
 

 

 
 

 
 

 

N°d’ordre NNT : 2017LYSEI074 
 

 

THESE de DOCTORAT DE L’UNIVERSITE DE LYON 
opérée au sein de 

l’INSA de Lyon 
 

 

Ecole Doctorale N° 512 

Mathématiques et Informatique (InfoMaths) 

 
Spécialité/ discipline de doctorat : Informatique 

 
 

 
Soutenue publiquement le 11/09/2017, par : 

Guillaume Bosc  

 
 

Anytime discovery of a diverse set of 
patterns with Monte Carlo tree search 

 
 

 
 

 

 

Devant le jury composé de : 
 
 

Amer-Yahia, Sihem  Directrice de recherche, CNRS Présidente 

Calders, Toon Professeur, Univesiteit Antwerpe Rapporteur 

Cazenave, Tristan Professeur, Université Paris-Dauphine Rapporteur 

Bensafi, Moustafa Directeur de recherche, CNRS Examinateur 

Flach, Peter Professeur, University Bristol Examinateur 

Morik, Katharina Professeure, Technische Universität 

Dortmund 

Examinatrice 

Boulicaut, Jean-François Professeur, INSA Lyon Directeur de thèse 

Kaytoue, Mehdi Maître de conférences, INSA Lyon Co-directeur de thèse 
 





Département FEDORA – INSA Lyon - Ecoles Doctorales – Quinquennal 2016-2020  
 

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE 

 
CHIMIE 

CHIMIE DE LYON 
http://www.edchimie-lyon.fr 

 

 
Sec : Renée EL MELHEM 
Bat Blaise Pascal 3e etage 
secretariat@edchimie-lyon.fr 
Insa : R. GOURDON 

M. Stéphane DANIELE 
Institut de Recherches sur la Catalyse et l'Environnement de Lyon 
IRCELYON-UMR 5256 
Équipe CDFA 
2 avenue Albert Einstein 
69626 Villeurbanne cedex  
directeur@edchimie-lyon.fr 

 
E.E.A. 

ELECTRONIQUE,  
ELECTROTECHNIQUE,   AUTOMATIQUE 
http://edeea.ec-lyon.fr 

 
Sec : M.C. HAVGOUDOUKIAN 
Ecole-Doctorale.eea@ec-lyon.fr 

M. Gérard SCORLETTI 
Ecole Centrale de Lyon 
36 avenue Guy de Collongue 
69134 ECULLY 
Tél : 04.72.18 60.97 Fax : 04 78 43 37 17 
Gerard.scorletti@ec-lyon.fr 

 
E2M2 

EVOLUTION, ECOSYSTEME,  
MICROBIOLOGIE,  MODELISATION 
http://e2m2.universite-lyon.fr 

 
Sec : Sylvie ROBERJOT 
Bât Atrium - UCB Lyon 1 

04.72.44.83.62 
Insa : H. CHARLES 
secretariat.e2m2@univ-lyon1.fr 

M. Fabrice CORDEY 
CNRS UMR 5276 Lab. de géologie de Lyon 
Université Claude Bernard Lyon 1 
Bât Géode 
2 rue Raphaël Dubois 
69622 VILLEURBANNE Cédex 
Tél : 06.07.53.89.13 
cordey@ univ-lyon1.fr 

 
EDISS 

INTERDISCIPLINAIRE   SCIENCES- 
SANTE 
http://www.ediss-
lyon.fr  

Sec : Sylvie ROBERJOT 
Bât Atrium - UCB Lyon 1 

04.72.44.83.62 
Insa : M. LAGARDE 
secretariat.ediss@univ-lyon1.fr 

Mme Emmanuelle CANET-SOULAS 
INSERM U1060, CarMeN lab, Univ. Lyon 1 
Bâtiment IMBL 
11 avenue Jean Capelle INSA de Lyon 
696621 Villeurbanne 
Tél : 04.72.68.49.09 Fax :04 72 68 49 16 
Emmanuelle.canet@univ-lyon1.fr 

 
INFOMATHS 

INFORMATIQUE ET 
MATHEMATIQUES 
http://infomaths.univ-lyon1.fr 
Sec :Renée EL MELHEM 
Bat Blaise Pascal, 3e 

étage 
Tél : 04.72. 43. 80. 46  
Fax : 04.72.43.16.87 
infomaths@univ-lyon1.fr 

M. Luca ZAMBONI 
 
Bâtiment Braconnier 
43 Boulevard du 11 
novembre 1918 
69622 VILLEURBANNE Cedex 
 Tél :04 26 23 45 52 
 zamboni@maths.univ-lyon1.fr 
 

 
Matériaux 

MATERIAUX DE LYON 
http://ed34.universite-lyon.fr 

 
Sec : Marion COMBE 
Tél:04-72-43-71-70 –Fax : 87.12 
Bat. Direction 
ed.materiaux@insa-lyon.fr 

M. Jean-Yves BUFFIERE 
INSA de Lyon 
MATEIS 
Bâtiment Saint Exupéry 
7 avenue Jean Capelle 
69621 VILLEURBANNE Cedex 
Tél : 04.72.43 71.70 Fax 04 72 43 85 28 
Ed.materiaux@insa-lyon.fr 

 
MEGA 

MECANIQUE, ENERGETIQUE, GENIE 
CIVIL, ACOUSTIQUE 
http://mega.universite-lyon.fr 

 
Sec : Marion COMBE 
Tél:04-72-43-71-70 –Fax : 87.12 
Bat. Direction 
mega@insa-lyon.fr 

M. Philippe BOISSE 
INSA de Lyon 
Laboratoire LAMCOS 
Bâtiment Jacquard 
25 bis avenue Jean Capelle 
69621 VILLEURBANNE Cedex 
Tél : 04.72 .43.71.70 Fax : 04 72 43 72 37 
Philippe.boisse@insa-lyon.fr 

 
ScSo 

ScSo* 
http://recherche.univ-lyon2.fr/scso/ 
Sec : Viviane POLSINELLI 

Brigitte DUBOIS 
Insa : J.Y. TOUSSAINT 
Tél : 04 78 69 72 76 
viviane.polsinelli@univ-lyon2.fr 

M. Christian MONTES 
Université Lyon 2 
86 rue Pasteur 
69365 LYON Cedex 07 
Christian.montes@univ-lyon2.fr 
 

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie 





Remerciements

En premier lieu, je tiens sincèrement à remercier Toon Calders, professeur à l’Univesiteit Antwerpe
et Tristan Cazenave, professeur à l’Université Paris-Dauphine, d’avoir accepté d’être rapporteurs
de ce manuscrit de thèse. Je les remercie particulièrement pour le travail considérable qu’ils ont
consacré à la lecture assidue de ce mémoire, malgré les délais serrés et leurs tâches professionnelles
respectives.

Je remercie également Sihem Amer-Yahia, directrice de recherche CNRS, Moustafa Bensafi,
directeur de recherche CNRS, Peter Flach, professeur à l’University Bristol, et Katharina Morik,
professeure à la Technische Universität Dortmund, de m’avoir fait l’honneur de participer au jury
de thèse. Je les remercie pour l’intérêt qu’ils ont porté à mon travail ainsi que pour les échanges
pertinents qui ont suivi la soutenance.

J’adresse également de très chaleureux remerciements à Jean-François Boulicaut, professeur
à l’INSA de Lyon, et Mehdi Kaytoue, maître de conférences à l’INSA de Lyon, pour la confiance
qu’ils m’ont accordée ainsi que pour l’investissement dont ils ont fait preuve tout au long de la
préparation de ma thèse. A leurs côtés, j’ai pu apprendre à la fois les règles de la recherche, mais
également le goût prononcé de la rigueur et de la concision qu’exige un bon travail scientifique.
Pour toutes ces discussions à la fois riches et constructives que nous avons eues, je ne peux que
les remercier profondément. Au-delà d’être deux scientifiques compétents, j’ai rencontré deux
personnalités marquantes qui ne pourront que m’inspirer pour la suite.

Durant ces années de thèse, j’ai également eu l’immense fierté d’avoir pu collaborer avec
Moustafa Bensafi, directeur de recherche CNRS. Nos différents échanges m’ont permis de toujours
garder à l’esprit que l’informatique, et particulièrement la fouille de données, reste avant tout
un outil destiné à un utilisateur final. Aussi, je le remercie pour le temps et l’énergie qu’il a
consacrés à mon travail afin qu’il soit le plus en adéquation possible avec les exigences requises en
neurosciences.

Lors de la préparation de cette thèse, j’ai pu évoluer au sein d’un laboratoire de qualité. Je
remercie en particulier les membres de l’équipe DM2L avec lesquels j’ai eu la chance de travailler,
Marc, Céline et Pierre ainsi que mes collègues doctorants que j’ai rencontrés et avec qui j’ai
partagé ces trois belles années. La préparation de cette thèse m’a également permis de faire de
belles rencontres lors de conférences ou autres évènements scientifiques : il serait trop long de les
nommer, mais merci à toutes et à tous !

Enfin, je tiens à remercier très sincèrement mes proches, mes amis et ma famille. Merci pour
vos encouragements, votre soutien et votre bienveillance afin que je mène à bien ce beau et long
projet qu’est la préparation d’un doctorat. Je remercie en particulier Lucie qui m’a soutenu jour
après jour et qui a su trouver les mots pour me motiver durant les moments de doute. Merci
également à notre fils, Léandre, qui est venu illuminer les derniers mois de ma thèse par sa
présence et son sourire.

i



ii



Contents

1 Introduction 1

1.1 Knowledge discovery in databases . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Application in neuroscience to elicit new hypotheses on the olfactory percept . . . 3

1.3 Supervised descriptive rule discovery . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Monte Carlo tree search for pattern mining . . . . . . . . . . . . . . . . . . 9

1.4.2 Exceptional model mining in multi-label data . . . . . . . . . . . . . . . . 12

1.4.3 Application in neuroscience about the Structure-Odor relationship . . . . . 14

1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Pattern Mining 19

2.1 Constraint-based pattern mining . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Mining frequent itemsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Beyond frequent itemset mining . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Mining supervised descriptive rules . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Subgroup discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Exceptional model mining . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Algorithms for SD and EMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Exhaustive exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Heuristic search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 The main issues about descriptive rules mining . . . . . . . . . . . . . . . . . . . . 34

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Monte Carlo Tree Search 39

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Decision theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Game theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.3 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iii



Contents

3.1.4 Bandit based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 The UCT algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Improvements and issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Monte Carlo Tree Search for Pattern Mining 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Subgroup Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 SD algorithmic issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Pattern mining with MCTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 The Select method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 The Expand method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.3 The RollOut method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.4 The Update method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.5 Search end and result output . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 How to setup Mcts4Dm? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.1 Artificial data generator and benchmark datasets . . . . . . . . . . . . . . 62

4.4.2 Experimental framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.3 The Select method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.4 The Expand method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.5 The RollOut method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.6 The Memory method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.7 The Update method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.8 The number of iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.9 The completeness of the result set . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Comparison with existing methods . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.1 Studying extraction completeness in artificial data . . . . . . . . . . . . . 71

4.5.2 Finding the best pattern in benchmark datasets. . . . . . . . . . . . . . . . 71

4.5.3 Studying the efficiency of mcts4dm on a large dataset . . . . . . . . . . . 73

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Exceptional Model Mining in multi-label data 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Exceptional model mining and diverse subgroup set discovery . . . . . . . . . . . 80

5.3 Subgroup set discovery with diversity on target subspaces . . . . . . . . . . . . . . 81

iv



5.4 Quality measures considering the target subspaces . . . . . . . . . . . . . . . . . . 82

5.4.1 WRAcc to evaluate the subgroups . . . . . . . . . . . . . . . . . . . . . . 82

5.4.2 F1 score to take into account both precision and recall . . . . . . . . . . . . 83

5.4.3 An adaptive Fβ-score for skewed label distributions . . . . . . . . . . . . . 84

5.5 Search space explorations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.1 Search space and exhaustive search . . . . . . . . . . . . . . . . . . . . . . 86

5.5.2 Heuristic search with Beam-search . . . . . . . . . . . . . . . . . . . . . . 86

5.5.3 Sampling patterns with Monte Carlo Tree Search . . . . . . . . . . . . . . 86

5.6 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.2 How to choose the xβ and lβ parameters for Fβ? . . . . . . . . . . . . . . . 88

5.6.3 Is MCTS able to consider WRFβ? . . . . . . . . . . . . . . . . . . . . . . . 89

5.6.4 Which measure ensures the most diverse result? . . . . . . . . . . . . . . 89

5.6.5 Does RFβ also ensure the best diversity? . . . . . . . . . . . . . . . . . . . 90

5.6.6 Is the RFβ ranking the subgroups differently? . . . . . . . . . . . . . . . . 90

5.6.7 Does Fβ dynamically adapt to the label frequency? . . . . . . . . . . . . . 90

5.6.8 Synthesis of the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Application in neuroscience for the study of the olfactory percept 97

6.1 The Structure-Odor Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 An original olfaction dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 h(odor): An interactive tool to elicit hypotheses on SOR . . . . . . . . . . . . . . 99

6.3.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.2 Use case: Eliciting hypotheses on the Musk odor . . . . . . . . . . . . . . . 100

6.4 Eliciting new hypothesis on the SOR problem . . . . . . . . . . . . . . . . . . . . 101

6.4.1 Identification of relevant physicochemical attributes . . . . . . . . . . . . . 102

6.4.2 Providing relevant knowledge on the process of the olfactory percept . . . . 103

6.5 Perspectives in neurosciences and chemistry . . . . . . . . . . . . . . . . . . . . . 103

7 Conclusion and perspectives 105

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2.1 Improvements of our algorithm mcts4dm . . . . . . . . . . . . . . . . . . 106

7.2.2 Handling complex pattern mining issues . . . . . . . . . . . . . . . . . . . 108

Bibliography 111

v



Contents

vi



List of Figures

1 An overview of the KDD process (source: [67]). . . . . . . . . . . . . . . . . . . . . 2
2 The olfactory system (source: [37]). . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 A typical EMM instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 EMM considering target subspaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 The lattice induced by Table 2 where A, B, C and D respectively correspond to

the beers, the milk, the vegetable and the diapers. The value in the bottom of each
node corresponds to the WRAcc measure of the itemset w.r.t. the male label. . . . 9

6 Illustration of the different SD search algorithms. . . . . . . . . . . . . . . . . . . 10
7 Example of groups of molecules based on their odor (represented by the color). . . 13

8 The lattice induced by the transaction database in Table 6. Each node is an item-
set and the number is its support. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

9 The FP-Tree of the transaction database in Table 6 with minSupp “ 3. . . . . . . 23
10 The upper part of the search space for the data of Table 7. . . . . . . . . . . . . . 29

11 One MCTS iteration (inspired from [36]). . . . . . . . . . . . . . . . . . . . . . . 41
12 5 iterations of MCTS to the TicTacToe game. . . . . . . . . . . . . . . . . . . . . 44

13 Search space as a lattice (left), DFS of the search space (middle), and the principles
of the normalized exploration rate. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

14 Impact of the Select strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
15 Impact of the Expand strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
16 Impact of the Roll-Out strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
17 Impact of the Memory strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
18 Impact of the Update strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
19 Impact of the maximal budget (number of iterations) . . . . . . . . . . . . . . . . 69
20 qualpH,Fq (Y-axis) for different datasets (X-axis) . . . . . . . . . . . . . . . . . 71
21 Comparing the diverstity after a beam search (Cortana) and mcts4dm . . . . . . 72
22 The top-20 subgroups after filtering out the redundant subgroups for both beam

search and mcts4dm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
23 The runtime and the boxplots of the quality of the result set on the olfaction

dataset with mcts4dm when varying the number of iterations. . . . . . . . . . . . 74

24 Label distributions of a subgroup output by EMM. . . . . . . . . . . . . . . . . . 78
25 Olfaction data label distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
26 The curves of βpsupppLqq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
27 Label distribution in the different datasets of Table 14. . . . . . . . . . . . . . . . 88
28 Evolution of the quality of the result set of MCTS varying the number of iterations. 89

vii



List of Figures

29 The quality measure and the support of the target subspace of the subgroups
within result set obtained with MCTS using the Relative measures. The color of
the points is the value of the quality measure of the subgroup given by the heatmap. 91

30 The quality measure and the support of the target subspace of the subgroups
within the result set obtained with MCTS using the Weighted Relatives measures.
The color of the points is the value of the quality measure of the subgroup given
by the heatmap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

31 Comparison between the measures on the extracted top-K. Evolution of the qual-
ity measure in the top-K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

32 Comparison with a beam search on the Olfaction dataset. . . . . . . . . . . . . . . 94
33 The matrix of the similarity of the result set using different quality measures. . . . 94
34 Precision and recall of the models of the extracted subgroups on Olfaction. . . . . 95

35 The interaction view of the application. For each step of the beam search, the algo-
rithm waits for the user’s preferences (like/dislike). The subgroups are displayed
into white boxes. On the right part, complementary information is displayed: Part
of value domain of a chosen restriction on a descriptor, and parameters of the run. 101

36 The rule combination that covers the musk odor. . . . . . . . . . . . . . . . . . . 102
37 The support of three groups involving the camphor odor. . . . . . . . . . . . . . . 103

viii



List of Tables

1 Example of an olfactory dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Market basket data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Labeled version of Table 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 The contingency table of all the customers in Table 3. . . . . . . . . . . . . . . . 8
5 The contingency table of customers that purchased diapers and beers. . . . . . . . 8

6 A transaction database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7 Toy dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8 The extension of the label dataset from Table 7 to the multi-label dataset version. 30

9 Benchmark datasets experimented on in the SD and EMM literature. . . . . . . . 62
10 Parameters of the artificial data generator. . . . . . . . . . . . . . . . . . . . . . . 63
11 The default parameters for each dataset. . . . . . . . . . . . . . . . . . . . . . . . 64
12 The list of strategies used to experiment with the RollOut method. . . . . . . . 67
13 The runtime and the maximum of the quality measure with SD-Map. . . . . . . . 73

14 Datasets used for the experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

ix



List of Tables

x



Chapter 1

Introduction

1.1 Knowledge discovery in databases

With the exponentially growth of data in the world, the need to extract and derive knowledge
from this so-called big data is more important than ever. Indeed, smartphones with a GPS tracker
are carried in the pocket of billions of people around the world: Tens of billions of trajectories are
available. Moreover, the marketing of smart watches makes available a huge amount of health
data that are collected from the customers’ wrist. In addition, there is a data explosion in science:
Numerous scientific data are available in several domains. For example, in biology, several DNA
databases have been released to gather nucleotide sequence data from all organisms; genome
databases collect genome sequences; or other databases concern the protein structure models. In
astronomy, there are databases that gather billions of images taken by telescopes such as Hubble
Telescope. With the multiplication of online tools that provide data on almost every application
domain, it is now possible to get large amount of data. For instance, one can crawl thousands of
physico-chemical properties for tens of thousands of molecules such as the molecular weight, the
number of carbon atoms or the unsaturation index.

