valued data: linear bound on irre-
dundant motifs and an efficient polynomial time algorithm. In SIAM
Symposium on Discrete Algorithms (SODA), pages 297–308, 2000.

[PSF91] G. Piatetsky-Shapiro and W. J. Frawley, editors. Knowledge Discovery
in Databases. AAAI/MIT Press, 1991.

[QWK82] C. Queen, M. N. Wegman, and L. J. Korn. Improvements to a pro-
gram for DNA analysis: a procedure to find homologies among many
sequences. Nucl. Acids Res., 1(10):449–456, 1982.

[r] The R project for statistical computing, http://www.r-project.org/.

[Rae02] L. De Raedt. A perspective on inductive databases. SIGKDD
Explorations Newsletter, 4(2):69–77, 2002.

[RF98a] I. Rigoutsos and A. Floratos. Combinatorial pattern discovery in bio-
logical sequences: The teiresias algorithm. Bioinformatics, 14(1):55–67,
1998.

[RF98b] I. Rigoutsos and A. Floratos. Combinatorial pattern discovery in bio-
logical sequences: The teiresias algorithm. Bioinformatics, 14(1):55–67,
1998.

[RF98c] I. Rigoutsos and A. Floratos. Motif discovery without alignment or
enumeration (extended abstract). In RECOMB ’98: Proceedings of
the second annual international conference on Computational molecular
biology, pages 221–227. ACM, 1998.

BIBLIOGRAPHY 207

[RFP+00] I. Rigoutsos, A. Floratos, L. Parida, Y. Gao, and D.Platt. The
emergence of pattern discovery techniques in computational biology.
Metabolic Engineering, 2(3):159–177, 2000.

[RJBA99] Jr. R. J. Bayardo and R. Agrawal. Mining the most interesting rules.
In KDD ’99: Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 145–154,
San Diego, California, United States, 1999. ACM.

[RK01] L. De Raedt and S. Kramer. The levelwise version space algorithm and
its application to molecular fragment finding. In IJCAI, pages 853–862,
2001.

[RMB+08] C. Rigotti, I. Mitasiunaité, J. Besson, L. Meyniel, J-F. Boulicaut, and
O. Gandrillon. Using a solver over the string pattern domain to analyze
gene promoter sequences. Technical report, LIRIS CNRS UMR 5205,
F-69621 Villeurbanne, France, 2008. 20 pages. Chapter proposal for the
IQ book. In Press.

[RMZ03] G. Ramesh, W. Maniatty, and M. J. Zaki. Feasible itemset distributions
in data mining: theory and application. In Proceedings ACM PODS’03,
pages 284–295, 2003.

[RS59] M. Rabin and D. Scott. Finite automata and their decision problems.
IBM Journal of Research and Development, 3:114–125, 1959.

[SA96] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations
and performance improvements. In EDBT ’96: Proceedings of the 5th
International Conference on Extending Database Technology, pages 3–
17. Springer-Verlag, 1996.

[Sag00] M.-F. Sagot. Hope is the thing with feathers - combinatorial algorithms
and molecular biology. Habilitation thesis, 2000.

[SEVS95a] M.-F. Sagot, V. Escalier, A. Viari, and H. Soldano. Searching for re-
peated words in a text allowing for mismatches and gaps. In Proceedings
2nd South American Workshop on String Processing, pages 87–100,
Vinas del Mar, Chile, 1995.

[SEVS95b] M.-F. Sagot, V. Escalier, A. Viari, and H. Soldano. Searching for re-
peated words in a text allowing for mismatches and gaps. In Proceedings
2nd South American Workshop on String Processing, pages 87–100,
Vinas del Mar, Chile, 1995.

[SP91] M. Sharif and M.L. Privalsky. v-erba oncogene function in neoplasia
correlates with its ability to repress retinoic acid receptor action. Cell,
66(5):885–893, 1991.

208 BIBLIOGRAPHY

[Sta89] R. Staden. Methods for discovering novel motifs in nucleic acid se-
quences. Comput. Applic. Biosci., 5(4):293–298, 1989.

[Ste85] R.E. Steuer. Multiple Criteria Optimization: Theory, Computation and
Application. John Wiley & Sons, New York, NY, 1985.

[Sto00] G. D. Stormo. Dna binding sites: representation and discovery.
Bioinformatics, 16(1):16–23, 2000.

[SV96a] M.-F. Sagot and A. Viari. A double combinatorial approach to dis-
covering patterns in biological sequences. In CPM ’96: Proceedings of
the 7th Annual Symposium on Combinatorial Pattern Matching, pages
186–208. Springer-Verlag, 1996.

[SV96b] M-F. Sagot and A. Viari. A double combinatorial approach to discov-
ering patterns in biological sequences. In Proceedings Combinatorial
Pattern Matching ’96, pages 186–208. Springer-Verlag, 1996.

[SVC95] H. Soldano, A. Viari, and M. Champesme. Searching for flexible re-
peated patterns using a non-transitive similarity relation. Pattern
Recogn. Lett., 16(3):233–246, 1995.

[SVPS95] M.-F. Sagot, A. Viairi, J. Pothier, and H. Soldano. Finding flexible
patterns in a text - an application to 3d molecular matching. Comput.
Appl. Biosci., 11:59–70, 1995.

[SVS95] M.-F. Sagot, A. Viari, and H. Soldano. A distance-based block searching
algorithm. In ISMB, pages 322–331, 1995.

[SVS97] M.-F. Sagot, A. Viari, and H. Soldano. Multiple sequence comparison
- a peptide matching approach. Theor. Comput. Sci., 180(1-2):115–
137, 1997. This work was presented at the 6th Annual Symposium of
Combinatorial Pattern Matching in 1995.

[SW03] M.-F. Sagot and Y. Wakabayashi. Pattern inference under many guises.
In Recent advances in algorithms and combinatorics. Springer Verlag,
2003.

[Tei07] M. Teisseire. Mémoire Habilitation à Diriger des Recherches : Autour
et Alentour des motifs séquentiels. PhD thesis, Université Montpellier
2, France, Dec 2007. 114 pages.

[Tho68] K. Thompson. Regular expression search algorithm. Communications
of the ACM, 11(6):419–422, 1968.

[Tic84] W. F. Tichy. The string-to-string correction problem with block moves.
ACM Trans. Comput. Syst., 2(4):309–321, 1984.

BIBLIOGRAPHY 209

[TLB+05] M. Tompa, N. Li, T. L. Bailey, G. M. Church, B. De Moor, E. Eskin,
A. V. Favorov, M. C. Frith, Y. Fu, W. J. Kent, V. J. Makeev, A. A.
Mironov, W. S. Noble, G. Pavesi, G. Pesole, M. Régnier, N. Simonis,
S. Sinha, G. Thijs, J. van Helden, M. Vandenbogaert, Z. Weng, C. Work-
man, C. Ye, and Z. Zhu. Assessing computational tools for the discov-
ery of transciption factor binding sites. Nat. Biotechnol., 23(1):137–144,
2005.

[TSK06] P-N. Tan, M. Steinbach, and V. Kumar, editors. Introduction to Data
Mining. Addison-Wesley, 2006.

[TYH03] P. Tzvetkov, X. Yan, and J. Han. Tsp: Mining top-k closed sequential
patterns. In ICDM ’03: Proceedings of the Third IEEE International
Conference on Data Mining, page 347. IEEE Computer Society, 2003.

[TYH05] P. Tzvetkov, X. Yan, and J. Han. Tsp: Mining top-k closed sequential
patterns. Knowl. Inf. Syst., 7(4):438–457, 2005.

[Ukk92] E. Ukkonen. Approximate string-matching with q-grams and maximal
matches. Theor. Comput. Sci., 92(1):191–211, 1992.

[Ukk95] E. Ukkonen. On-line construction of suffix trees. Algorithmica,
14(3):249–260, 1995.

[VBJ+00] J. Vilo, A. Brazma, I. Jonassen, A. Robinson, and E. Ukkonen. Mining
for putative regulatory elements in the yeast genome using gene expres-
sion data. In Proceedings of the Eighth International Conference on
Intelligent Systems for Molecular Biology, pages 384–394. AAAI Press,
2000.

[VEVK95] B. Vogelstein V. E. Velculescu, L. Zhang and K.W. Kinzler. Serial
analysis of gene expression. Science, 270(5235):484–487, 1995.

[Vil98] J. Vilo. Discovering frequent patterns from strings (C-1998-9). Technical
report, Department of Computer Science, University of Helsinki, 1998.

[Vil02] J. Vilo. Pattern Discovery from Biosequences. PhD thesis, University
of Helsinki, 2002.

[VMS99a] A. Vanet, L. Marsan, and M.-F. Sagot. Promoter sequences and algo-
rithmical methods for identifying them. Res. Microbiol., 150(9-10):779–
799, 1999.

[VMS99b] A. Vanet, L. Marsan, and M.-F. Sagot. Promoter sequences and algo-
rithmical methods for identifying them. Res. Microbiol., 150(9-10):779–
799, 1999.

210 BIBLIOGRAPHY

[WAG84] M. S. Waterman, R. Arratia, and D. J. Galas. Pattern recognition in sev-
eral sequences: Consensus and alignment. Bull. Math. Biol., 46(4):515–
527, 1984.

[Wei73] P. Weiner. Linear pattern matching algorithm. In 14th IEEE Symp.
Switching and Automata Theory, pages 1–11, 1973.

[WFHW96] F. Wolferstetter, K. French, G. Herrmann, and T. Werner. Identification
of functional elements in unaligned nucleic acid sequences by a novel
tuple search algorithm. Comput. Applic. Biosci., 12(1):71–80, 1996.

[WHA+03] G. A. Wray, M. W. Hahn, E. Abouheif, J. P. Balhoff, M. Pizer, M. V.
Rockman, and L. A. Romano. The evolution of transcriptional regula-
tion in eukaryotes. Mol. Biol. Evol., 20(9):1377–1419, 2003.

[Wil82] R. Wille. Restructuring lattice theory: an approach based on hierarchies
of concepts. In I. Rival, editor, Ordered sets, pages 445–470. Reidel,
Dordrecht, 1982.

[ZRS+02] H. Zhang, Y. Ramanathan, P. Soteropoulos, M. Recce, and P. To-
lias. Ez-retrieve: e web-server for batch retrieval of cooridnate-specific
human dna sequences and underscoring putative transcription factor-
binding sites. Nucleic Acids Res., 30(121), 2002.

Appendix A

Résumé en Français

A.1 Contexte de recherche

A.1.1 Bases de données inductives

Ces dernières années, la communauté d’ECD (Extraction de Connaissances à partir
de Données) a beaucoup travaillé au développement d’algorithmes efficaces pour ex-
traire différents types de motifs dans différents types de jeux de données. Malgré tout,
l’étape d’extraction de motifs dans le processus d’analyse de données ou d’extraction
de connaissances (KDD en anglais) [PSF91] ne doit pas se limiter à l’utilisation
d’algorithmes qui produisent des collections de motifs ou des modèles globaux, solu-
tions de la tâche d’extraction. Dans les applications réelles, le processus de découverte
de connaissances dans les données est composé de nombreuses extractions réalisées
de manière itérative et interactive qui traite non seulement de types de données
différents (chaine, tableau booléen, graphe, etc.) mais aussi s’intéresse à des motifs
et modèles différents. Par exemple, si l’on s’intéresse à la découverte de groupes de
gènes sur-exprimés dans certaines situations biologiques, le processus ECD suivant
pourra être mis en place:

• Collecte du profil d’expression des gènes dans différentes situations biologiques
d’intérêt.

• Discrétisation des profils d’expression des gènes sous la forme d’une matrice
booléenne, les colonnes représentant les gènes et les lignes les situations bi-
ologiques. Un ”1” dans la matrice booléenne d’expression indique que le gène
associé à la colonne est sur-exprimé dans la situation biologique associée à la
ligne, ”0” indiquant le cas contraire.

• Extraction des concepts formels [Wil82], c’est-à-dire les ensembles maximaux de

211

212 APPENDIX A. RÉSUMÉ EN FRANÇAIS

gènes (colonnes) qui sont sur-exprimés dans un ensemble maximal de situations
biologiques (lignes). En d’autres termes, les rectangles maximaux de ”1” avec
permutations des lignes et des colonnes sont extraits de la matrice booléenne.

• Un clustering hiérarchique est réalisé sur les motifs ainsi obtenus.

• Un cluster particulier est sélectionné (i.e., un nøeud dans la hiérarchie).

• Afin d’évaluer la pertinence des associations ainsi trouvées, une visualisation
en deux dimensions des résultats est réalisée.

• D’autres clusters peuvent ensuite être sélectionnés et évalués.

Pour étudier et assister de tels processus de découverte de connaissances, la théorie
des Bases de Données Inductives (inductive databases) a été proposée dans [IM96].
Leurs développements ultérieurs sont issus des travaux suivants [BKM98, BKM99,
MT97]. Une base de données inductive contient à la fois des données et des motifs.
L’idée centrale est que les tâches de sélection, de manipulation et d’interrogation
des données et des motifs peuvent être vues comme des requêtes et par conséquence
dans ce cadre, un processus d’extraction de connaissances n’est autre qu’une série
de requêtes. L’interrogation de données et de motifs peut être formulé par exem-
ple sous la forme d’une requête SQL (Structured Query Language) et être traité
par un gestionnaire de bases de données (DBMS). Au niveau des motifs, l’idée
sous-jacente est de considérer une tâche d’extraction comme une requête inductive
qui spécifie déclarativement les propriétés des motifs recherchés dans un espace de
recherche donné (possiblement exprimé en intention, c’est-à-dire non matérialisé).
Une spécification déclarative au lieu d’une déclaration constructiviste est très séduisante
car elle permet d’envisager un algèbre pour la fouille de données.

La situation actuelle en fouille de données est très comparable à celle des bases
de données avant la découverte de l’algèbre relationnelle de Codd en 1970. A cette
période, une multitude de solutions existaient, chacune associée à un domaine d’application
précis. La découverte d’un langage d’interrogation de bases de données inductives
qui intégrerait les mécanismes d’interrogation et les primitives pour traiter simul-
tanément des données et des motifs permettrait sans aucun doute de formaliser les
processus d’extraction de connaissances sous la forme de requêtes qui satisfont la
propriété de fermeture : chaque requête utilise et renvoie une instance de la base de
données inductive. Ce serait un équivalent à la théorie de l’algèbre relationnelle en
fouilles de données.

Cependant, la découverte d’un tel langage reste un objectif à long terme. Plusieurs
langages de requêtes dédiés ont été proposés et implémentés comme DMQL [HFW+96],
MSQL [IV99], MINE RULE [MPC96, MPC98], XMine [BCKL02] (voir aussi [BBMM04,
BM05, Mas05] pour un état de l’art plus complet). Une analyse plus complète du con-
cept de base de données inductive à été récemment proposée dans [Rae02] conduisant
à un nouveau langage de requêtes inductives appelé IQL [NR07].

A.1. CONTEXTE DE RECHERCHE 213

Ces dernières années, des progres significatifs sur les bases de données inductives
ont été réalisés au sein du contrat européen FET-IST cInQ (consortium on knowledge
discovery by Inductive Queries). Mon travail de thèse a été réalisé dans le cadre du
contrat européen FET-IST IQ (Inductive Queries) qui est la suite du contrat européen
cInQ. Le but du contrat IQ est d’arriver à mieux comprendre et appréhender le cadre
des requêtes inductives en fouille de données par le biais du développement d’un
nombre significatif d’études de cas de requêtes inductives en bio-informatique et en
essayant de développer la théorie sous-jacente: le développement de primitives pour
l’extraction de motifs et de modèles et leur intégration dans un langage de requête
inductive qui permet la découverte de connaissances dans des applications réelles.

A.1.2 Requêtes inductives

La tâche d’extraction de motifs ou de modèles peut être formalisée comme le calcul de
l’ensemble Th(L,D, C) = {φ ∈ L | Cφ(D)}, c’est-à-dire l’extraction des motifs φ ∈ L
qui satisfont la contrainte C [MT97]. Ainsi, la contrainte C permet de spécifier
déclarativement les motifs recherchés.

Le calcul de la collection Th(L,D, C) = {φ ∈ L | Cφ(D)} est appelé une requête
inductive avec la contrainte C. Comme les requêtes inductives sont souvent formulées
par l’intermédiaire de contraintes, les requêtes inductives sont très liées au concept
de fouille de données sous-contraintes [Bay02]. Le développement d’extracteurs ef-
ficaces est particulièrement important, car en général, l’espace des motifs L qui est
souvent l’espace de recherche peut être très grand. De plus, le coût de l’évaluation
des contraintes qui nécessite un accès à des données peut être très important.

Dans la pratique, toutes les requêtes inductives ne peuvent être évaluées. Dans la
suite, nous présentons les impasses classiques en fouille de données et des solutions
possibles pour y remédier.

Restriction des requêtes inductives Si l’on considère un ensemble d’items I20000

contenant 20 000 éléments, par exemple la collection des articles en français dans
Wikipedia1 à la fin de l’année 2003. Alors, la requête inductive qui demande tous
les motifs φ ∈ LI20000 contenant au moins 15 articles ne peut pas être résolue. Il est
simplement inenvisageable de fournir (en extension) une ensemble contenant environ
1060 éléments2. Une telle requête inductive n’est pas assez sélective pour pouvoir être
exploitée. Une solution possible pour rendre l’extraction faisable est d’utiliser une
contrainte plus sélective, par exemple dans notre cas en demandant la présence de
certains mots peu fréquents dans les pages wikipédia renvoyés ou en ne s’intéressant

1Wikipedia: http://www.wikipedia.org/
2En terme de comparaison, il y a 1050 atomes dans la planète Terre et 1057 atomes dans notre

système solaire.

214 APPENDIX A. RÉSUMÉ EN FRANÇAIS

qu’aux pages qui ont été regardées au moins un certain nombre de fois (une contrainte
de fréquence minimale).

Relaxation de contraintes Si une requête inductive ne peut pas être résolues
efficacement car la contrainte associée ne possède pas les propriétés nécessaires qui
permettent d’employer les techniques traditionnelles d’élagage d’espace de recherche,
une solution peut être de faire une relaxation de contraintes. Cette idée peut paraitre
assez surprenante et contre-intuitive et est en effet l’inverse de l’idée présentée dans
le paragraphe précédent. Le principe est en ayant relâché la contrainte et trouvé
une contrainte C ′ moins sélective que l’originale (i.e., Th(L,D, C) ⊂ Th(L,D, C ′))
mais qui possède par contre les propriétés d’élagage désirées, nous pouvons main-
tenant calculer la collection Th(L,D, C ′) et réaliser un post-traitement pour obtenir
la collection demandée. La famille des algorithmes SPIRIT [AS95, SA96] est un très
bon exemple de l’utilisation de cette idée. Ils utilisent un mécanisme de relaxation
de contraintes pour pouvoir exploiter des contraintes d’expression régulière pour des
motifs séquence (sequence patterns).

Optimisation du plan d’exécution des requêtes L’efficacité pour résoudre
une requête inductive, qui est une composition de plusieurs contraintes, dépend
généralement de l’ordre dans lequel ces contraintes sont exploitées (pushed) et jusqu’à
quelle profondeur dans l’arbre d’énumération elles sont utilisées. Une approche clas-
sique est de se baser sur les propriétés des contraintes pour choisir la stratégie appro-
priée. Par exemple, les différents algorithmes SPIRIT, suivant la contrainte obtenue
C ′ après avoir relaxer C, exploitent prioritairement la contrainte de fréquence mini-
male ou C ′. L’efficacité d’un algorithme SPIRIT particulier dépend de la sélectivité
de C ′, information non-connue à priori. L’algorithme RE-Hackle [AB03] s’attaque à
ce problème en mettant en place une stratégie d’élagage dynamique. Au sein d’une
même extraction, suivant l’espace de recherche et la contrainte considérée, différentes
stratégies d’élagage sont employées. La découverte d’un plan optimal d’évaluation
d’une requête inductive est une tâche typique d’un système de gestion de bases
de données inductives. C’est typiquement un problème d’optimisation similaire à
celui de l’évaluation des requêtes en base de données. Ce problème prend encore
plus d’importance lorsque l’on considère des sessions de requêtes inductives. Durant
chaque session, l’utilisateur formule des requêtes afin d’obtenir des renseignements
sur les motifs contenus dans les données. A partir des résultats obtenus, l’utilisateur
va raffiner ces requêtes jusqu’à l’obtention du résultat désiré. Des mécanismes de
”cache” pour les résultats intermédiaires pourraient améliorer sensiblement l’efficacité
de l’évaluation d’une série de requêtes.

Optimisation locale Soit un ensemble d’items I et Lpart un langage de motifs
défini comme une partition disjointe de I. La requête inductive qui demande un motif

A.1. CONTEXTE DE RECHERCHE 215

φ ∈ Lpart tel que la distance intra-cluster est minimale devient impossible à résoudre
quand le nombre d’items atteint 10. Dans ce cas, des techniques d’optimisation
locale sont employées comme par exemple avec le K-Means [Mac67] et le cluster-
ing hiérarchique, permettent de calculer un motif représentant des partitions qui
sont proches de l’optimale. Il faut remarquer qu’il n’est pas possible de spécifier
précisément la qualité des motifs extraits en utilisant les techniques d’optimisation
locale. Dans la suite, les méthodes qui fournissent des motifs qui ne satisfont pas
exactement les contraintes de la requête inductive ou seulement un sous-ensemble de
la collection recherchée sont appelées heuristiques. Par opposition, les méthodes qui
parviennent à fournir les collections exactes recherchées sont dénommées ”correcte
et complète”. Elles ne peuvent bien évidement s’employer que dans les cas où les
contraintes utilisées sont suffisamment sélectives.

L’avantage irréfutable des méthodes correctes et complètes est que les motifs
extraits sont formellement définis.

A.1.3 Extraction sous-contraintes

Pour pouvoir calculer la collection Th(L,D, C) = {φ ∈ L | Cφ(D)}, c’est-à-dire
extraire l’ensemble des motifs satisfaisants une contrainte donnée, il est inenvisageable
dans les cas réels d’imaginer générer l’ensemble des motifs possibles de l’espace des
motifs puis de ne conserver que ceux qui satisfont la contrainte donnée. L’extraction
de motifs sous-contraintes consiste à rechercher des stratégies efficaces d’évaluation de
la contrainte par un parcours malin de l’espace de recherche permettant de n’explorer
qu’un sous-espace de l’espace de recherche.

L’idée principale pour concevoir de tels parcours est d’exploiter la structure de
l’espace (langage) des motifs, les types de contraintes et leurs propriétés, et la struc-
ture de l’espace de solution.

A.1.3.1 Structure de l’espace des motifs

Pour établir une structure dans l’espace des motifs, nous avons besoin de relations
de généralisation et de spécialisation pour toutes les paires de motifs du langage des
motifs.

Definition A.1 (Relation de généralisation et de spécialisation) Soient L un
langage de motifs, U un autre langage de motifs, φ et ψ deux motifs de L, X un objet
de U et U × L → {true, false} une function. Le motif φ est dit plus général que le
motif ψ (noté φ � ψ) si et seulement si match(ψ,X)⇒ match(φ,X).

216 APPENDIX A. RÉSUMÉ EN FRANÇAIS

La relation de généralisation � implique une structure dans l’espace des mo-
tifs L. Les méthodes qui parviennent efficacement à calculer Th(L,D, C) utilisent
fortement cette structure. La relation de généralisation est un pré-ordre (une rela-
tion binaire réflexive et transitive). En revanche, cette relation n’est pas forcement
anti-symétrique et donc n’est pas nécessairement un ordre partiel. Or, nous avons
nécessairement besoin d’une relation d’ordre partiel comme relation de généralisation
afin de pouvoir organiser l’espace des motifs de manière à pouvoir l’exploité efficace-
ment. Pour cela, nous pouvons dériver une relation d’équivalence dans l’espace des
motifs et utiliser l’ensemble dit ”ensemble quotient” comme nouvel espace de motifs.
A partir de cet ensemble, une relation de généralisation peut être construite qui est
une relation d’ordre partiel.

Definition A.2 (Ensemble quotient) Soit L un ensemble avec un pré-ordre �.
Nous pouvons définir une classe d’équivalence ∼ de la manière suivante :

φ ∼ ψ si et seulement si φ � ψ et ψ � φ

φ/ ∼ représente la classe d’équivalence de φ et L/ ∼ celle de L.

Definition A.3 (Relation de généralisation sur les ensembles quotient) Nous
pouvons définir une relation de généralisation �∼ sur L/ ∼ de la manière suivante :

φ/ ∼ �∼ ψ/ ∼ si et seulement si φ � ψ.

La réflexivité et la transitivité de �∼ proviennent de �. Il faut noter que si φ/ ∼
�∼ ψ/ ∼ et ψ/ ∼ �∼ φ/ ∼ alors nous avons φ/ ∼ = ψ/ ∼. La relation d’ordre
�∼ ainsi obtenue est anti-symetrique. Ce qui veut dire que c’est une relation d’ordre
partiel.

Ainsi à partir d’un langage de motifs L et une relation de généralisation � qui est
un pré-ordre, nous pouvons toujours dériver un autre langage de motifs L/ ∼ avec
la relation d’ordre partiel �∼. Un ordre de généralisation qui est un ordre partiel
permet d’arranger l’espace des motifs sous la forme d’un graphe orienté acyclique,
structure très commode à parcourir et sur laquelle de nombreux mécanismes d’élagage
peuvent être mises en place. Un treillis est un exemple d’une telle structure (voir
Figure A.1.3.1).

A.1.3.2 Types de constraintes

Trois types de contraintes différentes peuvent être distingués: dépendante des données,
syntactique et d’optimisation.

A.1. CONTEXTE DE RECHERCHE 217

Figure A.1: Graphe partiellement ordonné qui représente un treillis

Contraintes dépendantes des données

Les contraintes qui nécessite un accès aux données sont appelées contraintes dépendantes
des données.