The goal is now to analyze this available data to elicit some knowledge. For instance, from
the images taken by telescopes in the astronomy domain, some planets have been found and the
scientists suggest, based on the data they collected, that they are possibly habitable. Deriving
knowledge from raw data is a difficult task. For that, a process called Knowledge Discovery in
Databases (KDD) has been proposed. This process aims to extract some knowledge from the
data that is non trivial, new and actionable by the experts of the domain [34, 67]. Even if this
KDD process was defined twenty years ago, it remains relevant to this day.

The KDD process is a user-centered approach. It is composed of five steps, from the selection
and the preparation of the data to the interpretation of the results after a data mining task (see
Figure 1). This process was guided by the need to analyze large amount of data that was initially
studied manually by the experts of the domain. The goal is to transform a raw and low-level data
into other forms that might be cleaner and easier to study. The study is performed thanks to the
data mining step that is the heart of the KDD process, and the result of this step is visualized and
interpreted by the experts to highlight hypotheses and, hopefully, to draw tangible conclusions.
Basically, each of the five steps can be defined as follows:

• Selection: This step consists in selecting the data in which we are interested from the raw
data that has been collected. The selected data is called the target data. For example, one
can select the period of interest, a geographical area or a specific market to analyzed the
purchased products.
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Chapter 1. Introduction

Figure 1: An overview of the KDD process (source: [67]).

• Preprocessing: This step aims at cleaning and preparing the target data. Missing values
can be handled in different ways, such as predicting it with data mining tools. Besides
we can cross-check when combining or summarising data from different sources to avoid
misinterpretation. Handling the noise within a data is a common task. For instance, in
the images taken by telescopes, it is required to reduce the light noise that can bias the
interpretation.

• Transformation: Once the data is preprocessed, sometimes, it is required to transform
it to be used as the input of the data mining tool. Indeed, some algorithms require the
data in a specified format. Besides, a data reduction can be performed to avoid correlated
descriptors that are useless and redundant. Feature selection enables to reduce the number
of descriptors to only keep the more relevant ones [78]. Moreover, when facing numerical
descriptors, a discretization is often performed in pre-processing task to turn them nominal.

• Data mining: This is the heart of the KDD process. From the transformed data, an
algorithm explores the data and extract interesting patterns from it. There exists several
data mining tasks, such as classification that builds a global model on the data or pattern
mining that aims to exhibit local models. Also, one can be interested in outliers detection
to identify anomalous behavior in the data. In addition, clustering is a popular method
that aims to create so-called clusters of objects [18]. Objects in the same cluster are more
similar (belonging to the same class) to each other than to those in other clusters.

• Interpretation/Evaluation: This is the last but not the least step of the KDD process.
From the patterns extracted with the data mining method, it aims at deriving knowledge
that is non trivial and actionable by the experts of the domain. For that, the visualization
tools are very useful to understand the results.

Within an inter-disciplinary project, we have worked in collaboration with several neuroscien-
tists and chemists to elicit new hypotheses on the structure-odor relationship (SOR) in olfaction.
Our methodology follows the KDD process to derive some new knowledge on the SOR problem
from raw data collected by the neuroscientists.

2



1.2. Application in neuroscience to elicit new hypotheses on the olfactory percept

1.2 Application in neuroscience to elicit new hypotheses on the
olfactory percept

Around the turn of the century, the idea that modern, civilized human beings might do without
being affected by odorant chemicals became outdated: The hidden, inarticulate sense associated
with their perception, hitherto considered superfluous to cognition, became a focus of study in
its own right and thus the subject of new knowledge. It was acknowledged as an object of science
by Nobel prizes (e.g., [37] awarded 2004 Nobel prize in Physiology or Medicine); but also society
as a whole was becoming more hedonistic, and hence more attentive to the emotional effects of
odors. Odors are present in our food, which is a source of both pleasure and social bonding; they
also influence our relations with others in general and with our children in particular. The olfac-
tory percept encoded in odorant chemicals contribute to our emotional balance and wellbeing:
Olfactory impairment jeopardizes this equilibrium.

Neuroscience studies revealed that odor perception results from a complex phenomenon rooted
in the chemical properties of a volatile molecule (described by multiple physicochemical descrip-
tors) further detected by our olfactory receptors in the nasal cavity. Indeed, Figure 2 illustrates
the process of the olfactory system: When someone smells a flower, the volatile molecules of the
flower come to get binding in the olfactory receptors in the nasal cavity. From each receptor, a
neural signal is then transmitted to central olfactory brain structures, i.e, the olfactory bulb [85].
At this stage, the combination of all these signals generates a complete neural representation,
called “odor” that can then be described semantically by various types of perceptual quality (e.g.,
fruity, floral or woody).

While it is generally agreed that the physicochemical characteristics of odorants affect the
olfactory percept, no simple and/or universal rule governing this Structure Odor Relationship
(SOR) has yet been identified. Why does this odorant smell of roses and that one of lemon?
Considering that the totality of the odorant message was encoded within the chemical struc-
ture, chemists have tried for a long time to identify relationships between chemical properties
and odors. Topological descriptors, eventually associated with electronic properties or molecular
flexibility were tentatively connected to odorants descriptors. However, it is now quite well ac-
knowledged that structure-odor relationships are not bijective, meaning that the chemical space
and the perceptual space connections are more subtle than previously thought1. For example,
very different chemicals trigger a typical “camphor” smell, while a single molecule, the so-called
“cat-ketone” odorant, elicit two totally different smells as a function of its concentration [50]. At
best, such SOR rules are obtained for a very tiny fraction of the chemical space, emphasizing
that they must be decomposed into sub-rules associated with given molecular topologies [55]. As
such, this lack of bijective relationship must be handled. It suggests that a simple, universal and
perfect rule does probably not exist, but instead, a combination of several sub-rules should be
put forward to encompass the complexity of SOR.

During the preparation of this PhD., we applied a data science approach with a view to
advancing the state of the art in understanding the mechanisms of olfaction. We created an inter-
disciplinary synergy between neuroscientists, chemists and data miners to support the emergence
of new hypotheses2. For that, we applied the KDD process, from data collection to the discovery
of new hypotheses on SOR. Basically, the neuroscientists gathered the data from two different

1There is a strong inter- and intra-individual variability when individuals are asked about the quality of an odor.
There are several explanations: Geographical and cultural origins, each individual repertory of qualities (linguistic),
genetic differences (determining olfactory receptors), troubles such as anosmia (see [86, 41]).

2This collaboration is partially supported by the CNRS (Préfute PEPS FASCIDO and the project “Mission pour
l’interdisciplinarité”) and the Institut rhônalpin des systèmes complexes (IXXI).
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Figure 2: The olfactory system (source: [37]).

sources: (i) The Dragon 6 software (available on talete.mi.it), and (ii) the well known atlas
Arctander [9]. The first one provides the values of almost 5, 000 physico-chemicals properties
(e.g., the molecular weight or the number of carbon atoms) for thousands of chemical molecules.
The latter is an atlas created by scent experts that maps 1, 689 molecules to subset of odors
among 74 olfactory qualities such as Fruity, Vanilin, or Camphor. From these two raw data,
the neuroscientists pre-processed the data to keep only the molecules that are present in both of
them. Moreover, the chemists identified and pointed out a set of 82 physico-chemical properties
that have been known or guessed to be discriminant in SOR. Thus, the final data is made of 1, 689
molecules described by 82 physico-chemical properties and associated to an average of 2.88 odors
among the 74 olfactory qualities.

Data mining methods can be applied on this transformed data to address the SOR discov-
ery problem, either through the building of predictive models or through rules discovery. One
obstacle to this is that olfactory datasets are “complex” (i.e., several thousand of dimensions, het-
erogeneous descriptors, multi-label, imbalanced classes, and non robust labelling) and, above all
a lack of data-centric methods in neuroscience suitable for this level of complexity. The main aim
of our study is to examine this issue by linking the multiple molecular characteristics of odorant

4

talete.mi.it


1.2. Application in neuroscience to elicit new hypotheses on the olfactory percept

Table 1: Example of an olfactory dataset.

10271421633

151 122782

60 152 1123

2413648 10

128 2924 9

111 150 21

OdornCnATMWID

molecule to olfactory qualities (fruity, floral, woody, etc.) using a descriptive approach (pattern
mining). Indeed, a crowd-sourced challenge was recently proposed by IBM Research and Sage
called DREAM Olfaction Prediction Challenge [65]. The challenge resulted in several models that
were able to predict especially pleasantness and intensity and 8 out of 19 olfactory qualities in
their dataset (“garlic”, “fish”, “sweet”, “fruit”, “burnt”, “spices”, “flower” and “sour”) with an average
correlation of predictions across all models above 0.5 [91]. Although this is a clinical data (the
perception is not given by scent experts), these findings are timely and interesting because they
show the existence of a predictive relationship between some olfactory qualities and the physico-
chemical properties of odorant molecules. Nevertheless, to go further into the understanding of
the stimulus-percept issue in olfaction, it is important to explain and thus to isolate physico-
chemical descriptive rules allowing describing these olfactory qualities (based on scent experts’
perception). Identifying such physico-chemical rules characterizing odor quality opens a hitherto
little explored field in neuroscience research, shedding new lights on olfactory system functioning.

Example 1. Let us consider the example of an olfactory dataset given in Table 1. This data con-
cerns 6 molecules given by their ID. Each molecule is described by 3 physico-chemical properties:
The molecular weight MW, the number of atoms nAT, and the number of carbon atoms. Besides,
each molecule is associated to several odors among strawberry, honey and pear. For instance the
scent experts state that Molecule 24 smells honey and pear. From this data, the aim is to identify
so-called descriptive rules on the physico-chemical properties that are characteristic of odors. For
instance, let us consider the rule xr128 ď MW ď 151s, r23 ď nAT ď 29sy Ñ tHoneyu. The
Molecules 24, 48, 82 and 1633 support the body of this rule (i.e., xr128 ď MW ď 151s, r23 ď
nAT ď 29sy). Thus, 75% of the molecules verifying the body of this rule smell honey, whereas
50% of the molecules in the data are associated to honey. We can state that this rule is interesting
since it means that molecules with a molecular weight below 151 and with at least 23 atoms are
more likely to smell honey. Finding such a rule allows to derive some hypotheses and, maybe,
new knowledge on the structure-odor relationship.

Thus, the extraction of rules on SOR in such an olfactory dataset raises several questions. In
the next section, we give an overview on these problems and how we resolve them through our
two main contributions.
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Table 2: Market basket data.
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Table 3: Labeled version of Table 2.
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1.3 Supervised descriptive rule discovery

The discovery of hypotheses on the structure-odor relationship is an interesting application for
data mining. Indeed, the complex structure of the data combined with the specific goals of
the neuroscientists and chemists, highlight several opened issues that have to be solved. In
this section, we do not consider the olfactory data but we illustrate pattern mining within a
simpler setting: Market basket analysis. Pattern mining has been deeply studied in the three
last decades [74]. Indeed, it is now commonly taught in textbooks and applied in the indus-
try [133, 144, 3]. The first works on pattern mining dealt with the extraction of frequent item-
sets [4] to discover some association rules between itemsets [4]. An itemset is a set of items, i.e.,
properties of some objects. For instance, a well known application of association rules concerns
the market basket analysis: The aim is to extract rules between products of a supermarket that
are often bought together by customers. Table 2 is a toy market data: Each line is about the
products purchased by a customer. Note that a product is an item, and a set of products forms
a so-called itemset. For example, the second customer has bought beers, vegetables and diapers.
A popular anecdote about unexpected association rules states that the customers buying diapers
tend also to buy beers. In Table 2, the confidence of the association rule DiapersÑ Beers is 0.75
since three of the four customers who purchased diapers also bought beers. Thus, from everyday
data, some association rules are identified and can then be derived into actionable knowledge: A
supermarket can either put diapers close to the beers to reduce the time spent by the customers,
or to position them diagonally opposite to force the customer to pass through the supermarket
shelves to make him buy more products.

Initially, the market basket data is not labeled: Each line of the data gathers the products
bought by a customer. However, more and more applications in pattern mining are based on
labeled data. In a labeled version of this market basket data, each of the customers can also be
associated to a label, for example male or female. Table 3 illustrates the labeled version of the
market basket data of Table 2. Thus, we can exhibit some association rules with high confidence
for women but that are not supported by men and vice versa: For instance, the confidence of the
rule Diapers Ñ Beers is 1 for men (i.e., all men who purchased diapers also bought beers) and
0.5 for women (i.e., half of the women who purchased diapers also bought beers). Alternatively,
the labels can concern the age range of the customers (taking values in tr0, 29s, r30, 59s, r60, 99su),
and thus we can find some association rules for a specific age range that is no longer true for other
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Figure 3: A typical EMM instance.
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Figure 4: EMM considering target subspaces.

age ranges. It leads to the definition of several supervised data mining tasks. Generally, with
labeled data, one is interested into learning a model that can state to which of the groups (also
called classes) a new object (e.g., a customer or a molecular molecule) belongs: A typical machine
learning task [141]. Support vector machine [81, 132] or deep learning [103] are techniques dealing
with labeled data. They aim at building a classification model that can predict the label (or
the class) of a new object. However, such efficient learning methods are black boxes: The user
does not know why the algorithm predicts a specific label for an object. They do not allow to
exhibit intelligible rules that can be interpreted and understood to be actionable. Note that
some learning methods propose intelligible models, such as decision trees, but the model may be
weak [127]. Finding such rules is possible with supervised descriptive rule discovery [119].

The discovery of descriptions which distinguish a group of objects given a target (class)
has been widely studied in data mining and machine learning community under several terms
(subgroup discovery [142], emerging patterns [56], contrast sets [15], hypotheses in formal con-
cept analysis [70]) [119]. Let us now consider supervised descriptive rule discovery in the well-
established framework of subgroup discovery (SD) [142]. Given a set of objects (e.g., customers)
taking a vector of attributes (of boolean, nominal, or numerical type) as a description (e.g., pur-
chased products), and a class label as a target (e.g., gender), the goal is to discover subgroups of
objects for which there is a significant difference between the label distribution within the group
compared to the distribution within the whole dataset, e.g. considering the difference of precision
with the well-known weighted relative accuracy (WRAcc) [102]. In others terms, it searches for
descriptive rules that conclude on a single label with possibly few errors.

However, many datasets exhibit objects associated to several labels. For example, in Table 3,
each customer is associated to two labels: The gender and the age range. For these so-called
multi-labeled data, SD has been generalized into the exceptional model mining (EMM) frame-
work [104] to capture the more complex relationships that exist in the data between the descrip-
tive attributes (e.g., the products) and the class labels (e.g., the gender of the customer). For
that, the notion of model has been introduced. Each set of objects induces a specific model that
is built on the class labels. Several models have been proposed in the state of the art [59], e.g., the
linear regression between two numerical class attributes [58], the contingency tables for several
class labels [114] or the Bayesian networks computed on the class labels [61]. The goal of EMM is
to extract subgroups of objects for which the model built on the class labels is significantly differ-
ent from the model induced by the entire dataset. Figure 3 displays a typical EMM instance. The
data is displayed on the left. From the entire data, we can compute the model built on the class
labels: This is the red curve. In this example, we can consider that the curve represents the power
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Table 4: The contingency table of all the
customers in Table 3.
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Table 5: The contingency table of cus-
tomers that purchased diapers and beers.

00.670

0.33 00

+0 +30 +60

consumption of a population during one day: For the entire population, there is an increase of
the power consumption between 7p.m. and 12p.m.. Then, the subset of objects (called the sub-
group) in the green area is selected to be analyzed. We compute the model built on the class
labels by this subgroup: This is the green curve. Then a quality measure is used to compare these
two models. If the quality measure is high, it means that the models are significantly different:
The subgroup of objects is said interesting because it behaves differently on the class labels than
the entire set of objects. For instance, we have discovered that this subgroup concerns the night
workers.

Example 2. Let us consider Table 3. Each consumer is labeled with both its gender and its age
range. We can use the model of the contingency tables on the two class attributes gender and age
range given is Table 4 for all the customers. The subgroup given by the customers that purchased
both beers and diapers contains three people. The contingency table induced by this subgroup is
given in Table 5. The total variation distance is then used as the quality measure to compare the
two contingency tables [114]. This distance sums the absolute difference between each pair of cells
divided by 2. Thus, the quality measure is: |0.17´0.33|`|0´0|`|0.33´0|`|0.17´0|`|0.33´0.67|`|0´0|

2 “ 0.5.