Definition A.4 (Contraintes dépendantes des données) Soient L un langage
de motifs, φ un motif de L et Cφ une contrainte sur φ. Alors Cφ est dite indépendante
des données si et seulement si l’évaluation de la contrainte implique l’accès à des
données.

Les contraintes de fréquence minimale et maximale sont des exemples classiques
de contraintes dépendantes des données.

Contraintes syntaxiques

Par opposition aux contraintes dépendantes des données, les contraintes syntax-
iques sont des contraintes qui nécessitent aucun accès aux données. Ces contraintes
contrôlent la forme des motifs recherchés en réduisant le langage des motifs à explorer.

Definition A.5 (Contrainte syntaxique) Soient L un langage de motifs, φ un
motif de L et Cφ une contrainte sur φ. Alors Cφ est une contrainte syntaxique si et
seulement si l’évaluation de la contrainte n’implique pas l’accès à des données.

Example A.1 Les contraintes de taille minimale et maximale et les contraintes
d’expression régulière sont des exemples de contraintes syntaxiques.

218 APPENDIX A. RÉSUMÉ EN FRANÇAIS

Contraintes d’optimisation

A chaque motif peut être associé une fonction d’évaluation qui définie la sémantique
du motif [BKM99]. Les contraints qui retournent vraie pour les motifs qui ont une
fonction d’évaluation optimale sont appelées contraintes d’optimisation.

Definition A.6 (Fonction d’évaluation) Soient D un jeu de données, L un lan-
gage de motifs et φ un motif de L. Soit r un ensemble valeurs. Une fonction
d’évaluation e(D, φ) met en relation chaque paire (D, φ) avec un élément de r.

Les mesures statistiques [WAG84, RF98a] et de contenu d’information [Sta89,
WFHW96] sont des mesures d’évaluations très utilisées par exemple en biologie.

Definition A.7 (Contrainte d’optimisation) Soient L un langage de motifs, φ
un motif of L, D un jeu de données et e(D, φ) une fonction d’évaluation. Une con-
trainte Cφ est d̂ıte contrainte d’optimisation si et seulement si elle est vraie quand
e(D, φ) a une valeur optimale.

De nombreux algorithmes recherchent des modèles globaux qui satisfont une con-
trainte d’optimisation. Par exemple, une tâche de clustering consiste à trouver des
groupes d’éléments (clusters) tels que la distance inter-groupe est maximale et la
distance intra-groupe est minimale. Les classifieurs essayent de minimiser le taux
d’erreur de prédiction. Dans la plupart des cas, des heuristiques sont employées pour
résoudre de tels problèmes. Les contraintes d’optimisation sont difficiles à exploiter
en extraction de motifs locaux et sont souvent réalisées en post-traitement. Les
règles d’association et leurs différentes fonctions d’évaluation [AIS93], et les itemsets
maximaux fréquents [BCFY05] sont des exceptions notables.

A.1.3.3 Propriétés des contraintes

L’idée derrière les stratégies d’élagage d’espaces de recherche est de pouvoir écarter
sans perdre de bons candidats de grands espaces de recherche (espace de motifs).
Cette élagage pour être réalisée doit être basée sur des propriétés formelles des con-
traintes assurant que dans telle portion de l’espace de recherche il est assuré qu’aucun
bon candidat n’existe.

Contraintes anti-monotones et monotones

La classe des contraintes anti-monotones est l’une des plus facile à prendre en compte,
et de nombreux algorithmes comme A priori [AIS93] exploitent cette propriété pour
élaguer l’espace de recherche et rendre les extractions correctes et complètes, efficace.

A.1. CONTEXTE DE RECHERCHE 219

Definition A.8 (Anti-monotonicité) Soit L un langage de motif. Une contrainte
C est anti-monotone si et seulement si pour tous les motifs φ, ψ ∈ L, nous avons si
φ � ψ, alors Cψ ⇒ Cφ.

L’élagage de l’espace de recherche est basée sur la contraposée de la définition
précédente: Une contrainte C est anti-monotone si et seulement si pour tous les
motifs φ � ψ, nous avons si Cφ est faux alors Cψ est faux.

La monotonicité est la propriété duale de l’anti-monotonicité.

Definition A.9 (Anti-monotonicité) Soit L un langage de motif. Une contrainte
C est monotone si et seulement si pour tous les motifs φ � ψ, nous avons si φ � ψ,
alors Cψ ⇒ Cφ.

Contraintes succinctes

Les contraintes succinctes ont été définies sur les itemsets [NLHP98]. Ce sont des
contraintes facilement exploitables pour lesquelles l’élagage peut être réalisé sans
génération de candidats et sans accès au jeu de données. Ainsi, les contraintes suc-
cinctes sont des contraintes syntaxiques.

Definition A.10 (Succincte) Soient I un ensemble d’items et I un itemset sur I.
Soient LI un langage de motifs et πp un prédicat de sélection. πp(I) retourne les
items qui satisfont le prédicat p. Alors,

• un itemset I ⊆ I est un ensemble succinct s’il peut être exprimé sous la forme
de πp(I);

• SP ⊆ 2I est un ensemble des parties succints (succint powerset) s’il y a n ∈ N
ensembles succints I1, . . . , In ⊆ I tels que SP puisse être exprimé comme un
ensemble des parties de I1, . . . , In en utilisant les opérateurs ensemblistes union
and moins;

• une contrainte C est une contrainte succincte si Th(LI , C) est un ensemble des
parties succinct.

Contraintes convertibles

La notion de contraintes convertibles sur les itemsets a été introduite dans [PH00,
PHL01]. L’idée est que pour une contrainte qui est ni monotone ni anti-monotone,
on puisse ordonner les items tels qu’il existe une relation stable entre la satisfaction
de la contrainte et les préfixes de l’itemset.

220 APPENDIX A. RÉSUMÉ EN FRANÇAIS

Definition A.11 (Préfixe) Soient R un ordre total sur les items I et m,n ∈ N tels
que m ≤ n. On considère des itemsets I1 = {i1, . . . , im} et itemset I2 = {i1, . . . , in}
tels que les items dans I1 et I2 sont triés suivant R. Alors, l’itemset I1 est appelé
un préfixe de l’itemset I2 par rapport à R.

Definition A.12 (Contrainte convertible anti-monotonique) Soient LI un lan-
gage de motifs et φ ∈ LI un itemset. Une contrainte C est convertible anti-monotonique
si et seulement si il existe un ordre R sur les items tel que lorsqu’un itemset φ satisfait
C alors tous les préfixes de φ satisfont aussi C.

A.1.3.4 Structure de l’ensemble solution : Espace de version

Les espaces de version (Version spaces) [Hir91, Hir94, Mit82] et leurs frontières [MT97]
sont traditionnellement utilisés pour caractériser l’espace de solution Th(L,D, C) en
fouille de données [MT97, Bay98] et en apprentissage [Hir91, Hir94, Mit82].

L’ensemble des motifs les plus spécifiques de Th(L,D, C) est l’ensemble minimal
couvrant. Il est appelé le S-set.

Definition A.13 (S-set) Soit L un espace de motifs avec une relation de généralisation
�. Soit S un sous-ensemble de L. Le S-set de S est défini par :

S(S) = {φ ∈ S|@ψ ∈ L : φ 6= ψ ∧ ψ � φ}

L’ensemble minimal des motifs les plus généraux qui couvre Th(L,D, C) est ap-
pelé G-set.

Definition A.14 (G-set) Soit L un espace de motifs avec une relation de généralisation
�. Soit S un sous-ensemble de L. Le G-set de S est défini par :

G(S) = {φ ∈ S|@ψ ∈ L : φ 6= ψ ∧ ψ � φ}

Definition A.15 (Espace de version) Soit L un espace de motifs avec une rela-
tion de généralisation �. Soient S le S-set de l’ensemble S de L et G le G-set de S.
Alors S est un espace de version définit par :

{φ ∈ L|∃s ∈ S et ∃g ∈ G : g � φ � s}

L’espace de version est employé pour représenté l’ensemble solution lié à une
conjonction de contraintes monotones et anti-monotones. Un algorithme par niveau
qui calcul les S-set et les G-set a été introduit dans [RK01, KRH01].

A.1. CONTEXTE DE RECHERCHE 221

Definition A.16 (Espace de version généralisé) Un sous-ensemble d’un espace
de motifs avec une relation de généralisation qui peut être exprimé comme l’union
d’espaces de version est appelé un espace de version généralisé.

A.1.4 Un example de scénario ECD

Un scénario est la série des opérations à réaliser pour répondre à un objectif d’analyse.
Nous dérivons maintenant un scénario réaliste pour identifier des sites de fixation
putatifs.

1. L’utilisateur (e.g., un biologiste) dispose d’une collection de noms de gènes
{G1, . . . , Gn}. Ainsi, appelons G1s et G1d (resp. G2s et G2d) l’ensemble
des gènes régulés positivement (resp. négativement) dans deux situations bi-
ologiques.

2. L’utilisateur récupère les séquences promotrices de ces gènes dans le génome
humain (disponible par exemple à partir du site de UCSC Genome Bioinfor-
matics 3). On nomme cette base de séquences ∆1. Ensuite, l’utilisateur stocke
les séquences de ∆1 qui correspondent à chaque nom de G1s et G1d (resp. G2s

et G2d), pour constituer les bases D1s et D1d (resp. D2s et D2d) des séquences
promotrices des gènes régulés positivement (resp. négativement).

3. (a) L’utilisateur fait alors l’hypothèse que les motifs qui sont présents dans
beaucoup de séquences de D1s et qui ne sont pas présents dans beau-
coup de séquences de D2s (ou l’inverse), sont potentiellement impliqués
dans la régulation génique liée au mécanisme biologique étudiée, et donc
qu’ils sont a priori intéressants. On peut en effet faire l’hypothèse que
de tels motifs représentent les sites de fixation putatifs pour des facteurs
de transcription. Pour les extraire et les conserver respectivement dans
M1 et M2, il/elle peut formuler les requêtes inductives suivantes : <1 :
M1 = minfr(φ, f1, D1s) ∧maxfr(φ, f2, D2s)
<2 : M2 = minfr(φ, f1, D2s) ∧maxfr(φ, f2, D1s).
Du point de vue biologique, les motifs extraits représentent des sites de
fixation putatifs présents sur un brin noté + (sur les deux).

(b) En sachant que l’ADN est composé de deux brins et qu’il y a des facteurs
de transcription qui peuvent s’accrocher sur le brin −, l’utilisateur effectue
l’opération du renversement et du complément RC sur ses données D1s et
D2s. Il obtient alors deux nouveaux jeux de données : D′1s = RC(D1s)
D′2s = RC(D2s)
Les requêtes inductives qui correspondent à <1 et <2 permettent ensuite
de construire de nouvelles collections de motifs M ′1 et M ′2. On note aussi

3http://hgdownload.cse.ucsc.edu/downloads.html#human

222 APPENDIX A. RÉSUMÉ EN FRANÇAIS

que dans le cas où, par exemple, f1 6= f2, il serait impossible de calculer
minfr(φ, f2, D′1s) par post-traitement de minfr(φ, f1, D1s).

(c) Ensuite (probablement inspiré par l’analyse des résultats déjà obtenus)
l’utilisateur peut vouloir identifier les sites de fixation putatifs pour les fac-
teurs de transcription qui régulent positivement les gènes dans la première
situation biologique mais pas dans la seconde.
La requête inductive correspondante est :
<3 : M3 = minfr(φ, f1, D1s) ∧maxfr(φ, f2, D2s)

∧(maxfr(φ, f3, D1d) ∨minfr(φ, f4, D2d)).

(d) Imaginons ensuite que l’utilisateur souhaite chercher des sites de fixa-
tion putatifs pour les facteurs régulent (positivement ou négativement)
les gènes dans la première situation biologique mais pas dans la seconde.
La requête inductive correspondante est <4 : M4 =
(minfr(φ, f1, D1s)∧maxfr(φ, f2, D2s)∧(maxfr(φ, f3, D1d)∨minfr(φ, f4, D2d)))
∨(minfr(φ, f5, D2s)∧maxfr(φ, f6, D1s)∧(maxfr(φ, f7, D2d)∨minfr(φ, f8, D1d)))

4. L’utilisateur peut décider de poursuivre l’exploitation des motifs de M1. Il/elle
veut savoir quels sont les motifs de M1 qui sont des sites de fixation de fac-
teurs de transcription connus. Pour faire cela, il peut compléter les données
en construisant une nouvelle base de données ∆2 qui contient les facteurs de
transcription, les génes qu’ils régulent, les sites de fixation dans les séquences
promotrices de ces gènes, les scores attribués à ces sites et leurs positions. Par
exemple, ∆2 peut êre construite en appliquant EZ-Retrieve [ZRS+02] à qui
l’on fournit en entrée ∆1. Pour chaque φ ∈M1, on peut formuler des requêtes
du type �sélectionner à partir de ∆2 les facteurs de transcription, les gènes, et
les positions dans les séquences promotrices qui s’accrochent au site de fixation
φ avec le score a�. C’est une requête tout-à-fait classique et qui, par exemple
exprimée en SQL, peut être résolue par n’importe quelle Système de Gestion de
Bases de Données. Désignons par tf1 un facteur de transcription qui s’accroche
à φ1, considérons un motif φ2 qui n’était pas reconnu comme site de fixation
pour un facteur de transcription.