Example 3. Consider the olfactory data in Table 1. Suppose that we use the probability dis-
tribution model. It consists to compare the frequency of a label in a subgroup to its frequency
in the entire data. For that, we can use the mean of the WRAcc measure of the subgroup for
each label [2]. First, the relative frequencies of the odors strawberry, honey and pear in the
data are respectively 0.67, 0.5 and 0.5. Indeed, four molecules among the six molecules of the
data are labeled as strawberry. Let us consider the subgroup containing the molecules with a
molecular weight below 151 and with at least 23 atoms. This subgroup is given by the description
xr128 ď MW ď 151s, r23 ď nAT ď 29sy . This subgroup contains the Molecules 24, 48, 82
and 1633. The relative frequencies of the odors strawberry, honey and pear in this subgroup are
respectively 0.5, 0.75 and 0.75. The WRAcc measure of the subgroup for the strawberry is given
by: 4

6 ˆ p0.5 ´ 0.67q “ ´0, 11. Similarly, the WRAcc measure for honey is 0.17 and for pear is
also 0.17. The mean of these 3 measures evaluate the exceptional behavior of the subgroup on the
three odors: The quality measure of the subgroup is 0.08.

In subgroup discovery and exceptional model mining, the enhancements proposed in the re-
cent works can be divided into three categories: (i) The pattern language, (ii) the model with its
quality measure and (iii) the algorithmic method to discover the best subgroups. The improve-
ments on the pattern languages deal with the expressiveness of the patterns: From itemsets to
numerical attributes, sequences [6], graphs [48] and so on. The enhancements on the quality mea-
sures consist in proposing new models for EMM to elicit different relationships in the data. The
algorithmic improvements concern the methods designed to extract efficiently the best patterns
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Figure 5: The lattice induced by Table 2 where A, B, C and D respectively correspond to the
beers, the milk, the vegetable and the diapers. The value in the bottom of each node corresponds
to the WRAcc measure of the itemset w.r.t. the male label.

w.r.t. the quality measure in an exhaustive or heuristic way. Nevertheless, there are still open
issues that were highlighted when discussing our needs for olfactory data analysis.

1.4 Contributions

1.4.1 Monte Carlo tree search for pattern mining

In SD/EMM, the algorithms have to explore the set of subgroups, called the search space, to
extract the best ones w.r.t. the quality measure, also called local optima. Basically, the search
space contains all the possible subgroups defined by their description, i.e., a list of restrictions
on the domain of the descriptive attributes (e.g., the physico-chemical properties). Note that a
subgroup is either given by its description or by the set of objects it covers, called the extent.
The search space is often a lattice since a partial order exists between the descriptions. Figure 5
represents the lattice of Table 2 where A, B, C and D respectively correspond to the beers, the
milk, the vegetable and the diapers. The value in the bottom of each node corresponds to the
WRAcc measure of the itemset w.r.t. the male label. Note that the WRAcc measure is not an
increasing or decreasing function on the lattice: The WRAcc of a node (i.e., an itemset) can be
more or less than those of its parents nodes. The itemsets with the maximum values of WRAcc,
also called the local optima, are tCu, tA,Cu, tC,Du and tA,C,Du. In this thesis, we illustrate the
lattice with the formalism of Figure 6a: The circles are the subgroups given by their description.
The top subgroup is the more general subgroup: It contains all the objects of the data. The red
circles are the local optima to find from this search space, i.e., the patterns that cover a set of
objects that induces a model on the class labels significantly different from those induced by the
entire data. The subgroups above the green curve are the subgroups containing at least minSupp
objects, where minSupp is called the minimum support threshold. This constraint ensure to
enumerate subgroups that are not too small, because subgroups containing few objects do not
bring much information. The goal of SD/EMM is to extract the local optima that are above the
green curve.
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Figure 6: Illustration of the different SD search algorithms.

The first algorithms proposed for SD were exhaustive, i.e., they enumerate all the possible
descriptions by exploring the lattice of the subgroups [93, 12, 106]. Thus, exhaustive algorithms
ensure to extract the local optima. However, they are not scalable for large data or for com-
plex pattern languages (e.g., for numerical descriptive attributes3, as is the case for the olfactory
dataset). Indeed, the search space growths exponentially with the number of descriptive at-
tributes and the number of objects. For that, recent works have proposed heuristic algorithms

3The only solution to handle numerical attributes is either to enumerate all the possible intervals [88] or to use a
discretization in pre-processing task or to use on-the-fly discretization during the enumeration [66]. Note that most of
existing works in SD/EMM (exhaustive methods included) employ a naive discretization as pre-processing task that
converts numerical attributes into nominal one.
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to explore the search space. Up to now, there exists three main heuristic methods for SD/EMM:
(i) beam search [94, 138, 139, 140], (ii) evolutionary algorithms [54, 125] and (iii) sampling meth-
ods [114, 17]. Beam search is a greedy method that partially explores the search space with
several hill climbings run in parallel [108]. It proceeds in a top down enumeration of the lat-
tice, and it only explores a beam within the search space by keeping at each level the most
promising subgroups. Figure 6b illustrates this heuristic strategy: It drives the exploration to
the nearest best subgroups, ignoring lots of local optima. This strategy is the most popular one
in SD/EMM [94, 138, 139, 140]. It quickly finds some (but not all) best subgroups. It gener-
ally works well when features have a very high discriminant power independently, i.e., when the
local optima are “short” patterns. However, this method clearly lacks of exploration due to its
greedy principle, especially when local optima are located everywhere in the search space. A
second heuristic approach can exploit evolutionary algorithms. They use a fitness function to
select which individuals to keep at the next generated population [14]. However, these methods
need to set a lot of parameters to model the crossover rate, the size of the population, the process
to update the generation, etc. Finally, contrary to the two previous heuristic approaches, sam-
pling methods give a result anytime, i.e., a solution is always available. Sampling techniques are
gaining interest because they allow direct interactions with the user for using his preferences to
drive the search. However, traditional sampling methods used for pattern mining need a given
probability distribution over the pattern space: This distribution depends on both the data and
the quality measure [23, 114]. Each iteration is independent and consists of drawing a pattern
given this probability distribution. Moreover, these probability distributions exhibit the problem
of the long tail: There are many more uninteresting patterns than interesting ones. Thus, the
probability to draw an uninteresting pattern is still high, and not all local optima may be drawn:
There are no guarantee on the completeness of the result set. Figure 6c illustrates the principle
of sampling methods: Several areas are sampled based on the probability distribution on the pat-
tern space. Some of them contain local optima, but, due to the long tail problem, some sampled
areas do not contain any local optimum.

With the so-called pattern explosion when considering frequent subgroups, the existing meth-
ods focus on top-k mining algorithms that aim at returning the k best encountered subgroups
w.r.t. the quality measure. However, these approaches face the problem of redundancy: A sub-
group with a slight change in its description gives a very similar subgroup and thus the quality
measure of these subgroups are similar. In Figure 6a, in the area closed to the local optima, there
are similar subgroups that are redundant with the local optimum. In top-k mining methods, a
similarity measure is used as post-processing step to compare two subgroups to avoid the presence
of redundant subgroups in the result set. Several similarity measures have been proposed, based
on the similarity of the support (using the Jaccard coefficients) or on their description [138, 139].

Contribution 1:
As a first contribution, we propose a new sampling exploration method based on Monte Carlo tree
search (MCTS) [95, 36]. It is an iterative method that employs random simulations to guide the
exploration of the search space. This method exhibits several advantages w.r.t. existing heuristic
approaches in SD/EMM. First, contrary to traditional pattern sampling methods, it does not re-
quire any probability distribution on the pattern space: The profile of the search space is learned
incrementally. Second, it is based on the exploration / exploitation trade-off provided by the up-
per confidence bound [13]: This heuristic method aims at exploiting interesting solutions already
found in the search space but also exploring few visited parts of the lattice. Besides, contrary to
existing methods, we consider all the possible intervals for numerical attributes. Indeed, existing
methods (exhaustive methods included) does not handle numerical descriptive attributes: They
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proceed to a discretization (either as a pre-processing step or on-the-fly during the enumeration
on the lattice) on the domain of these attributes to make them ordinal. In our approach, we avoid
such a greedy method to handle numerical attributes and enumerate all the possible intervals [88]
which is made possible with MCTS. Finally, this is an anytime pattern mining method that con-
verges to the exhaustive search if given enough computational budget. Figure 6d illustrates the
principle of using MCTS for SD/EMM: A search tree is incrementally built from the root of the
lattice based on the trade-off between exploring rarely visited areas and exploiting interesting
solutions. Given enough time, the result set will contain all the local optima.

1.4.2 Exceptional model mining in multi-label data

Exceptional model mining is the generalization of subgroup discovery that considers multi-label
data [104]. Indeed, SD has been defined when each of the objects is associated to one label, e.g.,
in the market basket data a consumer is either a man or a woman. However, the real world data
are often multi-label, e.g., an image can be labeled with several keywords (mountain, sunset,
lake, etc.) or in the olfactory data each chemical molecule is labeled with several odors (fruity,
spicy, vanilin, etc.). In this case, SD can not be applied and the EMM framework is required.
Given a set of objects S, EMM consists in building the model induced by S on the class labels.
In the recent works, several model classes have been proposed to exhibit the relationships in the
data [59]. For example, let us consider the market basket data with two nominal target attributes
given in Table 3: “Gender” which domain is tmale, femaleu and “Age group” taking value in
tr0, 29s, r30, 59s, r60, 99su. From this data, we used the contingency table between the two target
attributes as a model (see Table 4 and Table 5). Then a quality measure is used to compare two
contingency tables: The greater the quality measure, the more different the contingency tables.
Thus, the goal of this EMM instance is to find out subgroups of customers whose contingency
table is significantly different from the contingency table of all the customers in the data. In the
olfactory data, we could have applied a model based on Bayesian networks on the odors [61].
Indeed, we compute the Bayesian network on the class labels (i.e., the odors) for a subset of
molecules, and we use a quality measure to compare it with the Bayesian network on the odors
for all the molecules in the data. Thus, a subgroup of molecules is said interesting if its Bayesian
network is significantly different from those of the entire data. It means that in the subgroups
the correlations between the labels are significantly different from the correlations between the
labels in the entire data. Figure 3 illustrated the principle of an EMM instance: The model on the
entire data is computed (red curve) and is compared to the model induced by a subset of objects
(green curve) with a quality measure. The aim is to extract the set of the top-k subgroups w.r.t
the quality measure that does not contain redundant subgroups.

However, for the SOR problem, the experts are not interested in model classes that are built
on all the target labels. Indeed, finding a description about a subgroup of molecules that behaves
differently from the entire data on all the odors is not actionable since each odor can have an
impact. The neuroscientists and the chemists prefer to know that a subgroup of molecules whose
model is different w.r.t. a (small) subset of odors. In this way, they can derive some knowledge
about a specific subset of odors. This implies a substantial change in the definition of the EMM
instance: A subgroup of objects no longer derives one model but several models, i.e., as many
models as subsets of class labels. Figure 4 illustrates this change in the EMM setting. From
a subset of objects, we can compute several models: One model for each subset of class labels.
Thus, we compare each couple of models: For a given subset of class labels L, we compare the
model built on L for the subgroup of objects and the model built on L for the entire data. The
search space becomes even larger since we have to proceed to the Cartesian product between the
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Figure 7: Example of groups of molecules based on their odor (represented by the color).

pattern search space and the power set of the class labels.
Besides, in the olfactory data, there is a high variance in the frequency of the class labels:

Some odors such as fruity and floral are much more frequent than other odors such as musty
and sandalwood. We say that a label is over-represented in the data if it is much more frequent
than other labels. Moreover, the neuroscientists and the chemists require subgroups with as few
errors as possible. It means that a subgroup is said interesting w.r.t. a subset of labels L if all
the objects in the subgroup are labeled at least with L. In other words, the subgroup should not
include objects that are not labeled with L in the data. This property is called the precision of
the subgroup. In addition, the subgroup has to be as large as possible: It should contain lots of
objects to be relevant. Indeed, it is easier to find small subgroups with a high precision than large
subgroup with a good precision. This property is called the recall of the subgroup. Thus, the
experts need to find subgroups for which the precision and the recall is high w.r.t. the subset of
labels L. For example, in Figure 7, the red molecules (that smell strawberry) are over-represented
in the dataset, but it is more interesting having the different subgroups (1), (2), (3) and (4)
with high precision, rather than a single huge local subgroup (5) whose precision is much lower
but with a good recall. Indeed, the experts of the domain suggest that a simple, universal and
perfect rule does probably not exist, but instead, a combination of several sub-rules should be
put forward to encompass the complexity of SOR. For molecules that are not over-represented,
the extracted subgroups have to foster on both the precision and the recall: e.g., Subgroup (6) is
interesting for the green molecules that smell herbaceous. Hence, we have to design a new model
class that has to take into account: (i) The high variance in the frequency of the class labels, (ii)
the precision and (iii) the recall of the subgroup w.r.t. the subset of class labels L.

Contribution 2:
As a second contribution, we propose a new EMM instance that deals with multi-label data. This
EMM instance no longer derives one model by subgroups but several models: For each subgroup,
as many models as subsets of labels are computed. Then the quality measure compare pairs of
models that are built on the same subset of labels. Formally, if there are n different labels in
the data, for each subgroup, we have to compute 2n models, one for each subset of labels L.
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Moreover, we propose a new model class called Fβ that is based on the F1 score. This model
evaluates the precision and the recall of the subgroups w.r.t. a given subset of L. Besides, Fβ
includes a function βp.q that takes into account the frequency of the subset of labels L, i.e., if L
is over-represented in the data or not. For that, Fβ fosters on the precision for over-represented
labels and it converges to F1 for other subsets of labels. In this way, we propose two quality
measures that compare the model based on Fβ for the subgroups and those of the entire data.
This contribution, combined with the MCTS-based enumeration, enables to address the SOR
problem, namely to extract diverse rules on physico-chemical properties that can explain the
presence of diverse subsets of odors.

1.4.3 Application in neuroscience about the Structure-Odor relationship

Eliciting supervised descriptive rules on the structure-odor relationship to derive knowledge is
a challenging task in neuroscience. Indeed, a crowd-sourced challenge was recently proposed
by IBM Research and Sage called DREAM Olfaction Prediction Challenge [65]. The challenge
resulted in several non intelligible models that were able to predict especially pleasantness and
intensity for 8 out of 19 olfactory qualities in their dataset (“garlic”, “fish”, “sweet”, “fruit”, “burnt”,
“spices”, “flower” and “sour”) with an average correlation of predictions across all models above
0.5 [91]. However none descriptive rules have been proposed: The results only suggest that
there exists links between some odors and the physico-chemical properties of the molecules. The
current limited knowledge on SOR avoids the use of constraint-based pattern mining methods
since setting a threshold remains hard. Indeed, the experts of the domain have difficulties to
put words on their feelings. Thus, it is required to switch to other pattern mining methods that
can handle the implicit expert’s preferences. Interactive mining is a new trend of methods that
includes the user in the exploration process [63]. It uses the user’s preferences as a feedback to
guide the exploration of the search space. Interactive mining methods rely on instant mining
algorithms, i.e., algorithms that give results anytime. Beam search and sampling methods are
instant mining approaches and can be tuned to interactive algorithms.

Contribution 3:
As a third contribution, we implement an interactive online application that allows the user to
guide the exploration of the search space based on her preferences. In this application there are
some visualization tools to present the results of the method. Based on this interactive platform,
the neuroscientists and the chemists are working on the understanding of descriptive rules on the
structure-odor relationship. It leads to a deep analysis of the rules, to elicit new hypotheses on
the impact of some physico-chemical properties. Moreover, they are trying to combine several
rules to improve the cover of a single rule. The results suggest promising perspectives for the
understanding of the olfactory percept process.

1.5 Structure of the thesis

The thesis is organized as follows. Chapter 2 provides the background about pattern mining
and formally defines subgroup discovery and exceptional model mining. In addition, we point
out the main issues we propose to tackle in this thesis. Chapter 3 introduces the paradigm of
Monte Carlo tree search, the exploration method we employ in our first contribution. We define
its principle and its main enhancements proposed in the state of the art. Chapter 4 concerns our
first contribution, namely applying MCTS for pattern mining. We formalize the problem and we
propose a lot of strategies to adapt the traditional process of MCTS to SD/EMM. We thoroughly
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experiment with benchmark datasets to assess the validity of this new exploration method. This
contribution has been published in the proceedings of the French conference Extraction et Gestion
de Connaissances EGC’17 [24] and an extended version is actually under major revision for the
Data Mining and Knowledge Discovery journal [30]. Chapter 5 details our second contribution
about EMM with multi-label data. We explain a new EMM instance, that takes into account
the high variance in the frequency of the class labels. Therefore, we define both a new model
and a quality measure. We proceed to several batches of experiments to show the efficiency of
this new EMM instance. This contribution has been published in the proceedings of the French
conference Extraction et Gestion de Connaissances EGC’15 [26] and the international conference
Discovery Science DS’16 [25]. Chapter 6 presents the results we obtained combining our two
contributions in a real world application, namely the study the structure-odor relationship. We
explain the SOR problem and its issues. We detail the data. We propose a study of the different
rules computed with our algorithm. We implemented a Web application that enables the user
to interact with the algorithm to guide the exploration. This application has been published
as a demo paper in the European conference on Machine Learning and Knowledge Discovery
in Databases ECML/PKDD’16 [29]. Our collaborators are preparing a paper for the journal in
neuroscience PLOS One - Computational Biology. Finally, Chapter 7 gives the conclusions and
the perspectives of this thesis.
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Chapter 2

Pattern Mining

This chapter aims at introducing pattern mining and giving the main definitions we use in the
rest of this document. First, we detail in Section 2.1 constraint-based pattern mining that has
motivated a lot of works since the 90’s. In Section 2.2, we define the problems of subgroup
discovery (SD) and exceptional model mining (EMM), particular instances of pattern mining in
which we are interested in this thesis. In Section 2.3, we discuss the different approaches proposed
to solve them. Finally, we consider in Section 2.4 the several issues we finally address.

2.1 Constraint-based pattern mining

We formalize the constraint-based pattern mining framework and we introduce its most impor-
tant research issues [33, 118].

Constraint-based pattern mining aims at proposing a generic framework to support the dis-
covery of relevant patterns in data. The two main ideas are as follows. First, we must have the
possibility to specify in a declarative way which are the patterns of interest in a given dataset:
For that purpose, primitive constraints that are then combined thanks to boolean operators may
be used to specify a so-called selection predicate that defines the patterns of interest among the
collection of possible patterns, i.e., the sentences of a pattern language. Next, we must be able
to compute the specified collection of patterns. This is where we have to discuss about algo-
rithms and combinatorial complexity. This is where the possible enumeration strategies within
the search space of the pattern language have to be considered seriously.

Basically, a pattern mining task or query4 can be formalized as the theory of the data, follow-
ing the terminology used in [111]:

ThpD,L,Ωq “ tp P L | Ωpp,Dq “ trueu

D denotes the data, i.e., a set of objects (or instances), L denotes the pattern language, and
Ω defines the selection predicate. Typically, such a predicate Ω is a boolean function that returns
true if a pattern has to be kept in the result set, i.e., if the specified constraint that is a boolean
combination of primitive constraints holds for the pattern. A quite common setting concerns the
use of simple primitive constraints that look whether or not a quality measure is above or below
a given threshold. One of the most popular example of such a primitive constraint concerns
the minimal frequency constraint where the quality measure ϕ of a pattern p P L denotes its

4Constraint-based mining is closely related to the inductive database vision where we try to define knowledge
discovery processes as sequences of queries [32, 62]
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number of occurrences in the data: To be frequent and thus to be considered interesting, a pattern
frequency must be greater than the minimal frequency threshold. Indeed, such concepts have
been studied for many types of data (transactions, sequences, collections of sequences, strings,
trees, graphs, etc) and many types of pattern languages.

It is fairly easy to classify most of the existing works in the pattern mining area according to
the simple concepts we have just introduced. Indeed, given a (type of) dataset D, many authors
contribute to the design or definition of new pattern languages (e.g., itemsets [4], sequences [6] or
graphs [48]) associated to new primitive constraints that can eventually be based on new quality
measures (see, e.g., [102]) to specify beforehand pattern relevancy. When the data, the pattern
language and the primitive constraints are known, we can talk of a pattern domain.

Once we have a given pattern domain, the question of computing a collection of patterns
that satisfy a given selection predicate can be extremely hard to solve. We have to enumerate
the search space (sentences from L) to find the correct and complete set of patterns, generally
associated to the values of some of their quality measures. For instance, we want to compute every
frequent pattern and its frequency. While many exhaustive algorithms have been designed for
different pattern domains the last two decades, more and more interesting pattern mining tasks
cannot be solved thanks to complete strategies. When it remains feasible, we can achieve scalable
complete evaluation by exploiting the properties of the primitive constraints (e.g., the popular
anti-monotonicity and monotonicity of many useful primitive constraints) to efficiently prune the
search space during classical enumeration strategies (see, e.g., [84, 21, 44] when considering only
a few results from our group in Lyon).

2.1.1 Mining frequent itemsets

A well-studied instance of pattern mining concerns the extraction of frequent patterns in trans-
action data. Frequent pattern mining aims at extracting substructures that appear in the data
with a frequency greater or equal to a specified threshold. The frequent patterns give an overview
over the data and are used to highlight the relationships among the data, e.g., while generating
association rules [4]. Initially, frequent pattern mining deals with itemsets that have been studied
a lot. Let I be a set of items. A transaction is a subset of items t Ď I. The data D is a transaction
database, that is a set of transactions D “ tt1, ..., tnu. An itemset is an arbitrary subset of items
p Ď I. The pattern language is the power-set of I, i.e., the set of all itemsets: L “ 2I . We define
a k-itemset an itemset of size k, i.e., containing k items.

Definition 1 (Extent and support of a pattern). The extent of a pattern p P L in a transaction
database D is the set of transactions of D that support the pattern p. Formally, the extent of p is:

extDppq “ tt P D | p Ď tu

Then, the support of p is the cardinality of its extent, that is the number of transactions that
support p:

suppDppq “ |extDppq|

Note that, we omit the subscript mentioning the data in these definitions when there is no ambi-
guity about D.

In frequent pattern mining, the quality measure ϕppq of a pattern p P L is its support suppppq
and the selection predicate Ω is true if the support of a pattern p is greater or equal to a minimum
support threshold, denoted as minSupp, specified by the user. Formally the selection predicate
is Ωpp,Dq “ suppppq ě minSupp.
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Table 6: A transaction database.

TID items
t1 A B D
t2 A C D
t3 B D
t4 B C
t5 B C
t6 A B C D

A
3

B
5

C
4

∅
6

D
4

AC
2

AD
3

BC
3

BD
3

AB
2

CD
2

ABD
2

ACD
2

BCD
1

ABC
1

ABCD
1

Figure 8: The lattice induced by the transaction database in Table 6. Each node is an itemset
and the number is its support.

Problem 1 (Frequent itemset mining). Given a transaction database D, a set of items I
(L “ 2I) and a minimum support threshold minSupp P N, frequent itemset mining aims at
performing the correct and complete extraction of all the frequent itemsets p P L such that
suppppq ě minSupp. Note that, in general, it goes further, i.e., both the frequent itemsets and
their frequencies have to be extracted.

Example 4. Let us consider the toy transaction database D given in Table 6. This data contains
6 transactions identified by their TIDs tt1, t2, t3, t4, t5, t6u. We can suppose that each of these
transactions is about the market basket of a customer. The set of items is I “ tA,B,C,Du. They
can be the products bought by the customers. For example, the transaction t2 contains the items
A, C and D, meaning that the second customer has purchased the products A, C and D. The
extent of the pattern p “ tB,Cu is extppq “ tt4, t5, t6u since p Ď t4, p Ď t5 and p Ď t6: There
are only three customers that have purchased the products B and C together. Thus, its support is
suppppq “ 3. Given the minimum support threshold minSupp “ 3, the set of frequent itemsets is
tAu, tBu, tCu, tDu, tA,Du, tB,Cu and tB,Du.

Computing frequent itemsets needs to explore the search space of itemsets. This search space
is structured as a lattice p2I ,Ďq. For instance, the lattice of the data in Table 6 is given in
Figure 8. Each node of the lattice is an itemset, and the number at the bottom of each node is
the support of the itemset. Since there is an exponential number of itemsets w.r.t. the number of
items (2|I| itemsets in the lattice), several algorithms have been proposed to efficiently enumerate
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this search space5. Indeed, a naive exploration that enumerates each itemset is not scalable for
large sets of items I. We present two of the main mining methodologies that have been used to
enumerate the itemsets, namely (i) the apriori principle and (ii) the FP-Growth strategy.

Apriori principle

The most famous property of the support is anti-monotonicity: If an itemset is frequent, then any
of its sub-itemset is frequent [5]. Conversely, if an itemset is infrequent, any of its super-itemset
is infrequent. Formally, let p P L be an itemset and minSupp be the minimum support threshold,
if:

• suppppq ě minSuppñ @p1 P L, p1 Ď p, extpp1q Ě extppq and supppp1q ě minSupp

• suppppq ď minSuppñ @p1 P L, p1 Ě p, extpp1q Ď extppq and supppp1q ď minSupp

From this property, the Apriori algorithm is proposed by Agrawal and Srikant to extract the
frequent itemsets in a top down approach. Indeed, the first step consists in finding the frequent
1-itemsets (itemsets of size 1). Then, the frequent 1-itemsets are used to generate the candidates
for frequent 2-itemsets and the transaction database is used to check which of these candidates
are frequent. The frequent 2-itemsets are used to find the frequent 3-itemsets and so on, until
there is no more frequent k-itemsets.

Example 5. Let us consider the transaction database given in Table 6 with minSupp “ 3. The
first step of the Apriori algorithm consists in finding the frequent 1-itemsets that are tAu, tBu,
tCu and tDu. From these frequent 1-itemsets, we generate the candidates for the frequent 2-
itemsets: tA,Bu, tA,Cu, tA,Du, tB,Cu, tB,Du and tC,Du. For each of this candidate, we
scan the database to check if they are frequent: Only tA,Du, tB,Cu and tB,Du are frequent.
Then, we generate the candidates for the frequent 3-itemsets: Only tB,C,Du is generated but
it is not frequent. The algorithm is stopped and the frequent patterns are tAu, tBu, tCu, tDu,
tA,Du, tB,Cu and tB,Du.

In many cases, the Apriori algorithm significantly prunes the search space. However, it can
suffer from two-nontrivial costs: (i) generating a huge number of candidate sets, and (ii) repeat-
edly scanning the database and checking the candidates by pattern matching. About a decade
later, another kind of exploration method has been proposed, namely the FP-Growth algorithm.

FP-Growth

FP-growth is an efficient and scalable method to find frequent patterns [80]. It allows to ex-
tract the frequent itemsets without candidate itemset generation (different from the Apriori al-
gorithm). FP-growth employs a divide-and-conquer principle to extract the frequent patterns.
Each recursion processes in two steps: (i) The construction of a data structure called the FP-Tree,
and (ii) the extraction of frequent itemsets from the FP-Tree. The first scan of the transaction
database derives the ordered list of the frequent 1-itemsets (decreasing order on the support of
the frequent items). From this ordered list, the FP-Tree is built. Then, we mine the FP-tree
by starting from each frequent 1-itemset, called the suffix, (from the less frequent to the most
frequent), constructing its so-called conditional pattern database (CPD). From this conditional
pattern base, we can derive its conditional FP-tree, and thus recursively mine this FP-Tree. We
then concatenate the frequent patterns found in the FP-Tree with the suffix.

5Note that the frequent part of the lattice (i.e., patterns that are frequent) is known as the iceberg lattice [131].
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Figure 9: The FP-Tree of the transaction database in Table 6 with minSupp “ 3.

Example 6. From the transaction database of Table 6, we compute the ordered list of the frequent
1-itemsets: Br5s;Cr4s;Dr4s;Ar3s. From that we can generate the FP-Tree (see Figure 9): For
each transaction of the data, we ordered it w.r.t. the ordered list (e.g., t1 is tB,D,Au, t2 is
tC,D,Au and so on) and we add the nodes and update the support count if a node already exists
in the branch of the tree (e.g., for t1, we add the node pB, 1q as a child of the root node, then
we add the node pD, 1q as a child of pB, 1q and finally the node pA, 1q becomes a child of node
pD, 1q; for t2 we add the node pC, 1q as child of the root node since the root node does not have
the child C expanded yet, then we add pD, 1q to pC, 1q and pA, 1q to pD, 1q; and so on). Based
on this FP-Tree, for each frequent 1-itemset, we compute its conditional pattern base, iterating in
the reverse order of the list. The CPD of tAu is:

• Br1s;Dr1s

• Br1s;Cr1s;Dr1s

• Cr1s;Dr1s

Only tDu is frequent in the CPD of tAu: tA,Du is added to the result set. The CPD of tDu is:

• Br2s

• Cr1s;Br1s

• Cr1s

Only tBu is frequent in the CPD of tDu: tB,Du is added to the result set. The CPD of tCu is:

• Br3s

tBu is frequent in the CPD of tCu: tB,Cu is added to the result set. Finally the result set
contains these frequent itemsets: tAu, tBu, tCu, tDu, tA,Du, tB,Cu and tB,Du.

2.1.2 Beyond frequent itemset mining

Although frequent itemset mining enables to derive some knowledge from the data this pattern
language lacks of expressiveness. Indeed, nowadays we are facing numerical health data that are
collected from smart watches, social networks that are structured as graphs, or even sequences
of images that highlight the movement of the celestial bodies in the universe. These data can

23



Chapter 2. Pattern Mining

not be handled with itemsets: They require a more expressive pattern language. In addition, the
pattern explosion is a well known property of frequent pattern mining approaches [39]. Depending
on the minimum support threshold, there could be a huge amount of frequent patterns. This
makes the interpretation of the results unfeasible. Moreover, the minimal frequency constraint
is far from enough to specify interestingness and relevancy: Generally, the frequent patterns
are not informative. To answer these different issues, several improvements of frequent itemset
pattern mining are proposed in the state of the art, e.g., pattern compression with closed and
maximal patterns to reduce the number of extracted patterns, pattern languages with a better
expressiveness, or even novel quality measures to evaluate the interestingness of patterns.

Pattern compression

Usually, mining frequent itemsets in a transaction database leads to a huge number of frequent
patterns [39]. This is particularly true when the minimum support threshold minSupp has to
be low to avoid the extraction of trivial patterns. Due to the anti-monotonic property of the
support, a large frequent pattern has an exponential number of frequent sub-patterns. To tackle
this so-called pattern explosion, pattern compression allows to reduce the number of extracted
patterns with or without a loss of information. For that, we define the equivalence class of a
pattern p P L [121]:

Definition 2 (Equivalence class). Given a transaction data D, the equivalence class of an arbi-
trary itemset p is given by rps “ tp1 P L|extppq “ extpp1qu. In other words, the equivalence class
of a pattern p is the set of patterns for which the extent is exactly the same.

Example 7. The equivalence class of the pattern p1 “ tA,Cu in the transaction database in
Table 6 is rp1s “ ttA,Cu, tA,Du, tA,C,Duu since the extent of all of these itemsets is composed
of t2 and t6.

From the definition of the equivalence classes, closed patterns based enumeration has been
proposed and has attracted a lot of works especially in the formal concept analysis (FCA) com-
munity [70]. Indeed, the closure operator enables to derive only one pattern from the equivalence
class.

Definition 3 (Closed pattern). Each equivalence class has a unique largest element w.r.t. Ď that
is called the closed pattern (the most specific pattern). In other terms, p is said to be closed iff
Ep1 such that p Ď p1 and extppq “ extpp1q. The non-closed patterns are called generators, and the
smallest generators w.r.t. the Ď operator are called the minimal generators.

The set of closed frequent patterns is a compression that does not lose any information about
the corresponding frequent patterns. The main algorithms that aim at extracting frequent closed
itemsets are CHARM [143], Close by One (CbO) [99] and its extensions Fast Close by One
(FCbO) [97], AddIntent [136], and more recently the In-Close approach that is another vari-
ant of CbO [7, 8]. Most of them employ the closure operator with a lexicographical order on the
items to ensure a canonical generation of the patterns.

Example 8. In Table 6, let us consider the pattern p1 “ tA,Cu and its equivalence class
rp1s “ ttA,Cu, tA,Du, tA,C,Duu. The closed pattern is the largest itemsets w.r.t. Ď, i.e.,
tA,C,Du. Given the minimum support threshold minSupp “ 3, the set of frequent closed pat-
terns is composed of 6 itemsets: tBu, tCu, tDu, tA,Du, tB,Cu, tB,Du. In this example, using
frequent closed patterns enables to remove one pattern from the frequent pattern set, namely a
compression of 14%.
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The other possibility to compress the frequent pattern set is to use the maximal frequent
patterns [38, 75]. This solution enables to improve the compression rate but it leads to a loss of
information: Indeed, it becomes impossible to recover the entire set of frequent patterns from the
maximal frequent patterns. The algorithms that aim at extraction maximal frequent patterns are
less numerous than for frequent closed patterns: The algorithms MAFIA [38] and GenMax [75]
are two of the main ones.

Definition 4 (Maximal frequent pattern). Given a minimum support threshold minSupp, a
pattern p is a frequent maximal pattern in a transaction database D if p is frequent and there is
no super-patterns p1 of p that is frequent. Formally, p is a frequent maximal pattern iff Ep1 P L
such that p Ď p1 and supppp1q ě minSupp.

Example 9. In the same settings than the previous example, the set of maximal frequent patterns
contains only 3 itemsets, namely tA,Du, tB,Cu, tB,Du. Indeed, the frequent 1-itemsets tAu,
tBu, tCu and tDu are not maximal since there exists super-patterns that are frequent. Thus, the
compression rate is 57%, four times better than those of the frequent closed patterns. However,
once again, the maximal frequent pattern set does not enable to recover directly the entire set of
frequent patterns with their frequencies, whereas the frequent closed pattern set does.

Pattern language

Other improvements concern a growing expressiveness of the pattern language L. Indeed, item-
sets mining lacks of expressiveness in most of the real data. Nowadays, the collected data is not
only binary. For example, the public opinion polls gather nominal (or categorical) value, the dif-
ferent sensors that are deployed all over the world return numerical values, the data collected in
the supermarkets are made of sequences of itemsets, or the interactions in the social networks are
represented with graphs. For that, in the previous decades there has been a lot of works that take
into account this need for a growing expressiveness of the pattern language. In the following, we
briefly present a pattern language for the nominal and numerical attributes. Note that sequen-
tial pattern mining has been introduced by Agrawal and Srikant [6]6. Besides, graph mining has
become an extremely active research domain that has steadily increased for a decade [48]. En-
hancements of graph mining with attributed graphs [116] or dynamic graph [20, 124] have been
studied. Recently, a work has proposed to mine convex polygons with formal concept analysis
opening the road to geometrical shapes [16].