5. En formulant une requête dont l’argument est tf1 sur la base de données
publique des facteurs de transcription eucaryote Transfac R© [MFG+03]4, l’utilisateur
peut récupérer la matrice et la séquence consensus des sites de fixation de tf1

(clairement, φ1 est en accord avec cette séquence consensus). Puisque φ1 était
intéressant du fait de sa présence dans beaucoup de séquences de D1s et dans
peu de séquences deD2s et que c’est le facteur de transcription tf1 qui s’accroche
à φ1, cela peut suggérer que tf1 est impliqué dans la régulation des phénomènes
étudiés. Néanmoins, tf1 peut s’accrocher aussi aux sites de fixation qui sont
similaires à φ1. La notion de cette �similaire� est donnée par la matrice ou

4http://www.gene-regulation.com/pub/databases.html#transfac

A.1. CONTEXTE DE RECHERCHE 223

la séquence consensus que l’utilisateur a obtenu à partir de Transfac R©. En
utilisant la séquence consensus, l’utilisateur peut par exemple formuler une
contrainte de similarité à une expression régulière e, et, ainsi utiliser le solveur
décrit dans [ALB03] pour évaluer les requêtes inductives :

<5 : M5 = minfr(φ, f1, D1s) ∧ simexpreg(φ, e)

<6 : M6 = minfr(φ, f2, D2s) ∧ simexpreg(φ, e).

En fixant les paramètres f1, f2 et en calculant la somme des fréquences des mo-
tifs dans M5 et la somme des fréquences des motifs dans M6, l’utilisateur peut
estimer si les motifs correspondants aux sites de fixation pour tf1 sont effec-
tivement présents dans beaucoup de séquences de D1s et dans peu de séquences
de D2s. Le même parcours peut-être effectué en exploitant la similarité donnée
par la matrice : le solveur décrit dans [CBM02a] prend comme argument une
contrainte de similarité simmat et des matrices m (définies à partir de celles
fournies par Transfac R©) et ainsi calculer les solutions aux requêtes suivantes
:

<7 : M7 = minfr(φ, f1, D1s) ∧ simmat(φ,m)

<8 : M8 = minfr(φ, f1, D2s) ∧ simmat(φ,m).

6. L’utilisateur peut maintenant reprendre les analyses décrites à l’étape 4 du
scénario et s’intéresser à un motif φ2. Supposons qu’il/elle fasse l’hypothèse
qu’il s’agisse d’un site de fixation putatif inconnu. On rappelle que φ2 est
intéressant parce qu’il est présent dans beaucoup de séquences de D1s et peu
présent dans les séquences de D2s. Comme dans l’étape 5, le but est de savoir si
des motifs similaires à φ2 sont également présents dans beaucoup de séquences
de D1s et peu présents dans des séquences de D2s. L’utilisateur peut donc
calculer les solutions des requêtes suivantes :

<9 : M9 = minfr(φ, f1, D1s) ∧ sim(φ, φ2, t, h, l)

<10 : M10 = minfr(φ, f2, D1s) ∧ sim(φ, φ2, t, h, l).

En fixant les paramètres f1, f2, t, h, l et en calculant la somme des fréquences
des motifs dans M9 et la somme des fréquences des motifs dans M10, il/elle
peut estimer si la propriété intéressante de φ2 tient pour les motifs similaires
à φ2. Ces connaissances peuvent être une fois encore enrichies par l’analyse de
résultats de la requête suivante :

<11 : M11 = minfr(φ, f1, D1s) ∧maxfr(φ, f1, D2s) ∧ sim(φ, φ2, t, h, l).

7. Considérons maintenant que les facteurs de transcription qui ont été identifiés
comme intéressants après l’étape 5 sont stockés dans la collection α et que les
motifs qui restaient pertinents après l’étape 6 sont stockés dans la collection
β. Ces collections α et β peuvent être utilisées pour enrichir les contextes
d’extraction de bi-ensembles fréquents (i.e., gènes-situations) comme cela a été
présenté dans [BRBR05]. On peut alors formuler une requête inductive pour

224 APPENDIX A. RÉSUMÉ EN FRANÇAIS

trouver des associations entre, e.g., les gènes qui sont régulés positivement ou
négativement dans nos deux situations biologiques, et les sites de fixation putat-
ifs dans les séquences promotrices de ces gènes (i.e., les motifs dans la collection
β).

Enfin, pour rendre compte de la puissance du cadre des bases de données induc-
tives considérons une dernière situation réaliste pour un chercheur s’intéressant à la
régulation génique. On suppose qu’il faut extraire des motifs structurés au sens de
[Sag00, CS04, SW03]. Le problème de l’extraction des motifs structurés peut être
défini sous la forme de requêtes inductives. On peut spécifier la fonction d’évaluation
de manière à ce qu’elle fournisse aussi l”information sur les positions du motif dans
les séquences. Ainsi, une requête inductive pour extraire de tels motifs peut ête
formulée de manière informelle comme suit: extraire les motifs qui sont présents au
moins f1 fois dans les séquences différentes, au moins p1 fois dans chaque séquence
et de telle sorte que la différence entre ces positions soit au plus d1. Si l’utilisateur
souhaite ensuite que les composants du motif structuré soient similaires à un motif
donné il suffit alors d’ajouter une contrainte de similarité.

A.1.5 Les séquences en biologie moléculaire

Les séquences (génomiques et/ou protéiques) font l’objet de manipulations quotidi-
ennes en biologie moléculaire. Les motifs séquentiels et chaines dans de telles données
sont intéressants. Donnons quelques exemples d’applications de l’extraction de motifs
dans des données biologiques séquentielles ([Sag00], [RFP+00]).

1. Alignement multiple. L’un des premiers usages des motifs séquentiels a con-
cerné l’étude de l’alignement multiple de séquences génomiques ou protéiques.
L’objectif est de trouver des motifs qui représentent des blocs (i.e., des groupes)
de séquences reliées (i.e., ayant des similarités). Cela permet d’identifier des
caractéristiques conservées dans les séquences d’ADN ou de protéines. D’autres
applications importantes sont la représentation de familles de protéines, la
déduction des mécanismes d’évolution à partir des séquences biologiques, l’assemblage
des séquences �shotgun�.

2. Descripteurs individuels et composites. La base de données PROSITE constitue
le premier essai pour proposer une collection complète de motifs individuels
qui caractérisent des collections de protéines et de fragments de protéines.
Malheureusement, les descripteurs individuels ne conviennent pas à la car-
actérisation de certaines familles de protéines. Par conséquence, des descrip-
teurs composites ont été conçus. Cette approche repose sur l’hypothèse que
plusieurs protéines sont composées de quelques éléments conservés et chacun
d’entre eux peut êre représenté par un descripteur.

A.1. CONTEXTE DE RECHERCHE 225

3. Séquences d’ADN impliqués dans la régulation et l’expression génique. Il s’agit
ici d’étudier les séquences promotrices et les sites de fixation de facteurs de tran-
scription, et, éventuellement, les sites activateurs/répresseurs. Ces objets bi-
ologiques agissent souvent en coopération. En cherchant des motifs séquentiels
qui les représentent, il faut prendre en compte cette réalité biologique (e.g.,
considérer des motifs composites/structurés).

4. Autres éléments des séquences d’ADN. On peut aussi rechercher d’autres types
de motifs comme les sites d’épissage, les sites activateurs/répresseurs qui con-
tribuent à l’épissage, les sites de restriction (i.e., un site reconnu par l’enzyme
de restriction, typiquement un palindrome de longueur de 4-6 nucléotides), les
répétitions en tandem (i.e., une collection d’instances multiples d’une combinai-
son de nucléotides où les instances apparaissent en tandem dans l’ADN; chaque
instance étant une forme légèrement modifiée de la même unité de base).

5. Prédiction de la structure d’ARN. Ici, la structure est l’arrangement spatial,
local ou global, des atomes qui composent la molécule. Les simples éléments
structuraux de l’ARN peuvent être identifiés au niveau des séquences nucléiques
comme des palindromes et �pseudoknots�.

6. Prédiction de la structure de protéines. Ici, l’approche est d’identifier, à partir
des séquences seules, les éléments qui sont conservés en termes de structure des
protéines, et donc potentiellement impliqués dans la fonction enzymatique ou
la topologie de l’ADN.

7. Analyse de la régulation génique. Les données provenant de puces à ADN per-
mettent, entre autres, d’étudier la dynamique de régulation génique. L’objectif
est d’identifier l’induction ou la répression des gènes en fonction du temps -
l’expression différentielle de ces gènes peut être expliquée par un développement
naturel de la cellule ou bien comme la réponse à des changements d’environnement
ou de signaux.

Dans les cellules des eukaryotes, la capacité d’exprimer les protéines biologique-
ment actives est contrôlée par la régulation et dépend de plusieurs facteurs: (1)
la structure de la chromatine, (2) l’initiation de la transcription qui se fait par
l’interaction des éléments promoteurs, activateurs et répresseurs au niveau de la
séquence ADN et des multiples protéines activatrices et inhibitrices, (3) le traite-
ment et la modification des ARNm, (4) le transport des ARNm, (5) la régulation de
la stabilité des ARNm, (6) l’initiation de traduction, (7) les modifications transac-
tionnelles, (8) le transport des protéines à leurs sites d’activité et (9) la régulation
de la stabilité protéique.

226 APPENDIX A. RÉSUMÉ EN FRANÇAIS

A.2 Contributions

A.2.1 Tolérance aux fautes en extraction dans des chaines

Il est courant que les données réelles contiennent des erreurs dues à des problèmes
techniques au niveau de la collecte des données, du stockage et de la transmission.
Dans certains domaines d’application, elles peuvent aussi être dues aux types de
méthodes employées pour les analyser. Par exemple, des données sous la forme
de séries numériques temporelles peuvent être analysées au moyen d’algorithmes
d’extraction de sous-chaines, à la condition que les données sont préalablement discrétisés
et donc encodées comme une séquence d’évènements d’un alphabet ”calculé” (ou
artificiel). Aussi, les données représentants des phénomènes réels sont souvent in-
trinsèquement dégénérées [EG01]. Par exemple, de nombreuses variantes de motifs
chaine dans les séquences d’ADN peuvent être des sites de fixation du même facteur de
transcription ou plusieurs séquences de parcours différents de pages internet peuvent
permettent d’accomplir la même tache. Pour réussir à capturer de la connaissance
dans de tels jeux de données une tolérance aux fautes est nécessaire.

Le besoin de tolérance aux fautes est présent dans de nombreux domaines. Une
application classique est le traitement du signal. Par exemple, en reconnaissance de
la parole, certaines parties du signal peuvent être compressées ou non prononcées,
l’analyse d’un tel signal sans prise en compte de tolérances aux fautes est en pratique
inopérante. Dans le domaine de la correction des erreurs (error correction), pour
assurer une transmission correcte à travers un canal, il est nécessaire d’être capable
de retrouver le signal original après une possible altération due à la transmission.
Une autre application est l’extraction de texte ou d’information. L’approximation
est un des outils de base pour corriger et reconnâıtre les mots mal écrits. L’un
des plus grand domaine d’application reste la biologie (computational biology). Les
séquences biologiques peuvent être considérées comme des chaines dans un alphabet
spécifique, par exemple les séquences d’ADN peuvent être vues comme des chaines sur
un alphabet de quatre lettres et les protéines comme des chaines sur un alphabet de
vingt lettres. Un appareillement exact est rarement commode en analyse de séquences
biologiques, sachant qu’elles contiennent des erreurs ou fautes dues aux technologies
de séquençage et qu’elles sont intrinsèquement dégénérées. Le développement rapide
et récent de la bio-informatique a résulté en un nombre intéressant d’approches pour
s’attaquer au problème de la tolérance aux erreurs. Le concept de la ”recherche en
acceptant des erreurs” (search allowing errors) est un opérateur fondamental dans
de nombreux problèmes, par exemple en reconstruction de séquences par alignement
et reconstruction de sous-séquences, la recherche de parties fonctionnelles dans la
séquence d’ADN et la comparaison de séquences pour l’analyse phylogénétique.

Dans ce travail, nous nous concentrons sur les méthodes déterministes par op-
position aux méthodes probabilistes. Les motifs déterministes sont des motifs qui

A.2. CONTRIBUTIONS 227

correspondent ou pas à un objet donné, c’est oui ou non. Les motifs probabilistes
contiennent une probabilité de correspondance à un objet [BJEG98a]. En particulier
nous allons nous concentrer sur des stratégies correctes et complètes pour extraire
des motifs tolérants aux erreurs dans des données chaine. Dans ce travail, nous ne
couvrons pas par exemple les approches non-déterministes comme les modèles de
Markov, les réseaux bayésien, les matrices de poids, etc.