Nominal attributes are the generalization of itemsets where the domain of a nominal attribute
is composed of several incomparable values. In the case of itemsets, the nominal attributes are the
items, and each item can take the value true (present) or false (missing). Let A “ tA1, A2, . . . u be
the set of nominal attributes, the pattern language is the Cartesian product between the domain
value DompAiq of each nominal attribute Ai P A: L “

Ś

AiPA
DompAiq.

Handling numerical attributes has motivated several works, in particular in FCA. A numerical
pattern is the restriction on the numerical attributes using intervals. Thus let A “ tA1, A2, . . . u
be a set of numerical attributes, the pattern language is the set containing the Cartesian product

6We also worked on sequential pattern mining in the new context of electronic sports, in which an important
challenge is to be able to detect game balance issues. For that, we presented an efficient pattern mining algorithm as
a basic tool for game balance designers that enables one to search for imbalanced strategies in historical data through
the KDD process. This work has been published, inter alia, in the international conference ECAI 2014 [28] and in
the journal IEEE TCIAIG [31]. We do not detail this work in this dissertation. Interested readers may refer to the
published papers available at https://hal.archives-ouvertes.fr/hal-01252728/document (IEEE TCIAIG) and
https://hal.archives-ouvertes.fr/hal-01100933/document (ECAI 2014).
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of all the possible intervals for each numerical attributes: L “
Ś

AiPA
rαi, βiswhere αi, βi P DompAiq

and DompAiq is the domain value of the attribute Ai. The numerical patterns are also structured
as a lattice [88, 89]. Figure 10 illustrates the upper part of the lattice on the numerical attributes
of Table 7. Each child of a node consists in restricting the interval of an attribute either by a
minimal left change, i.e., the lower bound is set to the next value (in ascending order) taken by
this attribute in the data, or by a minimal right change, i.e., the upper bound of the interval is
set to the previous value (in ascending order) taken by this attribute in the data. Still, the lattice
is much larger than for itemsets, thus many works proceed to a discretization of the numerical
attributes, either as a pre-processing task or an on-the-fly during the enumeration, to be equiva-
lent to nominal attributes. However, even if the runtimes are faster, this naive strategy remains
greedy and leads to sub-optimal results. In this thesis, we are interested in handling numerical
data based on the minimal changes, to ensure the enumeration of all the possible intervals for
each numerical attribute.

Quality measure

In addition to the pattern language, one major direction of research concerns the definition of new
quality measures. Up to now, we simply present the support measure that is the initial quality
measure that has been used in pattern mining. However, the support remains weak to evaluate
the interestingness of a pattern. Indeed, the most frequent patterns are not necessary the more
interesting because they can be trivial. That is why, scientists have worked and are still working
about the definition of new quality measures to capture informative knowledge [102, 2, 96].

Mining frequent itemsets is used to discover association rules in a transaction database. As-
sociation rule mining was initially introduced by Agrawal et al. [4]. The aim is to find rules of
the form X Ñ Y where X and Y are disjoint itemsets. To evaluate an association rule, two mea-
sures are often used, namely the support and the confidence of the rule. An association rule is
said interesting if its support is greater or equal to a given minimum support threshold minSupp
and its confidence is greater or equal to a given minimum confidence threshold minConf . The
confidence of the rule X Ñ Y measures the precision of the rule, i.e. the number of transactions
containing X that also contains Y . It is defined as follows:

conf pX Ñ Y q “
supppX X Y q

supppXq

In addition to the confidence, there are tens of measures that have been already defined to evalu-
ate association rules. For instance, the lift measure of the rule X Ñ Y quantifies the correlation
between X and Y and is defined by:

liftpX Ñ Y q “
supppX X Y q

supppXq ˆ supppY q

Constraint

In frequent itemset mining, the constraint consists in setting a minimum support threshold.
Thus, a pattern is extracted if its support is greater than this threshold. This an anti-monotonic
constraint. In the state of the art of constraint-based pattern mining, there was a trend to
exhibit new properties of constraints and how to benefit from them: The relationship of con-
straint properties and enumeration principles is a fundamental issue. Anti-monotonicity is the
first one that was studied with frequent pattern mining. However, there exists several other
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anti-monotonic constraints: The maximum length of a pattern constraint, the maximum sum
of cost constraint, and also the conjunction and the disjunction of anti-monotonic constraints.
This property on constraints is not only available for itemsets, but also for other pattern lan-
guages, such as sequences or graphs. Anti-monotonic constraints enable to prune efficiently the
search space when proceeding to a top-down enumeration: Indeed, if the constraint does not
hold for a node, it does not hold for any of its children (a child is a specialization of its par-
ent). Formally for a pattern language L with a partial order ĺ (e.g., for itemsets ĺ is Ě),
@p, p1 P L, p1 ĺ p,Ωpp,Dq “ false ñ Ωpp1,Dq “ false. This is the principle of the Apriori
algorithm [5, 111]

Close to anti-monotonic constraints, monotonic constraints have been defined. This property
can be seen as the negation of anti-monotonicity. If the monotonic constraint holds for a node
in the lattice, it holds for all of its specialized patterns, i.e., its children. Formally, for a pattern
language L with a partial order ĺ, @p, p1 P L, p1 ĺ p,Ωpp,Dq “ true ñ Ωpp1,Dq “ true. The
maximum support constraint is monotonic, as well as the minimum size constraint. Similarly
to anti-monotonic constraints, with monotonic constraint, an efficient enumeration consists in
exploring in a bottom-up approach, i.e., from the more specialized patterns to the more general
ones, to efficiently prune the search space [111, 51].

Several properties have been identified to efficiently handle them during the enumeration by
pruning the search space or computing upper bounds [115]. For example, convertible (anti-)
monotonic constraints can be considered as (anti-) monotonic by using a specific enumeration:
Thus, the previous pruning techniques can be applied. The aim of constraint-based mining is to
design generic algorithms that exploit the different properties of the constraints and the pattern
language [84, 21, 44]. However, sometimes it is difficult to state explicitly a constraint. In addi-
tion, setting a threshold is known to be hard because it would lead to a pattern explosion if the
associated constraint becomes too loose or to the empty set of results if it turns to be too strong.
For that, sky-patterns have been proposed: It aims at extracting the best patterns w.r.t. several
quality measures by considering the Pareto frontier [130]. This enables to get rid of thresholds.

In summary, the trend in pattern mining is to efficiently extract patterns based on a given
pattern language that is interesting w.r.t. quality measures. Association rules are the first at-
tempt to exhibit some correlation in the data. However, recently, more and more datasets are
about labeled data, i.e., transactions that are associated to a label. The supervised discovery of
patterns that strongly distinguish one class label from another is still a challenging pattern min-
ing task. Finally, pattern mining has become more and more able to extract interesting patterns
leading to new knowledge. The model used to represent the data and the exploration methods
are much more efficient to handle the existing relationships in the data. In this work, we are
interested in the SD/EMM frameworks that enable to find exceptional behaviors within a labeled
data.

2.2 Mining supervised descriptive rules

The discovery of patterns, or descriptions, which distinguish a group of objects given a target
(class label) has been widely studied in data mining and machine learning [119]. Such descriptive
rules can be formalized, among many other choices in AI, in subgroup discovery (SD, [93, 142]) or
exceptional model mining (EMM, [104]). Two similar notions have been formalized independently
and then unified by Novak et al. [119]: Contrast Set mining [15] and emerging patterns [56]. The
first one aims to obtain high differences of support between the values of the target variable.
The latter extracts patterns with different frequencies in two classes (e.g., the positive and the

27



Chapter 2. Pattern Mining

negative classes) of the target variable. However, both methods and SD are similar and differ
partially from the quality measure they use [119]. Close to SD, Redescription Mining aims to
discover redescriptions of the same groups of objects according to different views [123, 137]. In
this work we are interested in the SD/EMM frameworks. The input data is a population of
individuals (objects, customers, transactions, . . . ) that embeds a set of descriptors and a set
of class (or target) labels (some existing works deal also with numerical target attributes). We
now detail both subgroup discovery (SD) and its generalization, the exceptional model mining
framework (EMM).

2.2.1 Subgroup discovery

Subgroup discovery (SD) was first introduced in the middle of the 90’s [93, 142]. The aim of SD
is to extract subgroups of objects (described by a rule involving descriptors) for which the distri-
bution on the target variable is statistically different from the whole (or, for some authors, the
rest of the) population. Although these settings are related to those of a supervised learning task,
SD is a descriptive task. A subgroup is a description generalization whose discriminating ability
is assessed by a quality measure. Several measures have been proposed to evaluate a pattern
w.r.t. a class label: The Weighted Relative Accuracy (WRAcc) [102], the F-Score, the Jaccard
coefficients, or the weighted Kullback Leibler divergence (WKL). In the last two decades, dif-
ferent aspects of SD have been widely studied: The pattern language (quantitative, qualitative,
etc.), the algorithms that enable the discovery of the best subgroups, and the definition of mea-
sures that express the interestingness or relevancy of a pattern. These three points are closely
related, and many of the first approaches were ad hoc solutions lacking from easy implementable
generalizations (see [59] for a survey).

Definition 5 (Label dataset). Let O, A and C be respectively a set of objects, a set of attributes,
and a set of class labels. The domain of an attribute a P A is Dompaq where a is either nom-
inal or numerical. Each object is associated to a class label from C through class : O ÞÑ C.
DpO,A, C, classq is a label dataset.

Definition 6 (Subgroup). The description of a subgroup is given by d “ xf1, . . . , f|A|y where
each fi is a restriction on the value domain of the attribute ai P A. The description of a subgroup
corresponds to the pattern in the pattern mining setting. A restriction is either a subset of a
nominal attribute domain, or an interval contained in the domain of a numerical attribute. The
description d covers a set of objects called the extent of the subgroup, denoted extpdq Ď O, and its
support is the number of objects in its extent and is defined by supppdq “ |extpdq|. Note that, in
this thesis, we denote |S| the cardinality of the set S. For simplicity, a subgroup is either given by
its intent, i.e., its description d, or by its extent extpdq.

The ability of a subgroup to discriminate a class label is evaluated by means of a quality
measure. The latter reflects the difference between the model induced by the subgroup on the
target attribute and the model induced by the entire dataset. Basically, the model induced by a
set of objects S is the proportion of objects of S associated to one class label l P C. The choice of
the measure depends on the application [68]. There exists several quality measures that are used
in SD, e.g., the WRAcc [102], Gini index, entropy or the Weighted Kullback-Leibler divergence
(WKL) [2].

Problem 2 (The SD problem). Given a label dataset DpO,A, C, classq, a quality measure ϕ,
a minimum support threshold minSupp and an integer k, SD aims at extracting the top-k best
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Table 7: Toy dataset

ID a b c classp.q
1 150 21 11 l1
2 128 29 9 l2
3 136 24 10 l2
4 152 23 11 l3
5 151 27 12 l2
6 142 27 10 l1

128 ≤ a ≤ 152
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

136 ≤ a ≤ 152
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128 ≤ a ≤ 151
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128 ≤ a ≤ 152
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128 ≤ a ≤ 152
21 ≤ b ≤ 27
  9 ≤  c  ≤ 12

128 ≤ a ≤ 152
21 ≤ b ≤ 29
10 ≤  c  ≤ 12

128 ≤ a ≤ 152
21 ≤ b ≤ 29
  9 ≤  c  ≤ 11

136 ≤ a ≤ 152
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128 ≤ a ≤ 151
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128 ≤ a ≤ 152
24 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128 ≤ a ≤ 152
23 ≤ b ≤ 27
  9 ≤  c  ≤ 12

128 ≤ a ≤ 152
23 ≤ b ≤ 29
10 ≤  c  ≤ 12

128 ≤ a ≤ 152
23 ≤ b ≤ 29
  9 ≤  c  ≤ 11

Figure 10: The upper part of the search space for the data of Table 7.

frequent subgroups w.r.t. ϕ. The quality measure ϕ quantifies a deviation between the model
induced by extpdq and O, respectively.

Note that, in the literature, the problem definition of SD can be slightly different from those
we use in this thesis. Our definition is equivalent to those given in [59] in which we include a
minimum support constraint in the set of constraints.

Example 10. Consider the label dataset in Table 7 with objects O “ t1, ..., 6u and attributes
A “ ta, b, cu. Each object is labeled with a class label from C. Considering the proportion class
model, the proportion of the target label l2 within the entire dataset is pl20 “

|toPO|classpoq“l2u|
|O| “ 1

2 .
Consider the subgroup with description d “ xr128 ď a ď 151s, r23 ď b ď 29sy. Note that
for readability, we omit restrictions satisfied by all objects, e.g. r9 ď c ď 12s, and thus we
denote that extpxyq “ O. The extent of d is composed of the objects extpdq “ t2, 3, 5, 6u. The
distribution model for the target label l2 in d is pl2d “

|toPextpdq|classpoq“l2u|
supppdq “ 3

4 . Then we compute
if these distribution models are significantly different using the WRAcc measure for the label l2:
WRAccpd, l2q “

supppdq
|O| ˆ ppl2d ´ p

l2
0 q “

1
6 . The search space of the label dataset given in Table 7

is a lattice whose the top part is presented in Figure 10. We can notice the principle of minimal
left and right changes to enumerate all the possible intervals.

The SD problem has been extended in various ways, e.g., according to the pattern language,
the algorithmic method to enumerate the search space, or more generally, the quality measure
or exceptionality of a model induced by the subgroups. All these improvements can be discussed
within the exceptional model mining framework (EMM [104]) that does not consider only one
class label per object but several.
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Dataset

Models

Measure 
value

Figure 3: A typical EMM instance.

Table 8: The extension of the label dataset from Table 7 to the multi-label dataset version.

ID a b c classp¨q

1 150 21 11 tl1, l3u
2 128 29 9 tl2u
3 136 24 10 tl2, l3u
4 152 23 11 tl3u
5 151 27 12 tl1, l2u
6 142 27 10 tl1, l2u

2.2.2 Exceptional model mining

Exceptional model mining (EMM) was introduced by Leman et al. [104]. Recently, Duivesteijn
et al. have proposed an interesting and complete survey on EMM [59]. It can be seen as a
generalization of SD as it enables one to deal with more complex target concepts. Initially,
SD aims at finding subgroups of objects for which the distribution over one value of the target
variable deviates substantially from the distribution of the entire population of objects. In EMM,
there is no longer one target variable but several ones: The descriptors are split into two sets,
the descriptive variables and the target variables. The goal of EMM is to extract subgroups of
objects for which the model induced over all the target variables substantially deviates from the
model induced by the whole population of objects. Note that, in some works, the model induced
by the subgroup has to deviate from the model of the complement set of objects and not the
whole population. An illustration of this framework is given in Figure 3.

In this context, we have to override the definition of the label dataset given in Definition 5 as
follows:

Definition 7 (Multi-label dataset). Let O, A and C be respectively a set of objects, a set of
attributes (either nominal or numerical), and a set of class labels. Each object is associated to a
subset of class labels among C by the function class : O ÞÑ 2C that maps the target labels to each
object. We denote a multi-label dataset as DpO,A, C, classq.

In the EMM framework, given a multi-label dataset, the definition of a subgroup remains
unchanged: Definition 6 is used. EMM relies on the model induced by a set of objects over the
class labels. Many models have been proposed in the literature [59]: For instance, the probability
distribution, a Bayesian Network, a clustering or a classification model over the class labels.
Quality measure have been introduced to compare the similarity between the two models (i.e.,
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those of the subgroup and those of the entire dataset), the better the quality measure, the less the
similarity, the more interesting the subgroup. Figure 3 illustrates the process of EMM. On the
left, the red circles are the objects of the dataset. The green area is the support of a subgroup.
The red curve on the middle is the model induced by the entire dataset. The green curve is the
model induced by the subgroup. These two models are compared by means of a quality measure.
From that we can define the traditional EMM problem:

Problem 3 (The EMM problem). Given a multi-label dataset DpO,A, C, classq, a quality mea-
sure ϕ comparing two instances of a class model, a minimum support threshold minSupp and
an integer k, EMM aims at extracting the top-k best frequent subgroups w.r.t. ϕ. The quality
measure ϕ quantifies a deviation between the model induced by extpdq and O, respectively.

Example 11. Consider the multi-label dataset in Table 8 with objects O “ t1, 2, 3, 4, 5, 6u,
attributes A “ ta, b, cu and class labels C “ tl1, l2, l3u. Each object is labeled with a subset of class
labels from C. Considering the probability distribution model class over the class labels, the aim
is thus to find subgroups whose distribution over all the class labels is significantly different from
those of the entire set of objects. The distribution of the entire dataset for each class label l1, l2
and l3 is respectively pl10 “

|toPO|l1Pclasspoqu|
|O| “ 3

6 “ 0.5, pl20 “ 0.67 and pl30 “ 0.5.
Let us consider the subgroup s with description d “ xr128 ď a ď 151s, r23 ď b ď 29sy. The

extent of d is extpdq “ t2, 3, 5, 6u. The model induced by this subgroup for each class label is
pl1d “

|toPsupppdq|l1Pclasspoqu|
supppdq “ 2

4 “ 0.5, pl2d “ 1 and pl3d “ 0.25. To compare these two models, we
choose to use the mean of the WRAcc measures for each label:

ϕpsq “
4
6 ˆ

˜

ppl1d ´ p
l1
0 q ` pp

l2
d ´ p

l2
0 q ` pp

l3
d ´ p

l3
0 q

3

¸

“ 0.03

2.3 Algorithms for SD and EMM

SD and its generalization EMM have attracted a lot of works for more than two decades. Both
exhaustive and heuristic methods have been used to explore the search space of subgroups.

2.3.1 Exhaustive exploration

The first exploration methods that have been proposed for SD implemented an exhaustive search,
i.e., the search space is completely explored ensuring that the best subgroups are found [87, 12,
11]. Several pruning strategies are used to avoid the exploration of uninteresting parts of the
search space. These pruning strategies are usually based on the monotonic (or anti-monotonic)
property of the support or the quality measures.

The first algorithm EXPLORA [93] is an exhaustive approach that employs decision trees.
The MIDOS algorithm [142] is also based on decision trees with minimum support pruning.
These methods are extensions of classification algorithms. The pattern language used to generate
the rules is made of conjunctions of pair attribute-value. The target variable is either nominal
or binary. Another kind of algorithms extends association rule learner algorithms such as the
APRIORI-SD algorithm [87]. It also employs conjunctions of pairs attribute-value with a nominal
target variable.

Some exhaustive approaches employ efficient pruning methods to explore the search space.
Merge-SD performs large pruning of the search based on bounds [76]. This algorithm is able to
deal with numerical attributes. The BSD algorithm uses a bitset (bitvector) based data struc-
ture with a depth-first-search approach [107]. Recently, another approach has been proposed to
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efficiently perform an exhaustive exploration with a numerical target variable with optimistic es-
timates on different quality measures [105]. The authors also compared different data structures,
e.g., FP-trees or bitset.

Efficient methods for SD deal with the use of efficient data structures, often the well-known
FP-growth method [80] and a bitset structure. SD-MAP [12] and DpSubgroup are based on FP-
trees with a binary and nominal target variable. SD-MAP exploits a minimum support threshold
whereas DpSubgroup [77] employs tight optimistic estimates. SD-MAP* [11] extends the SD-
MAP algorithm to numerical target variables.

To the best of our knowledge, there is only one exhaustive algorithm, namely GP-Growth,
that addresses explicitly EMM [106]. It extends the previous works done with SD-MAP and
SD-MAP* for traditional SD. GP-Growth is based on the FP-Growth algorithm that uses the
efficiency of the FP-Tree structure. GP-Growth employs a valuation basis that enables to get rid
of the previous structure in which the frequency is included in each node in the tree. Thus, the
kind of information stored in the valuation basis depends on the model class. Finally, the authors
adapted the FP-Growth algorithm where the tree structure called the GP-Tree no longer stores
frequencies but valuation bases. So, the algorithm GP-Growth proceeds to the aggregation of
valuation bases for each pattern. Note that, this algorithm, as well as SD-MAP and SD-MAP*,
uses an equal width discretization to handle numerical attributes. This pre-processing task avoid
the exploration of the whole dataset by turning numerical attributes to nominal attributes, and
it leads to an non-optimal result set.

2.3.2 Heuristic search

Exhaustive search ensures to extract the best subgroups, however its main drawback is that it
is not scalable when the data becomes large. Such data leads to enormous search space making
exhaustive search infeasible. Indeed, the more the descriptors, the longer the runtime. Similarly,
the more the individuals, the longer the runtime (excepted for FP-growth methods that do not
enumerate the individuals). To tackle the runtime issue, heuristic approaches have been used,
ensuring a shorter exploration, but there is no guaranties to extract the best subgroups. For that,
several heuristics have been used.

Beam search strategy

First, the commonly used search strategy is based on the beam search [108]. This heuristic enables
to perform a level wise exploration of the search space, avoiding the so-called uninteresting parts,
with several hill climbings run in parallel. A beam of a given size (or dynamic size for recent
works) is built from the root of the search space. This beam only keeps the best promising
subgroups to extend w.r.t. the quality measure ϕ. The first algorithms for SD designed with a
beam search strategies are SubgroupMiner [94], SD [69] and CN2-SD [101]. Then, the algorithm
SD4TS is developed [117], based on APRIORI-SD. It uses the quality measure of the subgroups
to prune the search space.

More recently, several works have been done about beam search for EMM. One of the first
heuristic algorithms is developed by van Leeuwen et al. in [138]. The main point of this work
is about redundancy in “Generalized Subgroup Discovery” (see the following Subsection 2.4 for
more information about subgroup set discovery). Moreover, the authors present several beam
strategies and compare them experimentally. Then, they extended this work [139]. In this paper,
the heuristic algorithm DSSD, Diverse Subgroup Set Discovery, is presented. This algorithm
employs a beam search depending on several beam strategies. The experimental study includes a
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much wider range of datasets with deep comparisons. DSSD acts as a baseline algorithm for both
SD and EMM. The following year, the algorithm DSSD is extended with a skyline approach that
deals with the issue of redundancy in the top-k approaches [140]. We will discuss this redundancy
issue in Subsection 2.4 as well.

ROCsearch is a new ROC-based beam search variant for EMM [112]. Following the trend
inspired by van Leeuwen et al., the authors have implemented a new selection method for beam
search strategies. Indeed, commonly used beam search employs selection strategies that are
only based on the quality measure. Some, as in the work of van Leeuwen et al. [138], try to
include others parameters that are able to avoid redundancy. However, these parameters often
require thresholds that have to be fixed by the user. Fixing a parameter is well-known to be
hard. ROCsearch proposes a new beam search strategy that enables to avoid fixing parameters.
The width of the beam is dynamically set, depending on the current state of the previous beam.
The selection strategy is based on the ROC space of the subgroups. The authors claim that the
diversity of the result set is improved and the redundancy is decreased.

Evolutionary algorithms

The second mainstream of heuristic approaches for SD is about evolutionary algorithms [14].
These approaches aim at solving problems imitating the process of natural evolution. Genetic
algorithms are a branch of the evolutionary approaches that use a fitness function to select which
individuals to keep at the next generated population [83]. SDIGA [54] is one of the first evolu-
tionary algorithms designed for Subgroup Discovery. It is based on a fuzzy rule induction system.
A fuzzy rule corresponds to the description of a subgroup, and is written in disjunctive normal
form (DNF). Several quality measures are embedded in SDIGA such as support, confidence or
sensibility. The objective function is an aggregating function based on several quality measures
such as the coverage, the significance, the support or the confidence. EDER-SD [125] is a se-
quential covering evolutionary algorithm that produces a hierarchical set of rules. This algorithm
extracts subgroups on imbalanced data, and especially the subgroups which target variable is
the minority class of the dataset. Similarly to CN2-SD, EDER-SD penalizes the objects that are
already covered by other rules (or subgroups). It can be used for numerical target variables. The
objective function is based on different quality measures usually used in SD: accuracy, F-Score,
sensitivity, . . . GAR-SD [120] is an evolutionary multi-objective algorithm. It can work with both
discrete and continuous attributes without previous discretization. It is based on the Iterative
Rule-Learning approach. The objective function used in GAR-SD uses three different quality
measures derived from SD (support, confidence and significance) and three other measures based
on the characteristics of the rule. GP3-SD [110] is based on a genetic programming algorithm
for mining association rules for each value of the target variable. The descriptions of the sub-
groups are represented thanks to tree structures. Contrary to the previous algorithms, GP3-SD
does not employ an Iterative Rule-Learning approach but the elitism for the selection procedure.
The objective function is based on the support and the confidence of the rules. MESDIF [19]
is a multi-objective genetic algorithm that extracts rules describing subgroups. This algorithm
can generate fuzzy and/or crisp DNF rules, for problems with continuous and/or nominal vari-
ables. It searches for optimal solution in the Pareto front based on the SPEA2 approach [145].
NMEEF-SD [40] is a multi-objective evolutionary fuzzy algorithm. It is based on NSGA-II [53],
an efficient multi-objective evolutionary algorithm, and on the use of elitism. It allows the user
to choose several quality measures as objective functions such as the support, the confidence or
even the accuracy.
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Sampling methods

Another trend of heuristic search for EMM is about sampling methods. A recent work em-
ploys Controlled Direct Pattern Sampling (CDPS) to search for subgroups in the EMM frame-
work [114]. CDPS is a sampling method that enables to create random patterns thanks to a
procedure based on a controlled distribution [23]. The authors adapt this sampling methods
to EMM to foster subgroups for which the model deviates from those which hold for the whole
dataset and with high frequency. More recently, a work employs a sampling method to discover
exceptional models induced by attributed graphs [17]. In this work, the authors create a distri-
bution to give more chance to an interesting subgraph to be drawn. The model is based on the
characteristics induced by the subgraph. Pattern sampling is attractive as it allows direct inter-
actions with the user for using his/her preferences for driving the search: A result is available
anytime. However, traditional sampling methods used in pattern mining need a given probability
distribution over the pattern space: This distribution depends on both the data and the mea-
sure [23, 114]. This probability distribution has to be computed in a pre-processing step. Each
iteration is independent and consists of drawing a pattern given this probability distribution.
Moreover, these probability distributions exhibit the problem of the long tail: There are many
more uninteresting pattern than interesting ones. Thus, the probability to draw an uninteresting
pattern is still high, and not all local optima may be drawn: There are no guaranties on the
completeness of the result set.

2.4 The main issues about descriptive rules mining

Subgroup discovery and its generalization exceptional model mining highlight several issues that
have to be addressed to propose correct and efficient approaches for supervised descriptive rule
discovery. The existing works focus on the definition of new models with their quality measures to
capture more interesting patterns. The issue of diversity in the result set is at the core of heuris-
tic searches: How to ensure a good diversity in the results when applying heuristic exploration
methods? In addition, how interactive algorithms can improve the extraction of more interesting
subgroups by taking into account the expert’s preferences during the exploration? Finally, how to
ensure an efficient extraction of the patterns by exhaustive or heuristic searches? In the following,
we detail and discuss the existing approaches to handle these issues.

Choosing the appropriate model

EMM is based on a class model, and the aim is to search for subgroups of individuals for which
the model induced on the target attributes deviates significantly from the model of the whole
dataset (or of the complement of the subgroup). Several models have been proposed in the state
of the art [59], e.g., the linear regression between two numerical class attributes [58], or the
contingency tables for several class labels [114] or the Bayesian networks computed on the class
labels [61]. The choice of the model depends on both the target attributes and the purpose of
the application [58]. The main stream of works about EMM consists of finding new class models
to deal with specific datasets and objectives. In [59], the authors define lots of possible models
that have been used. The simplest models deal with the correlation (or association) between two
target attributes: The aim is to find subgroups for which the correlation is significantly different
from those induced on the entire dataset. One can also be interested in the difference of the
linear regression of one numerical target attribute in the subgroups, by comparing for instance
the slope of these models. More complex models can also be suitable for specific cases, e.g.,
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the models based on Bayesian networks. In this setting, it is assumed that there are multiple
nominal target attributes. A subgroup is considered as interesting if the conditional dependency
relations between the target attributes are significantly different in the subgroup from those of
the entire dataset. For that, the Bayesian networks of both the subgroups and the entire dataset
are compared [61]. Recently, a new model has been proposed to handle ranking data. The Rank
Correlation Model Class has been introduced to be less sensitive to the outliers that are in the
target attributes [57]. This class model no longer uses the values taken by the target attributes
but their rank. This method only works if there are two target attributes that can be ordered (to
get the rank of the values): Ordinal or numerical attributes are taken into account.

In our work, since the experts of the domain are interested in descriptive rules that conclude
on few labels, we propose a new EMM instance that considers several target subspaces. In other
words, from a subgroup, several models are derived: A model is built on each subset of labels.
The model we define is based on both the precision and the recall of the subgroup w.r.t. a given
target subspace.

Quality measures

Once the model is chosen, it is required to select the quality measure that compares two instances
of the models. The quality measure is the core of the method in SD or EMM. Indeed, it en-
ables to quantify the difference between the model induced by the subgroup and those of the
entire dataset. The quality measure depends on both the model and the purpose of the appli-
cation. There exists a large pool of quality measures in the literature [102, 2]. Usually, when
the application is specific, it requires to design a new quality measure that enables to encode the
needs of the experts, i.e., the so-called subjective interestingness. Konijn et al. present several
quality measures when facing datasets with two target attributes: A binary attribute that cor-
responds to the main class with the values positive or negative and the second target attribute
represents a cost [96]. From that, they designed several cost-based quality measures that enable
to find out interesting subgroups for which the cost target attribute differs for positive examples
from the cost attribute values of the whole dataset. Moreover, they employ a new exploration
method based on the Local Subgroup Discovery (LSD). Contrary to the traditional Descriptive
Subgroup Discovery (DSD) that performs a top down exploration by extending the description,
LSD enables to zoom in a part of the dataset: It searches for the nearest neighbors of a refer-
ence subgroup to detect close subgroups that deviate from this reference group. Thus, the aim
is to find out a subgroup that is close to a reference subgroup but for which the cost attribute
is really different from this reference subgroup. Duivesteijn et al. employ a new model class for
EMM [61]. They propose to use the interdependencies of the target variables to quantify the
quality of the subgroups. For that, they associate EMM with a model class based on Bayesian
networks on the target variables. They design several quality measures to evaluate the distance
between two Bayesian networks. In the case of regression models, Duivesteijn et al. proposed to
use the Cook’s Distance [58]. The Cook’s distance does not require to normalize the attributes.
There are also some theoretical upper bounds on this distance that enables to improve the effi-
ciency of this method by pruning. Concerning the Rank Correlation Model Class, Duivesteijn et
al. present several correlation measures based on the ranks of the target attributes that enable
to compute the exceptional nature of the subgroups (Spearman’s Rank Correlation coefficient,
Kendall’s Tau, . . . ). Recently, exceptional preferences mining has been defined [52] to extract
subgroups where the preference relations between subsets (using label ranking) of class labels sig-
nificantly deviate from those of the entire dataset. Finally, the extracted subgroups have to bring
new information to the experts: We are not interested in obvious subgroups. For that, most of
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the existing works implement a statistically significance test. For that, they test the distribution
of a subgroup against the null hypothesis. If the null hypothesis is rejected, it means that the
subgroup is significantly informative.

In our work, we propose several quality measures to compare two instances of the model class
we introduce. For that, since the distribution of the labels is skewed, we take into account this
high variance in the frequency of the labels to compute the quality measure.

Redundancy and diversity

The redundancy is one of the main issues for SD or EMM to ensure enough diversity in the result
set. Indeed, once the subgroups have been extracted, the result set contains many duplicates.
Indeed, there are several subgroups that are related to the same local optimum: Many variants
of the same pattern exist. For example a slightly different interval for a numerical attributes
induces a little change in the subgroup of objects. This causes top-k mining algorithms to return
highly redundant result sets, while ignoring many potentially interesting results. To avoid the
redundancy in the result set and to improve the diversity, many researchers proposed to filter
out redundant subgroups. A first attempt was proposed by van Leeuwen et al. [138]. This
work not only considers the subgroups as individual ones but as a set of subgroups. For that
they introduced the subgroup set mining task. They proposed a similarity measure to filter
out redundant subgroups based on the subgroup descriptions and the extents of the subgroups.
They also used this similarity measure to implement several beam selections to take into account
the redundancy at each level of the beam search. They introduced the Diverse Subgroup Set
Discovery algorithm that implements these methods [139]. To go further, van Leeuwen et al. also
proposed to use skylines methods to deal with redundant subgroups [140]. In fact, considering
the Pareto front ensures to avoid some of the redundant subgroups of the result set.

In our work, to remove redundancy in the result set, we apply the support-based similarity
measure that is used in most of the existing works in SD/EMM. This similarity measure is applied
in a post-processing step, to filter out redundant subgroups from the result set.

Algorithmic improvements

Many papers address algorithmic issues for SD and EMM. Considering the exhaustive searches,
the major improvement is about the data structure used. The paper of Atzmüller and Puppe [12]
proposes to use the well known FP-Growth approach to deal with subgroup discovery. It results
in great improvements of the efficiency of the extraction in terms of runtime. Moreover, the use
of efficient pruning strategies is an alternative to reduce the runtime of the exploration. In [77],
the authors propose to implement tight optimistic estimates to prune uninteresting parts of the
search space. They are able to compute an upper bound on the quality measure of a subtree, and
if it is too low, they prune this subtree since it will not provide better results. Finally, several
algorithms implement the parallelization of the execution of the source code. In this way, the
runtime reduces. This parallelization is more or less efficient w.r.t. the exploration method of the
search space: Some exploration methods are more likely to be processed in a parallelization way
than others. However, most of the recent works have focused on beam search and do not discuss
the choice of this greedy method that really poorly explores the search space. In fact, they are
able to extract only few local optima from the search space (see Figure 6b)).

Later, we define the completeness issue as the ability of an heuristic method to extract as
many local optima as possible. In our work, we propose a new enumeration method based on
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Monte Carlo tree search to address the completeness issue [36].

Instant mining and interactivity

A new trend of SD/EMM methods is related to the instant mining approaches. Basically, SD
or EMM are frameworks that extract interesting subgroups that are easily understandable and
actionable by the experts. The end user, i.e., the expert, is on the core of SD/EMM. The descrip-
tion of the subgroup is constructed to be as simple as possible. In this matter, instant mining
methods provide a great advantage to an end user application. For that, sampling approaches
are efficient as they provide anytime a solution [114]. The longer the time budget, the better the
result set. To a lesser extent, beam search and exhaustive search are less able to be considered
as instant mining methods. In fact, their greedy approach fails at providing interesting patterns
anytime. To go further with instant mining tools, many recent algorithms are designed to interact
with the experts. In this way, the expert can guide the exploration to foster on the areas within
the search space he/she prefers. Typically, with a beam search, the expert can add or remove
some subgroups from the beam. Thus, the exploration of the next level is guided by the expert’s
preferences [63].

In our work in olfaction, we implement an interactive Web application to take into account
the expert’s preferences to guide the exploration. This application is used by the neuroscientists
and the chemists to elicit new hypotheses on the structure-odor relationship.