En fouille de données sous-contraintes, la notion de tolérance aux fautes corre-
spond à deux problèmes disjoints. Le premier est de trouver les motifs qui sont
similaires à un motif de référence. Le second problème est de trouver les motifs qui
capturent des régularités softs (soft similarities), c’est-à-dire des régularités qui se
répètent mais pas de façon complètement exacte. Ce problème peut être formulé
comme un problème d’extraction de motifs satisfaisants une contrainte de fréquence
avec une fonction de correspondance entre un motif et un objet (des données) qui est
vraie si et seulement si l’objet est similaire au motif.

A.2.2 Contrainte de similarité et de soft-fréquence

L’objectif est de formuler des contraintes de similarité et de soft-fréquence de telle
sorte qu’elles puissent être résolues efficacement, c’est-à-dire de réussir à les formuler
sous la forme de contraintes monotones et anti-monotones. Cela permettrait non
seulement une résolution efficace de ces contraintes mais surtout de pouvoir con-
cevoir un algorithme générique Marguerite-{Sim,SoftFr} qui emploie les stratégies
présentées dans [DJDM02, DD03, DD04] qui permettent de résoudre n’importe quelle
combinaison de contrainte monotone et anti-monotone.

La similarité entre deux chaines est le problème algorithmique central dans le
domaine de l’approximation de chaines, particulièrement utile en bio-informatique.
Plusieurs approches de contraintes de similarité ont été étudiées dans la communauté
de fouille de données. Une relation de similarité permet d’identifier les occurrences
”soft”, éléments indispensables pour définir les motifs tolérants au bruit. Dans la
suite, nous garderons le terme anglais ”soft” pour ne pas trop détruire son sens.
L’extraction de motifs tolérants aux fautes dans des jeux de données de chaines au
travers d’une contrainte dite de contrainte de soft-fréquence a beaucoup été étudiée en
bio-informatique. En particulier, de nombreux extracteurs ad-hoc ont été développés
pour répondre à des contraintes spécifiques.

Une alternative très prometteuse proposée dans [DJDM02, DD03] est de con-
sidérer une théorie générale qui est capable de supporter une combinaison arbitraire
de contraintes monotones et anti-monotones. Une telle théorie a été implémentée
pour des jeux de données type chaine et a conduit aux extracteurs génériques VST
et FAVST. Le problème central pour concevoir un algorithme efficace est d’exploiter
l’élagage d’espace de recherche grâce aux propriétés des contraintes. Dans la plupart

228 APPENDIX A. RÉSUMÉ EN FRANÇAIS

des domaines d’application, la notion de similarité entre deux entités ε1 and ε2 signifie
qu’il y a une ”petite différence” entre ε1 and ε2. Évidemment, la propriété de petite
différence ne doit pas être propagée trop loin, c’est-à-dire la propriété de similarité
ne doit être transitive. Une contrainte de similarité qui n’est pas transitive est par
définition ni monotone ni anti-monotone car une relation de similarité non-transitive
ne peut pas être isomorphique à une relation de spécialisation. A cause de cette
propriété, les motifs tolérants au bruit ne peuvent pas profiter des avancées récentes
réalisées sur les algorithmes génériques.

A.2.2.1 Contrainte de similarité

Les relations de similarité ne peuvent pas être transitives et donc leur contrainte de
similarité associée ne peut pas être (anti)-monotone.

Contrainte de similarité LCS

La similarité entre deux chaines peut être évaluée à partir de leur plus longue séquence
commune(LCS). Il est intéressant de noter qu’il existe pour deux chaines données
σ1 and σ2 une relation stable entre la longueur de LCS(σ1, σ2) et les sous-chaines de
la chaine σ1.

Lemma A.1 Soient σ1, σ2 deux chaine de l’alphabet Σ. Soit σ1′ une sous-chaine
de σ1. Alors, nous avons |LCS(σ1, σ2)| ≥ |LCS(σ1′, σ2)|.

Par conséquent, nous proposons de rechercher des propriétés de monotonicité et
d’anti-monotonicité dans des contraintes de similarité entre chaines en étudiant leur
LCS. D’abord, nous observons que les chaines similaires doivent avoir une LCS
suffisamment longue. Nous formulons donc une contrainte de taille minimale de la
plus longue séquence commune.

Definition A.17 (Contrainte de LCS minimale) Soient LΣ un langage de chaines,
φ un motif de LΣ, σ une chaine référence et minLCS ∈ N un seuil. Nous définissons
la contrainte de LCS minimale, notée MinLCSφ(σ,minLCS), qui est vraie si et seule-
ment si |LCS(φ, σ)| ≥ minLCS.

Theorem A.1 La contrainte de LCS minimale est monotone.

Example A.2 Soit σ = tctggga une chaine référence sur l’alphabet Σ = {a, c, g, t}.
Les motifs chaines φ1 = gcggga et φ2 = ctggaga de LΣ satisfont la contrainte
MinLCSφ(σ, 5), sachant que |LCS(φ1, σ)| = |cggga| = 5 et |LCS(φ2, σ)| = |ctggga| =

A.2. CONTRIBUTIONS 229

6. Il faut noter que la φ3 = attagtgttttgggg satisfait aussi la contrainte MinLCSφ(σ, 5)
sachant que |LCS(φ3, σ)| = |ttggg| = 5.

Cette exemple montre que la contrainte de LCS minimale MinLCSφ(σ,minLCS)
permet de spécifier un nombre minimal de symboles en correspondance entre deux
chaines. Cependant, comme nous avons pu le voir avec la chaine φ3, il n’y a pas de lim-
ite aux nombres de symboles qui ne sont pas en correspondance. MinLCSφ(σ,minLCS)
seule ne peut être utilisée pour spécifier la contrainte de similarité. Nous nous rap-
pelons qu’une manière d’obtenir une sous-chaine d’une chaine est de supprimer cer-
tains des symboles de cette chaine. En limitant le nombre de délétions nécessaire à
réaliser sur une chaine afin d’obtenir LCS, nous obtenons la contrainte complémentaire
souhaitée qui fixe le nombre de fautes.

Definition A.18 (Contrainte de délétion maximale) Soient LΣ un langage de
chaines, φ un motif de LΣ, σ une chaine référence et maxDels ∈ N un seuil. On fixe
LCS(φ, σ), et note par dels les symboles de φ qui n’appartiennent pas à LCS. Le
nombre de dels noté DelsLCS(φ, σ), est égal à |φ| − |LCS(φ, σ)|. Nous définissons
une contrainte de délétion maximale notée MaxDelsφ(σ,maxDels) qui est vraie si et
seulement si DelsLCS(φ, σ) ≤ maxDels.

Theorem A.2 La contrainte de délétion maximale MaxDelsφ(σ,maxDels) est anti-
monotone.

Ainsi, deux chaines sont dites dans la relation de similarité de LCS si elles satis-
font la contrainte de LCS minimale et de délétion maximale.

Definition A.19 (Relation de similarité de LCS) Soient σ1, σ2 deux chaines
sur l’alphabet Σ, et minLCS,maxDels ∈ N deux seuils. Les chaines σ1 et σ2 sont
dans la relation de similarité de LCS, notée simLCS(σ1, σ2,minLCS,maxDels), si
et seulement si MinLCSσ1(σ2,minLCS) ∧MaxDelsσ1(σ2,maxDels) = true.

A partir de la relation de similarité de LCS, nous définissons la contrainte de
similarité de LCS.

Definition A.20 (Contrainte de similarité de LCS) Soient LΣ un langage de
motifs chaine, φ un motif de LΣ, σ une chaine référence et minLCS,maxDels ∈ N
deux seuils. Nous définissons une contrainte de similarité de LCS, notée LCSSimφ(σ,minLCS,maxDels)
qui est vraie si et seulement si le motif φ et la chaine de référence σ sont dans une
relation de similarité simLCS(φ, σ,minLCS,maxDels).

230 APPENDIX A. RÉSUMÉ EN FRANÇAIS

Example A.3 En reprenant l’exemple A.2, les motifs φ1 et φ2 satisfont la contrainte
LCSSimφ(σ, 5, 1). Le motif φ4 = gcgggta satisfait la contrainte LCSSimφ(σ, 5, 2),
sachant que LCS(φ4, σ) = |cggga| = 5. Le motif φ3 ne satisfait ni la contrainte
LCSSimφ(σ, 5, 1) ni la contrainte LCSSimφ(σ, 5, 2).

Remark A.1 La taille d’un motif φ satisfaisant la contrainte LCSSimφ(σ,minLCS,maxDels)
est au moins de minLCS et au plus de |σ|+maxDels. Il faut noter que même si la
taille maximale de φ satisfaisant LCSSimφ(σ,minLCS,maxDels), peut être déduite
de |σ| et maxDels, le fait que φ satisfait la contrainte
MinLCSφ(σ,minLCS) ∧ MaxLengthφ(|σ| + maxDels) n’implique pas qu’il satisfait
aussi la contrainte LCSSimφ(σ,minLCS,maxDels).

Example A.4 On considère une chaine de référence σ = agcgac sur l’alphabet Σ =
{a, c, g, t}, un motif chaine φ = gagataga, et des seuils minLCS = 4, maxDels =
2. Le motif φ satisfait la contrainte MinLCSφ(σ, 4) ∧ MaxLengthφ(6 + 2), mais il
ne satisfait pas la contrainte LCSSimφ(σ, 4, 2), sachant que même si LCS(φ, σ) =
|agga| = 4, nous avons DelsLCS(φ, σ) = 4 > 2.

A.2.2.2 Contrainte de soft-fréquence

Le problème de l’extraction de motifs tolérants aux fautes dans des données chaine
peut formalisé comme une tâche d’extraction de motifs φ qui satisfont une con-
trainte de fréquence soft. L’évaluation des contraintes de fréquence soft minimale
MinSoftFrφ(minFr,D) et maximale MaxSoftFrφ(maxFr,D) nécessite de calculer la
fréquence soft SoftFr(φ,D) d’un motif φ. Pour cela, nous avons besoin de trou-
ver tous les objets X dans les données D qui sont similaires au motif, c’est-à-dire
d’évaluer la contrainte SimX(φ) ∧ MinFrX(1,D). Comme expliqué précédemment,
une contrainte de similarité ne peut pas avoir les propriétés de monotonicité et
d’anti-monotonicité. L’étape de calcul de la fréquence soft d’un motif est donc non
triviale car les mécanismes d’élagage liés aux propriétés de monotonicité et d’anti-
monotonicité ne peuvent pas être employés. En plus, la contrainte de fréquence
soft minimale (respectivement maximale) n’est pas forcément anti-monotone car il
n’existe pas forcement de relation stable entre les sous chaines et les sur-ensemble
d’un motif chaine et la taille de leurs occurrences softs.

La contrainte de similarité LCS introduite précédemment est exprimée comme
une conjonction de deux contraintes qui ont les propriétés requises. Ainsi, nous
proposons d’utiliser cette contrainte de similarité pour trouver les occurrences softs
d’un motif, étape nécessaire pour calculer sa fréquence soft.

La contrainte de similarité LCS notée LCSSimX(φ,minLCS,maxDels) est paramétrée
par minLCS qui correspond à la taille minimale requise pour LCS(X,φ) et par
maxDels qui est le nombre maximal de délétion autorisé.

A.2. CONTRIBUTIONS 231

Relation de similarité InsDels

La contrainte de similarité LCS notée MinLCSφ(σ,minLCS) en imposant un LCS
suffisamment grand entre deux chaines, peut être reformulée de telle sorte qu’elle
n’est plus dépendante directement de le taille |φ|. Elle est alors exprimée en terme
d’insertions et est appelée contrainte d’insertion maximale.

Definition A.21 (Contrainte d’insertion maximale) Soient LΣ un langage de
motifs chaine, φ un motif de LΣ, σ une chaine référence et maxIns ∈ N un seuil.
Nous fixons un LCS(φ, σ), notons par ins les symboles de σ qui n’appartiennent pas
à cette LCS. Le nombre de ins, noté InsLCS(φ, σ) est égal à |σ| − |LCS(φ, σ)|. La
contrainte d’insertion maximale notée MaxInsφ(σ,maxIns) est vraie si et seulement
si InsLCS(φ, σ) ≤ maxIns.

Theorem A.3 La contrainte d’insertion maximale MaxInsφ(σ,maxIns) est mono-
tone.

Example A.5 Soit une chaine référence σ = tctggga sur l’alphabet Σ = {a, c, g, t}.
Les motifs chaine φ1 = gcggga et φ2 = ctggaga satisfont la contrainte MaxInsφ(σ, 2)
constraint, sachant que InsLCS(φ1, σ) = |σ| − |cggga| = 2 et InsLCS(φ2, σ) =
|σ| − |ctggga| = 1. Le motif chaine φ3 = attagtgttttgggg satisfait aussi la contrainte
MaxInsφ(σ, 2) sachant que InsLCS(φ3, σ) = |σ| − |ttggg| = 2.

Cette exemple montre que la contrainte d’insertion maximale MaxInsφ(σ,maxIns)
comme la contrainte MinLCSφ(σ,minLCS), permet de spécifier le nombre minimal de
symboles qui correspondent, mais comme avec le motif φ3 elle ne permet pas de borner
le nombre de symboles qui ne correspondent pas. Pour borner ce nombre ”d’erreurs”,
nous allons utiliser la contrainte de délétion maximale MaxDelsφ(σ,maxDels).