2.5 Conclusion

Subgroup discovery has attracted a lot of attention since its introduction in the middle of the 90’s.
Its generalization into the exceptional model mining framework enables to take into account more
complex hidden relations in the data. The definition of new models with specific quality measures
has widened the scope of applications. Although several issues have been solved (such as the
redundancy problem in the result), it remains some open problems that need to be addressed: For
example, the development of a new anytime heuristic method that enables to efficiently explore
the search space without any knowledge on the distribution of the quality measure over it. Indeed,
most of the recent works employ a beam search strategy that greedily explores the search space
with several hill climbings run in parallel. Clearly, it can not result in a set of subgroups that
covers most of the local optima. As our major contribution, we propose to tackle this issue by
developing a new heuristic algorithm for SD/EMM based on Monte Carlo tree search.
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Monte Carlo Tree Search

Monte Carlo tree search (MCTS) is a search method used in several domains for finding an
optimal decision. It relies on taking successive random samples of the search space and build or
update a tree accordingly [36]. MCTS merges different theoretical results obtained from decision
theory, game theory, Monte Carlo and bandit-based methods. We introduce preliminary notions
and definitions before developing the basic MCTS algorithm, called UCT. There are lots of works
that deal with MCTS. Here, we present only what is needed to understand our contribution in
the next chapter. An exhaustive survey about MCTS until 2012 is [36].

3.1 Background

3.1.1 Decision theory

Studying which decision to take w.r.t. a set of observations and past actions is one of the most
explored problem in the 20th century [126]. Several models have been implemented to represent
and understand such a phenomena. For instance, the Markov Decision Problem (MDP) is applied
to model sequential decision problems. This model relies on a set of states S, a set of actions A,
a transition model T ps, a, s1q that determines the probability to reach the state s1 from the state
s playing the action a, and a reward function Rpsq that evaluates the quality of reaching a state
s. Therefore, the decisions are modeled with sequences of state-action pairs ps, aq. The aim is to
find policies that specify which action to play from each state. The higher the reward the better
the policy.

3.1.2 Game theory

Game theory is the extension of the decision theory in which several agents can interact during
the process. Considering a set of states S containing terminal states ST Ď S, the reward function
usually assigns to a terminal state a reward among t´1, 0, 1u for a loss, draw or win, and the
reward 0 for a non terminal state. Each player’s strategy evaluates the probability for a player to
choose an action given a specific state. In some cases, the players’ strategies can form a so called
Nash equilibrium, if none of the players can obtain a better reward by unilaterally switching
his/her strategy [126]. The games are described by several properties w.r.t. their characteristics:
The zero-sum games (the sum of all the players’ rewards is null), the information aspects of
the games (complete or not), the determinism (the game contains random transitions or not),
sequential games (the actions are chosen sequentially or simultaneously), real time or discrete
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games, etc. To explore these games, one of the most famous strategy is Minimax that tries to
minimize the reward of the opponents while maximizing its own reward.

3.1.3 Monte Carlo methods

Determining which action to play given a specific state can also be computed thanks to sampling
methods such as Monte Carlo methods [1]. This approach is used to approximate the game-
theoretic value of an action by performing several simulations of the game from the current state
to a terminal state. Then, the player can select the action that experimentally leads to better
rewards. However, this naive sampling method does not use the past experiences of choosing an
action to bias the choice of the following simulations. For that, the theoretical results obtained
with bandit-based methods are useful.

3.1.4 Bandit based methods

The bandit problem is a well known class of sequential decision problems. Considering a multi-
armed bandit slot machine containing K arms, the goal is to choose the arm that maximizes the
cumulative rewards. Each arm of the machine follows a probability distribution of its reward that
is unknown by the player. The aim is to find the arm that proposes the best expected reward by
playing as few times as possible. However, the potential rewards can be estimated thanks to the
past observations. This leads to an exploration/exploitation trade-off: The player wants to play
with the arm that gave the best rewards so far (exploitation), but he has also to play with the
other arms that may turn out to be superior in the long run (exploration). For that, the player’s
regret is considered. After N plays the player’s regret is:

R “ µ˚N ´
K
ÿ

j“1
µjErTjpNqs

where µ˚ “
Kmax
j“1

µj is the best possible expected rewards, µj is the expected reward of the arm j

and ErTjpNqs is the expected number of times the arm j is played in the first N trials. Thus, the
regret is the expected loss due to not playing the optimal arm. Determining the optimal arm to
play can be done thanks to confidence bounds. For example, the upper confidence bound policy
proposed in [13], called UCB1, has an expected logarithmic growth of regret uniformly over N .
This policy assumes that the player has to play the arm Aj that maximizes:

UCB1pAjq “ QpAjq `

d

2 lnN
NpAjq

where QpAjq is the average reward of the arm Aj obtained so far, NpAjq is the number of times
the arm Aj has been played and N is the overall number of plays. The term QpAjq encourages

the exploitation of interesting rewards, whereas the term
b

2 lnN
NpAjq

encourages the exploration of
few played actions.

3.2 The UCT algorithm

MCTS is a search method used in several domains to find an optimal decision (see [36] for a
survey). It merges theoretical results from decision theory [126], game theory, Monte Carlo [1]
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Select Expand Roll-out Update

Figure 11: One MCTS iteration (inspired from [36]).

and bandit-based methods [13]. MCTS is a powerful method because it allows the joint use of
random simulations and a trade-off between exploration of the search tree and the exploitation
of an interesting solution based on past observations [36]. Considering a game, e.g., Go, the goal
of MCTS is to find the best action to play given a current game state. MCTS proceeds in several
(limited) iterations that build a partial game tree (called the search tree) depending on the results
of the previous iterations. The nodes represent the game states. The root node is the current
game state. The children of a node are the game states accessible from this node by playing an
available action. The terminal nodes are the terminal game states. Each iteration, consisting of 4
steps (see Figure 11), leads to the generation of a new node in the search tree (depending on the
exploration/exploitation trade-off due to the past iterations) followed by a simulation (sequence
of actions up to a terminal node). Any node s in the search tree is provided with two values: The
number Npsq of times it has been visited, and a value Qpsq that corresponds to the aggregation
of rewards of all simulations walked through s so far (e.g., the proportion of wins obtained for
all simulations walked through s). The aggregated reward of each node is updated through the
iterations and becomes more and more accurate. Once the computation budget is reached, MCTS
returns the best move that leads to the child of the root node with the best aggregated reward
Qp.q. In the following, we detail the 4 steps of a MCTS iteration applied to a game. Algorithm 1
gives the pseudo code of the most popular algorithm in the MCTS family, namely UCT (Upper
Confidence bound for Trees) [95].

The Select policy

Starting from the root node, the Select method recursively selects an action (an edge) until
the selected node is either a terminal game state or is not fully expanded (there remain children
of this node that are not yet expanded in the search tree). The selection of a child of a node
s is based on the exploration/exploitation trade-off. For that, upper confidence bounds (UCB)
are used. They estimate the regret of choosing a non-optimal child. The original UCBs used in
MCTS are the UCB1 [13] and one of its variant, namely the UCT:

UCT ps, s1q “ Qps1q ` 2Cp

d

2 lnNpsq
Nps1q

where s1 is a child of a node s and Cp ą 0 is a constant (generally, Cp “ 1?
2). This step selects the

most urgent node to be expanded, called ssel in the following, considering both the exploitation
of interesting actions (given by the first term in UCT) and the exploration of lightly explored
areas of the search space (e.g., given by the second in UCT) based on the result of past iterations.
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Algorithm 1 UCT: The popular MCTS algorithm.
1: function Mcts(budget)
2: create root node s0 for current state
3: while within computational budget budget do
4: ssel Ð Select(s0)
5: sexp Ð Expand(ssel)
6: ∆ Ð RollOut(sexp)
7: Update(sexp,∆)
8: end while
9: return the action that reaches the child s of s0 with the highest Qpsq

10: end function

11: function Select(s)
12: while s is non-terminal do
13: if s is not fully expanded then return s
14: else sÐ BestChild(s)
15: end if
16: end while
17: return s
18: end function

19: function Expand(ssel)
20: randomly choose sexp from non expanded children of ssel
21: add new child sexp to ssel
22: return sexp
23: end function

24: function RollOut(s)
25: ∆ Ð 0
26: while s is non-terminal do
27: choose randomly a child s1 of s
28: sÐ s1

29: end while
30: return the reward of the terminal state s
31: end function

32: function Update(s,∆)
33: while s is not null do
34: Qpsq Ð NpsqˆQpsq`∆

Npsq`1
35: Npsq Ð Npsq ` 1
36: sÐ parent of s
37: end while
38: end function

39: function BestChild(s)
40: return arg max

s1P children of s
UCBps, s1q

41: end function
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The constant Cp can be adjusted to lower or increase the weigh of exploration in the trade-off
exploration/exploitation. Note that when Cp “ 1

2 , this is UCB1.

The Expand policy

A new child, denoted sexp, of the selected node ssel is added to the tree according to the available
actions. The child sexp is randomly picked among all available children of ssel not yet expanded
in the search tree.

The RollOut policy

From this expanded node sexp, a simulation is played based on a specific policy. This simulation
consists of exploring the search tree (playing a sequence of actions) from sexp until a terminal
state is reached. It returns the reward ∆ of this terminal state: ∆ “ 1 if the terminal state is a
win, ∆ “ 0 otherwise.

The Update policy

The reward ∆ is back-propagated to the root, updating for each parent the number of visits Np.q
(incremented by 1) and the aggregation reward Qp.q (the new proportion of wins).

Example 12. Figure 12 presents the first five iterations performed by the UCT algorithm for the
TicTacToe game. Let us consider that the player p1 plays against the player p2. p1 plays with the
green circles and p2 the red crosses. The current state of the game is given in Figure 12a. It is the
player p1’s turn to play. The root of the tree is the current state. It is provided with two values:
The number of times N it has been visited, and the proportion of wins Q. From this current state,
the UCT algorithm can be run. The result of the first iteration, consisting of the four steps, is
given in Figure 12b. During the first iteration, the method Select returns the root node (since it
remains some of its children to expand). From the root node, i.e., the current state of the game,
we randomly expand it with a not yet expanded child: The expanded node sexp corresponds to
the game state where p1 plays in the middle cell of the third row. From this expanded node, a
simulation is randomly played up to reach a terminal game state. In the case of the first iteration,
the simulation reaches the terminal game state in which p1 wins. The reward ∆ “ 1 is back
propagated through all the parents of sexp: Thus the value N is incremented by one for all the
parent nodes (since we visited these nodes one more time) and the value Q is set to 1 since the
simulation leads to a win of p1. Note that only the expanded node is stored within the tree, the
nodes of the simulation are not stored in the tree. The second iteration consists in expanding
the root node with another child that is not yet expanded in Figure 12c. For example, the child
in which p1 plays the cell in the middle of the first row. From this expanded node, a simulation
is rolled out until a terminal state in which p1 looses. The Update method back-propagates the
reward by updating the value Q of the root node to 0.5 and increments the number of visits.
Figure 12d and Figure 12e are related to the third and fourth iterations. Figure 12f is about the
fifth iteration, but in this case, the Select method is a bit different since all the children of the
root node are expanded. Thus, it is required to select one of these four children as the selected node
ssel. Due to the UCB measure, since all these children have been visited once, the exploration
term of the UCB is the same for all the children. The exploitation term determines which child
will be selected. Thus the algorithm selects randomly the second or the third child of the root node
since they are the node that have led to a win. When the computational budget is reached, p1 will
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N = 0 / Q = 0

(a) Initialisation.

N = 1 / Q = 1

N = 1 / Q = 1

Δ = 1

(b) Iteration #1.

N = 2 / Q = 0.5

N = 1 / Q = 1 N = 1 / Q = 0

Δ = 0

(c) Iteration #2.

N = 3 / Q = 0.67

N = 1 / Q = 1 N = 1 / Q = 1 N = 1 / Q = 0

Δ = 1

(d) Iteration #3.

N = 4 / Q = 0.5

N = 1 / Q = 0 N = 1 / Q = 1 N = 1 / Q = 1 N = 1 / Q = 0

Δ = 0

(e) Iteration #4.

N = 5 / Q = 0.6

N = 1 / Q = 0 N = 1 / Q = 1 N = 2 / Q = 1 N = 1 / Q = 0

N = 1 / Q = 1

Δ =1

(f) Iteration #5.

Figure 12: 5 iterations of MCTS to the TicTacToe game.
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play the action that leads to the best child of the current game state, i.e., with the child of the root
node with the highest value for Q.

3.3 Improvements and issues

Monte Carlo tree search has motivated a lot of works for a couple of decades. The UCT algo-
rithm proposes an implementation of a MCTS algorithm that enables to take into account the
trade-off between the exploration of few visited parts of the search space and the exploitation of
interesting areas by using a generalization of UCB1, namely UCT, in the Select method. The
MCTS algorithms are aheuristic (i.e., without any knowledge), anytime (i.e., a solution is always
available) and asymmetric (i.e., the expansion of the tree is based on the UCB). In the following,
we present several improvements that have been proposed.

The first issue about MCTS is about the trade-off between exploration and exploitation in the
enumeration of the search space. Indeed, as it is, MCTS tends to explore more than it exploits.
This is partially due to the definition of the UCB but not only. In fact, UCB1 tends to give more
importance of the exploration in the first visits of a node since the second term (exploration)
of its formula is predominant w.r.t. the first term (exploitation). To tackle this issue, Auer
et al. proposed an enhancement of UCB1, called UCB1-Tuned, that reduces the impact of the
exploration term of the UCB1 formula [13]:

UCB1-Tunedps, s1q “ Qps1q `

g

f

f

e

lnNpsq
Nps1q

ˆmin
˜

1
4 , σ

2ps1q `

d

2 lnNpsq
Nps1q

¸

where σ2ps1q is the variance of the rewards obtained by the child s1 of the node s so far. Thus,
the value exploration factor is at least divided by 2, and if the rewards obtained by the child s1

are homogeneous, the impact of the exploration term is much more reduced. It means that even
if an area of the search space has been lightly explored it is not required to explore it more if
the rewards obtained so far during the simulation are similar: We may have a good estimation
of the quality of this area. A second solution to tackle the over exploration with MCTS is to
proceed to a progressive widening [45, 49]: It is not necessary to expand all the children of a node
before selecting one of its children. In other words, when using progressive widening, the function
Select(s) of Algorithm 1 is replaced by the function of Algorithm 2. This method is based on
the following condition that states when it is required to expand the current selected node s based
on the number of visits:

t
b
a

Npsq ` 1u ą t
b
a

Npsqu

where b usually equals 2 or 4. If this condition holds, the node s is returned as the selected node
ssel and another child is expanded. If it does not hold, the Select policy recursively selects
a child of s. In this way, it is possible to exploit interesting solutions before expanding (and
so exploring) all the children of a node. Given enough time, all the children will be considered
and the enumeration would converge to an exhaustive search as well. Now, the question is how to
select the child to expand first. Usually, the enhancement RAVE (Rapid Action Value Estimator)
is used to efficiently estimate which of the children is the most promising [73].

While the previous improvements are about the selection and the expansion of a node in the
tree, now, we discuss about the back propagation of the rewards. Indeed, as presented in the
pseudo code of Algorithm 1, the Update method consists in back propagating both the reward
and the number of visits from the expanded node sexp to the root node. However, in the case of
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Algorithm 2 The Select function using progressive widening.
1: function Select(s)
2: while s is non-terminal do
3: if t b

a

Npsq ` 1u ą t b
a

Npsqu then return s
4: else sÐ BestChild(s)
5: end if
6: end while
7: return s
8: end function

games (e.g., the Tic Tac Toe game), it is possible to update more than only the path from sexp
to the root node. For instance, in Figure 12d that presents the result of the third iteration, the
final game state that is reached during the simulation shows that p1 played in the middle cell of
the third row before playing in the right cell of this row. Thus, it could have been interesting
(and efficient) to not only update the root node and the expanded node of this iteration, but
also the expanded node of the first iteration because this node is the case where p1 plays in the
middle cell of the third row. This enhancement is called All Moves As First (AMAF) and was
introduced by Gelly and Silver [73]. AMAF treats all the actions played during the selection, the
expansion and the simulation as if they were played in a selection step. In other word, a child of
a node selected during the Select method will be updated if the action leading to this child has
been played during the simulation. Besides, Permutation AMAF is an improvement of AMAF in
which the update is done for all the paths that can eventually lead to the same final game state
reached during the simulation [82]. Thus, not only some children are also updated (AMAF), but
completely different paths in the tree are updated if they are permutations that can lead to the
same final game state. Recently, Cazenave proposed the generalized rapid action value estimation
that can use the AMAF values of a parent node if the current node has been lightly explored to
have meaningful AMAF statistics [42].

The characteristics of the MCTS algorithms, where each iteration is independent w.r.t. the
others, make this approach tractable for parallelisation. In this case, parallelisation can provide
great advantages by performing several iterations over the tree in the same time, and thus be able
to quickly and efficiently enumerate the search space. In the state of the art, parallelisation for
MCTS has been studied from different points of view. First, we can proceed to several parallel
simulations from the same expanded node in the tree. This is called leaf parallelisation [46] or at-
the-leaves parallelisation [43]. This allows to sample more efficiently the subspace induced by the
expanded node: Several rewards are back propagated and thus the estimation is more accurate.
Second, a variant, called root parallelisation, was proposed to directly launch several MCTS in
parallel [43, 46]. This enhancement is also called multi-tree MCTS. The information stored in
the children of the root node of each MCTS tree is used to select the best action to play. The
main advantage over the leaf-parallelisation is that each tree is independent and can be stopped
anytime, whereas leaf-parallelisation has to wait for the longer simulation. Lastly, the so-called
tree parallelisation enables to run several iterations on the same search tree [46]. Two variants
of tree parallelisation have been proposed: The first consists in using a global mutex on the tree,
whereas the second uses several local mutexes on each node of the tree. The first one is used
when the simulation are time-consuming w.r.t. the traversal or the update of the tree. The latter
is employed in the general case, when there is no guaranties on the run time of the simulations.
However, the main drawback of tree parallelisation is that several threads can follow the same
path in the tree since the method Select is based on the statistics of the nodes. To tackle this
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problem, Chaslot et al. gives a temporary penalty to the nodes that are selected by a thread to
avoid that they are selected once again by the following threads [46].