Definition A.22 (Relation de similarité InsDels) Soient σ1, σ2 deux chaines
sur un alphabet et maxIns,maxDels ∈ N deux symboles. Les chaines σ1 et σ2 sont
dans une relation de similarité insertion-délétion (InsDels) notée
simInsDels(σ1, σ2,maxIns,maxDels), si et seulement si MaxInsφ(σ,maxIns)∧
MaxDelsσ1(σ2,maxDels) = true.

A partir de la relation de similarité InsDels, nous pouvons définir la contrainte
de similarité InsDels.

Definition A.23 (Contrainte de similarité InsDels) Soient LΣ un langage de
motifs chaine, φ un motif de LΣ, σ une chaine de référence, et maxIns,maxDels

232 APPENDIX A. RÉSUMÉ EN FRANÇAIS

∈ N deux chaines. Nous définissons une contrainte de similarité InsDels notée
InsDelsSimφ(σ,maxIns,maxDels) qui est vraie si et seulement si un motif φ et une
chaine référence σ sont dans une relation de similarité insertion-délétion
simInsDels(φ, σ,maxIns,maxDels).

Fréquence soft par la relation de similarité InsDels

Nous utilisons la relation de similarité InsDels qui est une conjonction de contraintes
monotones et anti-monotones et qui peut être évaluée efficacement pour trouver les
occurrences softs d’un motif chaine φ.

Definition A.24 (Fonction de correspondance InsDels) Soient UΣ un univers
de chaines (langage des éléments dans les données) sur an alphabet Σ, S un objet
de UΣ, et maxIns,maxDels ∈ N deux chaines. Soit φ un motif d’un langage de
motifs chaine LΣ. Nous définissons une fonction de correspondance InsDels notée
matchInsDels(φ, S,maxIns,maxDels) qui est vraie si et seulement si il existe une
chaine σ telle que σ v S et simInsDels(φ, σ,maxIns,maxDels) = true.

Definition A.25 (Fréquence soft InsDels) La fréquence Fr(φ,D) qui est évaluée
en utilisant la fonction de correspondance InsDels nommée matchInsDels(φ, S,maxIns,maxDels),
est appelée la fréquence soft InsDels et est notée SoftFrInsDels,S(φ,D,maxIns,maxDels).

Definition A.26 (Contrainte de fréquence soft InsDels) La contrainte de fréquence
soft minimale MinFrφ(minFr,D) qui utilise la fonction de correspondance InsDels
est appelée une contrainte de fréquence soft InsDels et est notée
MinSoftFrInsDels,Sφ (minFr,D,maxIns,maxDels). La contrainte de fréquence maxi-
male
MaxFrφ(maxFr,D) qui utilise la fonction de correspondance InsDels est appelée con-
trainte de fréquence soft maximale InsDels et est notée
MaxSoftFrInsDels,Sφ (maxFr,D,maxIns,maxDels).

L’utilisation de la fonction de correspondance InsDels pour trouver les occur-
rences soft d’un motif permet non seulement de calculer efficacement les motifs soft
mais aussi il garantie les propriétés de monotonicité et d’anti-monotonicité de la
contrainte de fréquence soft minimale et maximale.

Theorem A.4 La contrainte de fréquence soft minimale InsDels
MinSoftFrInsDels,Sφ (minFr,D,maxIns,maxDels) est anti-monotone si maxDels ≥
maxIns.

A.2. CONTRIBUTIONS 233

La contrainte de fréquence soft maximale InsDels
MaxSoftFrInsDels,Sφ (maxFr,D,maxIns,maxDels) est monotone is monotonic si maxDels ≥
maxIns.

Example A.6 (Contre-exemple) Cette exemple montre que la contrainte de fréquence
soft minimale InsDels MinSoftFrInsDels,Sφ (minFr,D,maxIns,maxDels) n’est pas
anti-monotone quand maxDels < maxIns.
Soit un alphabet {a, c, g, t}, LΣ un langage de motifs chaine de Σ et D = {aagc, gc, gc}
un jeu de données chaine. La contrainte MinSoftFrInsDels,Sφ (2,D, 2, 1) est satisfaite
pour le motif φ = aagc, mais n’est pas satisfaite pour une de ces sous-chaines φ′ = aa,
sachant que SoftFrInsDels,S(aagc,D, 2, 1) = 3 et SoftFrInsDels,S(aa,D, 2, 1) = 1.

A.2.3 Twilight zone

A.2.3.1 Motivation

De nombreux types de motifs locaux comme par exemple les règles d’association, les
sou-chaines, les règles d’épisode, les sous-arbres et les sous-graphes, ont été étudiés ces
dernières années. De nouveaux types de motifs qui supportent des tâches d’extraction
spécifique à certains domaines d’application rendant les motifs plus utilisables sont
cruciaux. Évidemment, cela ne résout pas tous les problèmes. En effet, dans des
contextes d’application réels, les motifs intéressants sont souvent cachés au milieu
de très nombreux autres [CZ06]. Le problème majeur de la plupart des méthodes
d’extraction de motifs locaux est le fardeau de ces motifs a priori inintéressants. Le
terme inintéressant doit être compris à la fois au niveau subjectif et objectif. Par
exemple, la plus part du temps, éviter de fournir ou même de calculer les motifs
déjà connus est un facteur clé pour faciliter l’interprétation futur des motifs. Le
problème central est de réussir à prendre le meilleur de la connaissance du domaine
d’application et de l’utiliser au mieux à chaque étape du cycle de vie de l’ECD.
La qualité de la sélection des données et des étapes de pré-traitement résulte prin-
cipalement de la connaissance du domaine. L’étape de fouille de données doit in-
corporer la connaissance du domaine si l’on ne veut pas devoir utiliser toutes nos
ressources de calcul pour calculer un ensemble gigantesque de motifs inintéressants
tout en ratant ceux recherchés. Pour finir, l’étape cruciale de post-traitement des
motifs extraits nécessite aussi une prise en compte de la connaissance du domaine
par l’intermédiaire des experts des données. Nous sommes convaincu que de nom-
breux de ces problèmes, en particulier pour améliorer la phase d’extraction et de
post-traitement des motifs, peuvent être résolus au moyen du cadre d’extraction de
motifs sous-contraintes [BDM05].

Finalement, pour réussir à extraire ces précieuses aiguilles (motifs intéressants)
dans la botte de foin (la collection des motifs possibles), il y a un besoin très impor-

234 APPENDIX A. RÉSUMÉ EN FRANÇAIS

tant de nouvelles méthodes qui permettraient d’extraire ces motifs potentiellement
intéressants. Si l’extraction de motifs sous-contraintes est notre approche, nous avons
besoin non seulement de spécifier des contraintes subtiles et ingénieuses pour décrire
la tache d’extraction dans notre domaine d’application. Nous avons aussi besoin de
s’intéresser de près aux autres manières d’exprimer la pertinence des motifs. En
particulier, celles qui ne peuvent pas être complètement exprimées sous la forme de
contraintes monotones et anti-monotones sur des motifs locaux. C’est le cas de la
plupart des mesures statistiques. Même si elles n’ont pas ces jolies propriétés, il serait
néanmoins très intéressant de pouvoir les exploiter en recherchant par exemple les
motifs qui sont statistiquement inattendus dans un jeu de données particulier connais-
sant les valeurs des paramétrés de l’extraction. Pour cela, nous pouvons nous inspiré
de [KP02b, GMMT07] qui propose d’évaluer la pertinence des motifs locaux (respec-
tivement les chaines et les itemsets) en comparant le nombre de motifs extraits dans
le jeu de données et le nombre de motif extraits dans des jeux de données aléatoires
exhibant les même caractéristiques (propriétés structurelles du jeu de données comme
la taille, nombre d’items et de séquences, longueur des itemsets ou des séquences) que
le jeu de données original. Le problème ici est d’être en mesure d’estimer le nombre
de motifs locaux qui satisfont une contrainte donnée dans un jeu de données aléatoire
ayant certaines caractéristiques.

Estimer le nombre attendus de motifs qui peuvent satisfaire une contrainte est un
général bien plus compliqué que d’estimer la probabilité qu’à un motif de satisfaire
une contrainte donnée. Le deuxième problème a reçu beaucoup plus d’attention
conduisant à de nombreuses mesures statistiques pour évaluer la pertinence de motifs.
Concernant le premier problème, seulement quelques solutions ont été proposées.
[RMZ03] et [LRS05] analysent les distributions possible des itemsets fréquents, des
motifs fermés [LRS05] et des itemsets maximaux [RMZ03].

[RMZ03] analyse le type de distributions que l’on peut attendre pour différents
types de jeux de données. Ils répondent à la question “Existe-t-il une collection con-
tenant un certain nombre d’itemsets ou d’itemsets maximaux de taille donnée ?”.
[LRS05] calcule le nombre moyen d’itemsets (fermés) fréquents en utilisant des tech-
niques statistiques. Les auteurs se concentrent plus particulièrement sur la contrainte
de fréquence minimale en considérant des seuils proportionnels ou absolus. Une autre
approche a été proposée dans [GGdB05] qui fournit une borne fine du nombre de mo-
tifs candidats qui peuvent être rencontré lors d’une extraction de motifs par niveau.
Connaissant le niveau et le nombre courant de motifs fréquents, ils proposent une
borne fine du nombre maximal de motifs candidat qui peuvent être générés au niveau
suivant. En extraction de chaines, [KP02b] propose une estimation du nombre de
motifs issus du bruit de fond et qui probablement seront extraits pour une fréquence
minimale donnée sachant la structure du jeu de données. La dénommée Twilight
Zone (TZ) est définie comme l’ensemble des valeurs de la fonction de score pour
lequel l’on peut s’attendre à avoir des motifs aléatoires ayant de tels scores.

A.2. CONTRIBUTIONS 235

Considérons maintenant ce problème à un niveau plus large en incluant les pro-
priétés structurelles des jeux de données (par exemple le nombre de séquences et
la taille des séquences) et les paramètres d’extraction (par exemple la sélection des
seuils de mesures d’intérêt et taille des motifs à extraire). Ainsi, la TZ peut être
vue comme une région (ou ensemble de régions) dans l’espace des paramètres où
il y a très probablement des motifs aléatoires parmi les motifs extraits, ces motifs
aléatoires ayant des scores aussi bons (éventuellement meilleurs) que les motifs qui
nous intéressent.

Ces propositions sont toutes basées sur un modèle analytique global, c’est-à-dire ce
sont des approches intéressantes mais qui néanmoins nécessitent des développements
complexes et spécifiques. Finalement, ces méthodes ne peuvent pas être facilement
étendues pour supporter des conjonctions complexes de contraintes qui incorporent
différentes distributions de symboles ou des sémantiques différentes au niveau des
occurrences des motifs.

Cette estimation peut devenir difficile à calculer dès lors que de nombreuses con-
traintes primitives peuvent être combinées pour former une requête d’extraction et tel
que de nombreuses primitives utilisent au moins un paramètre. Nous avons souvent
qu’une vision très réduite du comportement des contraintes à l’intérieur de l’espace
des paramètres. Une pratique habituelle dans un tel cas est de compter le nombre de
motifs obtenus pour différentes configurations de paramètres pour essayer de deviner
ce que pourrait être les ”bons” paramètres. Dans les contextes simples quand on con-
sidère une simple fréquence minimale, un nombre assez réduit d’essais est nécessaire.
Ce n’est évidemment pas le cas dans la majorité des cas où la contrainte employée
est une conjonction de contraintes primitives, conduisant à un espace de paramètres
multidimensionnel.

Trois alternatives principales peuvent être envisagées pour estimer le nombre de
motifs dans des séquences aléatoires, qui satisfont une contrainte. D’abord, des
jeux de données aléatoires avec les caractéristiques désirées peuvent être générés
aléatoirement dans lesquels les motifs sont extraits et comptés. La deuxième solution
est de calculer une estimation analytique du nombre de motifs extraits à partir des
caractéristiques du jeu de données. La troisième alternative consiste à calculer cette
estimation analytique mais sur un échantillon de l’espace de recherche. Il y a com-
promis important à trouver entre la précision de l’estimation et le temps de calcul.
La première méthode permet de fournir une très bonne estimation (si l’on parvient
à générer les jeux de données aléatoires avec les bonnes caractéristiques) mais est
bien trop gourmande en temps pour être utilisable en pratique sur de vraies jeux de
données. Nous avons donc décidé de nous concentrer sur les deux autres alternatives
et avons proposé pour chacune d’elle une méthode d’estimation du nombre de motifs.

236 APPENDIX A. RÉSUMÉ EN FRANÇAIS

A.2.3.2 Estimation analytique d’une mesure d’intérêt des motifs

Nous considérons des jeux de données composées de motifs chaine de l symboles
et ayant la même longueur, noté G. Comme dans [KP02b], nous supposons que
les séquences du jeu de données sont composées de symboles indépendants et uni-
formément distribués ayant la même probabilité d’occurrence, et tel que le chevauche-
ment des motifs a un impact négligeable sur le nombre de motifs extraits (sachant
que L � G). Nous souhaitons estimer le nombre de motifs exactes et tolérants aux
fautes de taille L qui seraient extraits avec les seuils αmin, αmax et αdist dans deux
jeux de données. Nous supposons que les deux jeux de données sont indépendants.

Sans rentrer dans le détail du calcul, nous fournissons ici l’estimation analytique
obtenue :

P (M sat. min. and max. supp.)× lL =
P (M sat. min. supp.)× P (M sat. max. supp.)× lL = ×∑αmax

z=0

(
N−

z

)
× P (exists soft occ. of M in a seq.)z

(1− P (exists soft occ. of M in a seq.))N
−−z×∑N+

i=1(P (X = i)× P (M sat. min. supp.|X = i))× lL

où

si i ≥ αmin alors P (M sat. min. supp.|X = i)) = 1

si i < αmin alors P (M sat. min. supp.|X = i) = P (M sat. min. supp.|X = i)) =∑N+−i
z=αmin−i(

(
N+−i
z

)
× P (exists strict soft occ. of M in a seq.)z × (1− P (exists strict

soft occ. of M in a seq.))N
+−i−z)

A.3 Estimation par échantillonnage

Soit SC l’ensemble de motifs de L qui satisfont la contrainte C ≡ MinFrφ((,)D1, f1)
∧MaxFrφ(φ,D2, f2) ∧ Csynt(φ). Ici, nous traitons à la fois les motifs chaine exacts et
tolérants aux fautes. Nous présentons dans cette partie une proposition pour estimer
|SC | par échantillonnage de l’espace des motifs en utilisant une fonction qui donne
P (φ sat. C) pour tout motif φ, c’est-à-dire la probabilité que le motif satisfasse la
contrainte C.

Nous avons choisis trois distributions différentes pour les symboles dans les séquences
d’entrées pour montrer que la méthode peut être utilisée avec différents modèles.
Malgré tout, ce choix n’est pas central dans ce travail et suivant le domaine d’application
d’autres modèles peuvent être choisis.

Les trois modèles retenus sont:

A.4. APPLICATION 237

• µE : indépendance de tous les symboles avec fréquence égale pour chaque sym-
bole;

• µD: indépendance de tous les symboles avec fréquence d’apparition différente
pour chaque symbole;

• µM : chaine de Markov d’ordre un.

Pour chacun des trois modèles mentionnés, il est facile de calculer la probabilité
qu’un motif donné apparaisse dans une chaine, d’obtenir la probabilité que le motif
soit fréquent avec une loi binomiale et finalement de calculer P (φ sat. C).

A chaque motif φ est associé une variable aléatoire Xφ de telle sorte que Xφ = 1
quand φ satisfait C et Xφ = 0 sinon. Alors, nous avons |SC | =

∑
φ∈LXφ. En

calculant la valeur de |SC | grâce à la linéarité de l’opérateur d’espérance, nous avons
E(|SC |) =

∑
φ∈LE(Xφ). Sachant que E(Xφ) = 1×P (Xφ = 1) + 0×P (Xφ = 0) alors

E(|SC |) =
∑

φ∈L P (φ sat. C). Soit SCsynt un ensemble de motifs de L qui satisfont
Csynt . Comme P (φ sat. C) = 0 pour tous les motifs qui ne satisfont pas Csynt alors
nous avons E(|SC |) =

∑
φ∈SCsynt

P (φ sat. C). Il n’est pas envisageable de calculer cette
somme sur SCsynt sachant que l’on souhaite calculer E(|SC |) pour un grand nombre
de points dans l’espace des paramètres. Ainsi, nous estimons E(|SC |) en utilisant un
échantillonnage des motifs de SCsynt . Soit Ssamp un tel échantillonnage, alors nous
utilisons la valeur suivante comme estimation de E(|SC |) :

|SCsynt |
|Ssamp |

×
∑

φ∈Ssamp

P (φ sat. C)

En pratique, de nombreuses techniques peuvent être utilisées pour calculer l’échantillonnage.
Dans nos expériences, nous utilisons le processus suivant :

• Etape 1: Construction d’un échantillon initial Ssamp de Csynt (avec replacement)
correspondant à 5% de |Csynt | et ensuite calcul de E(|SC |).

• Etape 2: Ajout de 1000 nouveaux échantillons à Ssamp . Calcul de l’estimation
et si la valeur absolue de la différence entre la nouvelle estimation et l’ancienne
estimation est supérieure à 5% de l’estimation précédente alors l’étape 2 est
répétée.

A.4 Application

A.4.1 Background

Nous avons appliqué

238 APPENDIX A. RÉSUMÉ EN FRANÇAIS

• notre implémentation de notre solveur FAVST [DD04] pour réaliser des extrac-
tions différentielles correctes et complètes avec des contraintes de fréquence
exacte,

• notre solveur générique Marguerite-H pour réaliser des extractions correctes
et complètes avec des contraintes de fréquence soft avec distance de Hamming,

• la mesure d’intérêt de type Twilight Zone que nous avons développé permettant
d’évaluer l’intérêt des motifs obtenus,

pour trouver des motifs signature dans l’ensemble des promoteurs de gènes différentiellement
exprimés. Ce travail a été accompli en collaboration avec Dr. Olivier Gandrillon
et son équipe de recherche ” Bases Moléculaires de l’Autorenouvellement et de ses
Altérations” du ”centre de génétique moléculaire et cellulaire” (CNRS UMR 5534).
L’auto-renouvellement, qui est une propriété caractéristique des cellules souches et qui
est une notion encore mal comprise, est le sujet de recherche de l’équipe BM2A. Une
dérégulation de ce processus se produit fréquemment dans le cancer. L’équipe BM2A
étudie ce processus au travers de la découverte de gènes différentiellement exprimés
par la technique SAGE [VEVK95] sur le modèle T2EC (normal chicken erythroid
progenitors [GSBS99]). Ces cellules peuvent s’auto-renouvelé ou alors se différentier
suivant certaines conditions contrôlables. L’expression de l’oncogène v-erbA provoque
une transformation en bloquant le processus de différentiation [GJP+89]. L’équipe
BM2A a décidé d’identifier les gènes cibles de v-erbA responsables du processus de
transformation provoqué par v-erbA. Pour cela, ils comparent le transcriptome des
T2ECs en exprimant une forme oncogénique de v-erbA avec le transcriptome des des
T2ECs en exprimant le mutant S61G de v-erbA. Ce mutant est défectueux dans sa ca-
pacité à inhiber la différentiation et à provoquer une transformation erythroid [SP91].
Ainsi, la comparaison entre le transcriptome des cellules exprimant soit une forme
transformée de v-erbA ou le mutant S61G de v-erbA, a permis de générer une liste de
110 gènes différentiellement exprimés entre ces deux condition [BKF+07]. Nous avons
utilisé ce jeu de données pour extraire des motifs exactes et les motifs tolèrants aux
fautes avec une extraction différentielle. Nous avons sélectionné les motifs les plus
inattendus grâce à la mesure d’intérêt TZI que nous avons développé. L’évaluation
biologique de ces motifs confirment leur rôle fonctionnel potentiel et ainsi illustre
le potentiel de notre methode de découverte de motifs. Afin d’évaluer la généralité
de notre approche, nous avons aussi appliqué notre méthode sur un second jeu de
données obtenu à partir de promoteurs de gènes ayant une expression différentielle
entre deux situations [DKGG+04].

La compréhension de la régulation de l’expression des gènes reste un des challenges
les plus importants en biologie moléculaire. Un des points clés est l’initialisation de
la transcription par l’interaction entre les éléments promoteurs d’un gène au niveau
de la séquence d’ADN et les protéines activatrices et inhibitrices appelées facteurs de
transcription (TF). Ces intéractions se produisent quand un TF se fixe sur un site

A.4. APPLICATION 239

de fixation de TF sur un site promoteur. De nombreuses méthodes pour découvrir
de nouveaux sites de fixation ont été développées. Parmi elles, deux familles peu-
vent être distinguées: les méthodes statistiques ou stochastiques et les approches
combinatoires [VMS99a].

Concernant la famille des métodes statistiques et stochastiques, une récente étude
des algorithmes les plus utilisées montre que les résultats obtenus avec ces méthodes
sont encore limités [TLB+05], et conclu sur la nécessité d’explorer d’autres alterna-
tives. Il y a de nombreuses raisons pour leurs succès limités mais il semble que la
difficulté de séparer les motifs du bruit de fond est une des principales. Les méthodes
statistiques font des hypothèses sur les modèles de distributions pour des raisons
d’efficacité, mais personne ne connait le processus stochastique réel employé par la na-
ture et ce qu’est l’aléatoire biologique. En plus, les processus stochastiques semblent
différents entre espèces: de nombreux outils fonctionnent bien mieux sur la levure
que sur d’autres espèces [TLB+05, DD07]. En plus de cela, avec les mesures d’intérêt
employées, la pertinence statistique est très dépendante de la taille des séquences pro-
motrices : en considérant des sequences plus longues permet d’identifier des éléments
régulateurs plus loin du gène mais malheureusement des séquences aléatoires devien-
nent aussi statistiquement significative que les éléments régulateurs [KP02b].

Nous nous sommes concentrés sur les approches combinatoires qui ont comme
objectif l’extraction exhaustive de motifs sans hypothèses a priori sur les processus
stochastiques. Selon [KP02a], probablement les meilleur outils de recherche de motifs
consensus dans les séquences ADN sont ceux qui testent tous les 4l motifs de longueur
l = 4, score chaque motif avec le nombre d’occurrences approchées et cherche les mo-
tifs ayant les meilleurs scores. La recherche exhaustive de tous les motifs de taille
l devient impossible lorsque l est grand. Or la taille des sites de fixation de FT
est habituellement entre 5 et 15 paires de bases [Bul03]. Il est assez raisonnable de
penser qu’avec de telles tailles les extractions exhaustives sont possibles en pratique.
Malgré tout, les méthodes exhaustives ne sont souvent pas assez sélectives pour dis-
criminer les vrais sites des faux sites, à cause du grand nombre de motifs obtenus.
Le développement des méthodes exhaustives et optimales (tous les motifs ayant les
plus hauts scores) pour la découverte de motifs dans les séquences biologiques a
conduit à de nombreux algorithmes de recherche de sites de fixation de FT comme
[QWK82, WAG84, Sta89, SEVS95b, SV96b, BJVU98b, RF98a] . En pratique, ils ont
tous besoin d’une mesure de fitness utilisée pour classer ou sélectionner les motifs.

En ayant à l’esprit les difficultés de modéliser statistiquement l’aléatoire biologique,
nous proposons de repousser la phase de la sélection des motifs pertinents et d’utiliser
les information biologiques dont nous disposons pour contraindre la recherche et ainsi
réduire le nombre de motifs extraits. Ces informations supplémentaires proviennent
d’un second jeu de données représentant des situations biologiques opposées. Pour
utiliser ces informations, la méthode commence avec une opération standard en bi-
ologie moléculaire : la recherche de gènes différentiellement exprimés. Cela permet

240 APPENDIX A. RÉSUMÉ EN FRANÇAIS

d’obtenir deux groupes de gènes dont on peut dériver deux ensembles de sites pro-
moteurs. Pour rechercher des sites de fixation putatifs de FT qui régulent les gènes
sur-exprimés, nous choisissons le premier ensemble de gènes comme le jeu positif et
le second comme jeu négatif. Ensuite, nous recherchons les motifs qui sont présents
sur au moins minFr promoteurs du jeu de données positif et sur au plus maxFr
promoteurs du jeu de données négatif. L’originalité de la méthode proposée par rap-
port aux autres algorithmes combinatoires est qu’elle permet d’extraire des motifs de
plusieurs jeux de données (e.g., SPEXS [BJVU98b] or DRIM [ELYY07]) en fixant ex-
plicitement le seuil de fréquence maximal. Deux types de motifs peuvent être extraits
par notre méthode : des motifs exacts et des motifs tolérants aux fautes (ayant une
fonction de correspondance approchée). L’utilisation du jeu de données négatif per-
met de réduire considérablement (plusieurs ordres de magnitude) le nombre de motifs
extraits. Malgré cela, le nombre de motifs extraits reste important, ce qui nous a
poussé à développer d’autres solutions pour aider à ajuster les paramètres d’entrée
afin de n’avoir à analyser qu’un ensemble réduit et potentiellement intéressant de
motifs. L’étape suivante, nous sélectionnons les motifs inattendus c’est-à-dire non
”subtile” : un motif φ est considéré comme subtil si l’on peut s’attendre à ce que des
motifs aléatoires soient au moins aussi fréquents que φ dans le jeu de données positif
et pas plus fréquents que φ dans le jeu de données négatif. Finalement, nous vérifions
quels motifs sont des facteurs de transcription connus.

A.4.2 Les solveurs utilisés

Nous avons utilisé utilisé notre implémentation de FAVST [DD04] et pour extraire
les motifs tolérants aux fautes (SMP) nous avons utilisé notre solveur générique
Marguerite-H . Ces solveurs permettent d’évaluer n’importe quelle combinaison de
contraintes monotones et anti-monotones en particulier les contraintes de fréquence
exacte et de fréquence soft avec Hamming. Avec une conjonction de fréquence
minimale et de fréquence maximale, nous pouvons alors réaliser des extractions
différentielles.

A.4.3 Résultats

Parmi les motifs extraits sur nos données réelles avec nos solveurs, certains ont été
validés comme étant des sites de fixation de facteurs de transcription impliqués dans
le mécanisme d’auto-renouvellement [MRS+08].

FOLIO ADMINISTRATIF

THESE SOUTENUE DEVANT L'INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON

NOM : MITASIUNAITE DATE de SOUTENANCE : 19 Mai 2009
Prénoms : Ieva

TITRE : Contributions aux techniques de Prise de Décision et de Valorisation Financière

NATURE : Doctorat Numéro d'ordre : 2009‐ ISAL‐0036

Ecole doctorale : Informatique et Information pour la Société

Spécialité : Informatique

Cote B.I.U. ‐ Lyon : T 50/210/19 / et bis CLASSE :

RESUME : Nous nous intéressons à l'extraction de motifs sous contraintes dans des collections de
séquences (chaînes de caractères) et au développement de solveurs complets et génériques. Un solveur
comme FAVST permet d'optimiser des conjonctions de contraintes dites monotones et/ou anti‐
monotones (e.g., des contraintes de fréquence maximale et minimale). Nous avons voulu compléter ce
type d’outil en travaillant au traitement de contraintes difficiles pour assister la découverte de motifs
tolérants aux exceptions. Ainsi, nous proposons différentes définitions d’occurrences approchées et
l’usage de contraintes de fréquence approximative. Ceci nous conduit à spécifier des contraintes
difficiles (e.g., pour l’expression de la similarité) comme des conjonctions de contraintes monotones et
anti‐monotones qui sont optimisées par Marguerite, notre solveur générique. Soucieux de la mise en
œuvre de ce type d’outil dans des processus de découverte de connaissances, nous avons étudié le
problème du réglage des paramètres d'extraction (e.g., quel seuil choisir pour les contraintes de
fréquence). Nous considérons une méthode originale pour estimer le nombre de motifs qui satisfont
une certaine conjonction de contraintes au moyen d’un échantillonnage de l'espace des motifs. Nous
avons également étudié l'identification des paramètres les plus stringents pour fournir des motifs qui ne
sont probablement pas des faux positifs (développement d’une mesure baptisée Twilight Zone Indicator
ou TZI). Ces contributions ont été appliquées à l'analyse des séquences promotrices des gènes. En
étroite collaboration avec une équipe de biologistes du CGMC, nous avons pu identifier des sites de
fixation putatifs de facteurs de transcription impliqués dans le processus de différenciation cellulaire

MOTS‐CLES : Fouille de données, Algorithmes, Motifs, Données Génomiques

Laboratoire (s) de recherche : Laboratoire d’InfoRmatique en Images et Systèmes d’information (LIRIS)

Directeur de thèse: Jean‐François BOULICAUT

Présidente du jury : Dominique MOUCHIROUD

Composition du jury : Michael R. BERTHOLD (University of Konstanz, D)
 Jean‐François BOULICAUT (INSA Lyon)
 Olivier GANDRILLON (Université Lyon 1‐CNRS, CGMC)
 Ross D. KING (University of Wales, UK)
 Dominique MOUCHIROUD (Université Lyon 1, LBBE)
 Arno SIEBES (Rapporteur, Universiteit Utrecht, NL)
 Maguelonne TEISSEIRE (Rapporteur, CEMAGREF, Montpellier)

	Introduction
	I State of Art
	Inductive Databases and Inductive Queries
	Objects and Data
	Patterns
	Constraints
	Inductive Databases
	Inductive Queries

	Constraint-Based Pattern Mining
	Structure of the Pattern Space
	Constraint Types and Properties
	Constraint Types
	Data-dependent Constraints
	Syntactic Constraints
	Optimisation constraints

	Constraint Properties
	Anti-monotonic and monotonic constraints
	Succinct constraints
	Convertible constraints
	Prefix-monotone constraints

	Structure of the Solution Set
	Version Space
	Generalized Version Space

	Generic Solvers
	Theoretical Framework
	Instance for String Patterns
	Version Space Tree
	Generic Solvers for Strings
	VST
	FAVST

	Fault-Tolerance Expressed by Constraints
	Motivation
	Introduction
	Similarity Constraint
	Approximate String Matching
	Hamming Distance Similarity Constraint
	Edit Distance Similarity Constraint
	Episode Distance Similarity Constraint
	Longest Common Subsequence (LCS) Distance

	Regular Expression Constraint
	Similarity Constraint Based On Edit Score

	Fault-tolerant Patterns
	Fault-tolerant String Patterns
	Soft-matching through Hamming Distance Similarity Relation
	Soft-matching through Edit Distance Similarity Relation
	Soft-matching through Word-based Similarity Relation

	Clique Patterns
	Patterns that are Strings over Alphabet Subsets
	String over Alphabet Cover Patterns
	String over Weighted Combinatorial Cover Patterns

	Regular Expression Patterns
	String with Wildcards Patterns
	Generalized Regular Patterns

	Structured Patterns

	II Contribution
	Similarity and Soft-Frequency Constraints
	Problem Setting
	Motivation
	Research Context
	Problem Statement

	Similarity Constraint
	LCS Similarity Constraint
	Marguerite-Sim Generic Solver
	Experimental Validation
	Added Value of Pushing the LCS Similarity Constraint
	Selectivity of the LCS Similarity Constraint
	Empirical Validation

	Soft-Frequency Constraint
	InsDels Similarity Relation
	Soft-matching through InsDels Similarity Relation
	Marguerite-SoftFr Generic Solver
	Case of a Differential Extraction
	Pattern with Hamming Match Function Extraction
	Experimental Validation
	Impact of the Similarity Parameters in InsDels Match Function
	Selectivity of the Minimum InsDels Soft-Frequency Constraint
	Empirical Assessment of Soft-Support Constraint
	Time Efficiency

	Discussion

	Studying the Twilight Zone
	Problem Setting
	Motivation
	Research Context
	Problem Statement

	Analytical Estimation
	Occurrences at a given position
	Occurrences in a data string
	Minimum Hamming Soft-Frequency Constraint
	Maximum Hamming Soft-Frequency Constraint
	Frequency Constraints for Differential Extraction
	Number of Expected Patterns and Twilight Zone Indicator
	Experimental validation

	Estimation through Pattern Sampling
	Expected Number of Patterns that Satisfy Constraints in a Sample
	Experimental validation
	Empirical evaluation of the estimate

	Application to Promoter Sequences Data Sets

	Discussion

	III Application
	Genomic Sequence Analysis
	Promoter Sequence Analysis
	Background
	Application Context
	Research Context
	Motivation

	Finding Signature Motifs
	The Choice of The Solvers
	Taking into Account Biological Information in Combinatorial Pattern Extraction
	Selecting Patterns by a Measure of Twilight Zone Indicator
	Rising Patterns
	Workflow of the Motif-Discovery Process

	Results
	Patterns that are Putative Binding Sites of TFs Involved in v-erbA Transforming Activity
	Patterns that are Putative Binding Sites of TFs Involved in the Self-Renewal of Eryhroid Progenitors

	Discussion

	Starting an Application to Comparative Genomics
	Background
	Mining Yeasts Genomes
	Data
	Number of Patterns in ORFs and Intergenic Regions
	Distribution of Locations of Patterns

	Discussion

	IV Conclusions and Perspectives
	Conclusions
	Perspectives
	Generic Solver to Mine the Structured Patterns
	Tune for the Promoter Sequence Analysis
	TZI to Evaluate the Cost of a Query Plan

	Résumé en Français
	Contexte de recherche
	Bases de données inductives
	Requêtes inductives
	Extraction sous-contraintes
	Structure de l'espace des motifs
	Types de constraintes
	Propriétés des contraintes
	Structure de l'ensemble solution : Espace de version

	Un example de scénario ECD
	Les séquences en biologie moléculaire

	Contributions
	Tolérance aux fautes en extraction dans des chaines
	Contrainte de similarité et de soft-fréquence
	Contrainte de similarité
	Contrainte de soft-fréquence

	Twilight zone
	Motivation
	Estimation analytique d'une mesure d'intérêt des motifs

	Estimation par échantillonnage
	Application
	Background
	Les solveurs utilisés
	Résultats

	extrait.pdf
	Introduction
	I State of Art
	Inductive Databases and Inductive Queries
	Objects and Data
	Patterns
	Constraints
	Inductive Databases
	Inductive Queries

	Constraint-Based Pattern Mining
	Structure of the Pattern Space
	Constraint Types and Properties
	Constraint Types
	Data-dependent Constraints
	Syntactic Constraints
	Optimisation constraints

	Constraint Properties
	Anti-monotonic and monotonic constraints
	Succinct constraints
	Convertible constraints
	Prefix-monotone constraints

	Structure of the Solution Set
	Version Space
	Generalized Version Space

	Generic Solvers
	Theoretical Framework
	Instance for String Patterns
	Version Space Tree
	Generic Solvers for Strings
	VST
	FAVST

	Fault-Tolerance Expressed by Constraints
	Motivation
	Introduction
	Similarity Constraint
	Approximate String Matching
	Hamming Distance Similarity Constraint
	Edit Distance Similarity Constraint
	Episode Distance Similarity Constraint
	Longest Common Subsequence (LCS) Distance

	Regular Expression Constraint
	Similarity Constraint Based On Edit Score

	Fault-tolerant Patterns
	Fault-tolerant String Patterns
	Soft-matching through Hamming Distance Similarity Relation
	Soft-matching through Edit Distance Similarity Relation
	Soft-matching through Word-based Similarity Relation

	Clique Patterns
	Patterns that are Strings over Alphabet Subsets
	String over Alphabet Cover Patterns
	String over Weighted Combinatorial Cover Patterns

	Regular Expression Patterns
	String with Wildcards Patterns
	Generalized Regular Patterns

	Structured Patterns

	II Contribution
	Similarity and Soft-Frequency Constraints
	Problem Setting
	Motivation
	Research Context
	Problem Statement

	Similarity Constraint
	LCS Similarity Constraint
	Marguerite-Sim Generic Solver
	Experimental Validation
	Added Value of Pushing the LCS Similarity Constraint
	Selectivity of the LCS Similarity Constraint
	Empirical Validation

	Soft-Frequency Constraint
	InsDels Similarity Relation
	Soft-matching through InsDels Similarity Relation
	Marguerite-SoftFr Generic Solver
	Case of a Differential Extraction
	Pattern with Hamming Match Function Extraction
	Experimental Validation
	Impact of the Similarity Parameters in InsDels Match Function
	Selectivity of the Minimum InsDels Soft-Frequency Constraint
	Empirical Assessment of Soft-Support Constraint
	Time Efficiency

	Discussion

	Studying the Twilight Zone
	Problem Setting
	Motivation
	Research Context
	Problem Statement

	Analytical Estimation
	Occurrences at a given position
	Occurrences in a data string
	Minimum Hamming Soft-Frequency Constraint
	Maximum Hamming Soft-Frequency Constraint
	Frequency Constraints for Differential Extraction
	Number of Expected Patterns and Twilight Zone Indicator
	Experimental validation

	Estimation through Pattern Sampling
	Expected Number of Patterns that Satisfy Constraints in a Sample
	Experimental validation
	Empirical evaluation of the estimate

	Application to Promoter Sequences Data Sets

	Discussion

	III Application
	Genomic Sequence Analysis
	Promoter Sequence Analysis
	Background
	Application Context
	Research Context
	Motivation

	Finding Signature Motifs
	The Choice of The Solvers
	Taking into Account Biological Information in Combinatorial Pattern Extraction
	Selecting Patterns by a Measure of Twilight Zone Indicator
	Rising Patterns
	Workflow of the Motif-Discovery Process

	Results
	Patterns that are Putative Binding Sites of TFs Involved in v-erbA Transforming Activity
	Patterns that are Putative Binding Sites of TFs Involved in the Self-Renewal of Eryhroid Progenitors

	Discussion

	Starting an Application to Comparative Genomics
	Background
	Mining Yeasts Genomes
	Data
	Number of Patterns in ORFs and Intergenic Regions
	Distribution of Locations of Patterns

	Discussion

	IV Conclusions and Perspectives
	Conclusions
	Perspectives
	Generic Solver to Mine the Structured Patterns
	Tune for the Promoter Sequence Analysis
	TZI to Evaluate the Cost of a Query Plan

	Résumé en Français
	Contexte de recherche
	Bases de données inductives
	Requêtes inductives
	Extraction sous-contraintes
	Structure de l'espace des motifs
	Types de constraintes
	Propriétés des contraintes
	Structure de l'ensemble solution : Espace de version

	Un example de scénario ECD
	Les séquences en biologie moléculaire

	Contributions
	Tolérance aux fautes en extraction dans des chaines
	Contrainte de similarité et de soft-fréquence
	Contrainte de similarité
	Contrainte de soft-fréquence

	Twilight zone
	Motivation
	Estimation analytique d'une mesure d'intérêt des motifs

	Estimation par échantillonnage
	Application
	Background
	Les solveurs utilisés
	Résultats