3.4 Applications

MCTS algorithms are mainly applied to games, and especially combinatorial games in which
traditional methods of artificial intelligence fail. The game Go has become the new benchmark
dataset to test AI algorithm [98]. Indeed, Go is a traditional 19x19 board game on which 2
players compete against each other. Its branching factor of 250 makes the game Go one of the
most difficult board games to play. Go becomes one of the most used dataset to experiment with
MCTS algorithms. The program MoGo is the first algorithm for Go that employs MCTS [72].
This algorithm uses RAVE to improve the efficiency of the exploration of the search tree. It was
one of the best programs for playing Go. After that, several programs have been proposed. For
instance, the algorithm Fuego, that also uses RAVE, beat a professional Go player. Recently, the
Google’s team Deep Mind has proposed the best program for the game Go, namely AlphaGo,
that is partially based on MCTS [129]. This method combines the UCT algorithm and several
deep learning tasks that enable to reduce the branching factor and the simulation length. This
program beat the professionnal Go player Lee Sedol in March 2016 by winning four among the
five games that have been played.

Gaudel and Sebag formalize feature selection as a one-player game and employ the UCT
algorithm to solve it with their algorithm FUSE (Feature UCT Selection) [71]. This work aims
at selecting the features from a feature space that are the more relevant w.r.t. the classification
problem. For that, Gaudel and Sebag explore the powerset of the features (i.e., itemsets where
the items are the features) with a MCTS method to find the sets of features that minimize the
generalization error. Each node of the tree is a subset of feature, and each action consists of
adding a new feature in the subset of features. The authors focus on reducing the high branching
factor by using UCB1-Tuned and progressive widening with RAVE [73]. The aim of FUSE is thus
to return the best subset of features (the most visited path of the tree), or to rank the features
thanks to the RAVE score.

3.5 Conclusion

Monte Carlo tree search provides an efficient method to explore a huge search space with a high
branching factor. The most famous algorithm, namely UCT, implements a variant of UCB1 that
enables to both explore lightly explored areas of the search space but also to exploit interesting so-
lutions encountered so far. Based on this trade-off between the exploration and the exploitation,
MCTS algorithms exhibit interesting characteristics:

• They are aheuristic: None prior knowledge on the domain is required. The pattern of the
search space is learned incrementally with the number of iterations.

• They are anytime: A solution is always available and the result set keeps on improving with
the time. The exploration converges to an exhaustive search if given enough time.

• The expansion of the tree is asymmetric: Based on the exploration/exploitation trade-off
performed by the UCB, the tree is expanded in an asymmetric manner.

MCTS algorithms are efficient methods for combinatorial games. Recently, the famous AlphaGo
algorithm proposed by the Google’s team Deep Mind, beat professional Go players [129]. Despite
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this highlighting all over the world, MCTS algorithms, to the best of our knowledge, have been
seldomly used for other applications than combinatorial games. Gaudel and Sebag have proposed
an adaptation of UCT to the combinatorial optimisation problem of feature selection [71], but
we are not aware of previous attempts to adapt MCTS to pattern mining while it could improve
significantly pattern enumeration methods. Indeed, the trade-off between the exploration of
few visited parts of the search space and the exploitation of interesting solutions found so far
can lead to the discovery of interesting patterns in large search space. Contrary to traditional
sampling methods, MCTS algorithms are aheuristic, i.e., there is no need to provide a probability
distribution on the pattern space since it is learned incrementally.
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Chapter 4

Monte Carlo Tree Search for
Pattern Mining

4.1 Introduction

Subgroup discovery (SD) is a formal framework that enables to elicit descriptive rules in label
data [142]. One is given a set of objects associated to descriptions (that form a poset) and a
mapping to one or several class labels. A subgroup is a description generalization whose discrim-
inating ability is given by a quality measure (F1-score, accuracy, etc). In the last two decades,
different aspects of SD have been widely studied: The description and target languages (quan-
titative, qualitative, etc.), the algorithms that enable the discovery of the best subgroups, and
the definition of measures that express pattern interestingness. These three points are closely
related. Many of the first approaches were ad hoc solutions lacking from easy implementable
generalizations (see [119, 59] for surveys). SD hence faces two important challenges: How to
define appropriate quality measures characterizing the singularity of a pattern; How to select
an accurate heuristic search technique when an exhaustive enumeration of the pattern space is
unfeasible.

In 2008, Lehman et al. introduced a more general framework called exceptional model mining
(EMM, [104]) that tackles the first issue. EMM aims to find patterns that cover tuples that locally
induce a model that substantially differs from the model of the whole dataset. This framework
extends the classical SD settings and leads to a large class of models (i.e., quality measures) and
applications, e.g., [139, 59, 17, 90]. In a similar fashion to other pattern mining approaches,
SD and EMM select a heuristic search technique when exhaustive enumeration of the pattern
space is unfeasible. The most widely used techniques are beam search [139, 112], evolutionary
algorithms [54], and recently pattern sampling [114, 17]. The main goal of these heuristics is to
drive the search towards the most interesting parts, i.e., the regions of the search space where
patterns maximize a given quality measure (see Chapter 2). However, it often happens that the
best patterns are redundant: They slightly differ in terms of their extent (dually intent). While
several solutions have been proposed to filter out redundant subgroups, e.g., [139, 112], they do
not discuss the choice of a beam search even though it causes this drawback. Indeed, a top-
down level-wise greedy exploration of the patterns with a controlled level width that penalizes
the diversity. Genetic algorithms and pattern sampling techniques are not greedy techniques in
general, but the proposals in SD/EMM also face redundancy and diversity issues (see Chapter 2).
Moreover, heuristic methods should converge to the result set of an exhaustive search (as many
local optima as possible have to be found): They have to maximize the completeness of the result
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set. Thus, there is still the need for implementing new SD/EMM heuristic exploration paradigms
in a way that favors both the patterns diversity (i.e., with less redundancy as possible) and the
completeness in the result set. This is the problem we propose to tackle in the present chapter
through the use of Monte Carlo tree search (MCTS).

MCTS is a search method [36] mainly used in AI for domains, such as games and planning
problems. The strength of MCTS is that it partially explores the search space building a tree in an
incremental and asymmetric manner respecting the exploration/exploitation trade-off provided
by the upper confidence bounds (UCB) [95]. MCTS is based on random simulations that are
rolled out to explore the search space. Then, the expansion of the tree search depends on the
rewards returned by simulations exploiting promising results but also exploring rarely visited
parts of the tree. More importantly, the power of random search of MCTS leads to an any-time
mining approach, in which a solution is always available, and which converges to an exhaustive
search if given enough time and memory. MCTS quickly leads the search towards a diverse
pattern set of high quality. In this context, our claims are the following:

• We formalize SD/EMM with an arbitrary pattern language and an arbitrary quality mea-
sure as a single-turn single-player game,

• We discuss how the four different existing methods of the UCT algorithm (Select, Ex-

pand, RollOut, Update) can be used for a simple description language (itemsets),

• We show how well known notions introduced in the pattern mining literature (DSF enumer-
ation of closed patterns) can be incorporated in a MCTS: It requires to adapt the existing
UCBs,

• We explain how our approach is agnostic of the pattern language and it can be instantiated
for nominal, numerical and heterogeneous patterns,

• We provide an implementation of pattern mining based on Monte Carlo tree search, called
mcts4dm,

• We empirically study our approach on artificial and benchmark data to assess both a better
diversity and a high completeness in the result set. It is also where we compare mcts4dm

with the main EMM/SD available algorithms.

The rest of this chapter is organized as follows. Section 4.2 reminds the main definitions
of SD/EMM and highlights the problem of current search algorithms. Section 4.3 formally in-
troduces SD and EMM as a single-turn single-player game when the patterns are itemsets, and
details several ways rooted in pattern mining to solve it. This section also presents the slight
adaption to consider numerical and heterogeneous patterns in general. Section 4.4 evaluates the
capability of mcts4dm for efficiently finding the most diverse set of interesting patterns of various
types. It is then successfully compared to well-known approaches of the literature in Section 4.5
before to conclude.

4.2 Subgroup Discovery

4.2.1 Definitions

We briefly recall the main definitions and issues of SD that are essential to make this section
self-contained. The definitions of a label data and a subgroup are:

50



4.2. Subgroup Discovery

Table 7: Toy dataset

ID a b c classp.q
1 150 21 11 l1
2 128 29 9 l2
3 136 24 10 l2
4 152 23 11 l3
5 151 27 12 l2
6 142 27 10 l1

Definition 5 (Label dataset). Let O, A and C be respectively a set of objects, a set of attributes,
and a set of class labels. The domain of an attribute a P A is Dompaq where a is either nom-
inal or numerical. Each object is associated to a class label from C through class : O ÞÑ C.
DpO,A, C, classq is a label dataset.

Definition 6 (Subgroup). The description of a subgroup is given by d “ xf1, . . . , f|A|y where
each fi is a restriction on the value domain of the attribute ai P A. The description of a subgroup
corresponds to the pattern in the pattern mining setting. A restriction is either a subset of a
nominal attribute domain, or an interval contained in the domain of a numerical attribute. The
description d covers a set of objects called the extent of the subgroup, denoted extpdq Ď O, and its
support is the number of objects in its extent and is defined by supppdq “ |extpdq|. Note that, in
this thesis, we denote |S| the cardinality of the set S. For simplicity, a subgroup is either given by
its intent, i.e., its description d, or by its extent extpdq.

A quality measure ϕ is used to evaluate a subgroup. The quality measure reflects the differ-
ence between the model induced by the subgroup on the target attribute and the model induced
by the entire label dataset. In SD, the model induced by a set of objects S is the proportion of
objects of S associated to one class label l P C. The choice of the measure depends on the purpose
of the application [68]. Usually, the Weighted Relative Accuracy (WRAcc) is used in SD [102].
Thus, we recall the SD problem:

Problem 2 (The SD problem). Given a label dataset DpO,A, C, classq, a quality measure ϕ,
a minimum support threshold minSupp and an integer k, SD aims at extracting the top-k best
frequent subgroups w.r.t. ϕ. The quality measure ϕ quantifies a deviation between the model
induced by extpdq and O, respectively.

Note that, in the literature, the problem definition of SD can be slightly different from those
we use in this section. Our definition is equivalent to those given in [59] in which we force that
the set of constraints includes the minimum support constraint.

4.2.2 SD algorithmic issues

Definition 8 (Subgroup search space). The set of all descriptions is partially ordered and is
structured as a lattice. We denote s1 ă s2 and say that the subgroup s1 is more specific than the
subgroup s2 if the description of s1 is more specific than the one of s2 w.r.t. the partial order (s2
is more general than s1). For instance, xr23 ď b ď 29sy is more general than xr128 ď a ď 151s, r23 ď
b ď 29sy. Most of the SD/EMM algorithms exploit the lattice of subgroups.

51



Chapter 4. Monte Carlo Tree Search for Pattern Mining
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(a) Redundancy problem. (b) Beam search.
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Figure 6: Illustration of the different SD search algorithms.

128 ≤ a ≤ 152
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

136 ≤ a ≤ 152
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128 ≤ a ≤ 151
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128 ≤ a ≤ 152
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128 ≤ a ≤ 152
21 ≤ b ≤ 27
  9 ≤  c  ≤ 12

128 ≤ a ≤ 152
21 ≤ b ≤ 29
10 ≤  c  ≤ 12

128 ≤ a ≤ 152
21 ≤ b ≤ 29
  9 ≤  c  ≤ 11

136 ≤ a ≤ 152
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128 ≤ a ≤ 151
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128 ≤ a ≤ 152
24 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128 ≤ a ≤ 152
23 ≤ b ≤ 27
  9 ≤  c  ≤ 12

128 ≤ a ≤ 152
23 ≤ b ≤ 29
10 ≤  c  ≤ 12

128 ≤ a ≤ 152
23 ≤ b ≤ 29
  9 ≤  c  ≤ 11

Figure 10: The upper part of the search space for data of Table 7.

Example 13. To easily recover the figures, we recall the toy label dataset in Table 7 and the
lattice given in Figure 10 in the following page. Note that, the domain of a numerical attribute
is finite because during the exploration we only consider intervals whose bounds are the values
taken in the data. Thus, for each numerical attribute, there are at most |O| different values, i.e.,
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a different one for each object. For each subgroup given by its description, there are 6 possible
children: Increasing the lower bound or decreasing the upper bound for each numerical attribute.
The top node is the more general description of the subgroups search space: Its extent is O. In
the following we consider the lattice of the subgroups as depicted in Figure 6. The nodes (circles)
are the subgroups. The local optima (red circles) are the best subgroups w.r.t. the quality measure
to extract. The minimum support threshold (green curve) delimits the border between the frequent
subgroups and the others. Here, SD aims at extracting the result set containing all the best
frequent subgroups (red circles above the green curve) and only them (depending on k).

Issue 1 (Redundancy/Diversity). The quality measure of a subgroup close to a local optimum
s˚ in the lattice is similar to – but lower than – the quality measure of s˚: A slight change in
the description of a subgroup s close to s˚ induces – in general – a slight change of the extent of
s compared to those of s˚. It is desirable to avoid extracting the redundant subgroups close to a
local optimum: This is the redundancy problem. Figure 6a depicts this phenomena where around
each local optimum there is an area that contains redundant subgroups. Several solutions have
been proposed for filtering the result set (or, e.g., the beam at each level of a beam search) [139] by
using a similarity measure between patterns (on their support or descriptions) or using heuristic
algorithms [35]. In our work, we will use the most popular similarity measure based on the
similarity of the extents. Given two subgroups s1 and s2, the similarity measure between s1 and
s2 is given by the Jaccard coefficient of their extent:

simps1, s2q “
|extps1q X extps2q|

|extps1q Y extps2q|

Thus, the similarity constraint ensures that given a maximal similarity threshold Θ P r0, 1s, for
all subgroups s1, s2 in the result set, simps1, s2q ď Θ.

Issue 2 (Completeness). When a dataset is too large, an exhaustive exploration of the search
space is unfeasible. A heuristic such as beam search allows to explore only a little part of the
search space based on a faster but greedy strategy (see Figure 6b). However, beam search comes
also with its disadvantages: If some local optima are far away from the root node in the lattice, it is
possible that the first levels leading to these optima are weak w.r.t. the quality measure, such that
they will be ignored in the search. Sampling method is another popular heuristic approach used
in SD/EMM (see Figure 6c). Samplings are based on a probability distribution over the subgroup
space that gives more chance to an interesting subgroup to be drawn. Nevertheless, due to the
long tail problem (many more subgroups are uninteresting than interesting) lots of uninteresting
patterns might be drawn and interesting subgroups might be missed. Completeness entails the
notion that all optima should be present in the pattern set result.

One can now define the problem of pattern set enumeration in SD.

Problem 4 (Pattern set discovery). Given DpO,A, C, classq, a quality measure ϕ, a mini-
mum support threshold minSupp, a similarity measure sim, a maximum similarity threshold
Θ, an integer k, compute a set of the top-k best patterns w.r.t. ϕ that has as little redundancy
(simps1, s2q ď Θ, for all s1, s2 in the result set) and is as complete as possible.

4.3 Pattern mining with MCTS

As previously stated, the problem of SD/EMM consists of finding the frequent patterns that
maximize a quality measure ϕ. Let S be the set of all possible patterns. S is ordered thanks to a
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specialization/generalization hierarchy, a poset pS,ăq which is generally a lattice. The principle
of solving the SD/EMM problem with a MCTS is based on the following:

• S corresponds to the set of game states. Each state, or pattern or node of the tree, is given
an extent extpsq, a support supppsq and a quality measure ϕpsq. Moreover, we recall that
the MCTS method requires that each node is provided with two values: The number of
times the node s has been visited Npsq, and the average quality of the simulation walked
through s so far Qpsq. The initial game state s0 P S, root of tree, is the most general
pattern.

• The actions for generating new game states are defined as pattern restrictions (for deriving
pattern specializations/refinements).

• A simulation is a random sequence of actions, or pattern restrictions. A leaf is a maximal
frequent pattern, i.e., any of its specializations is infrequent.

Designing a MCTS approach for a pattern mining problem is different than for a combinato-
rial game. The goal is not to decide, at each turn, what is the best action to play, but to explore
the search space of patterns with the benefit of the exploitation/exploration trade-off and the
tree that is stored in memory. Consequently, we consider SD/EMM as a single-turn single-player
game.

For sake of simplicity, we consider in this section the most simple type of patterns: Itemsets.
Obviously, most of our claims are given in the most generic form and can be slightly translated to
consider other types of patterns. However, for some definitions, we discuss the case of nominal and
numerical attributes. In our experiments, we deal jointly with itemsets, nominal and numerical
attributes.

Problem 5 (EMM when descriptions are itemsets). Let I be a set of items. A transaction is a
subset of items t Ď I. A transaction database is a set of transactions T “ tt1, ..., tnu. An itemset
is an arbitrary subset of items p Ď I. Its extent is given by extppq “ tt P T |p Ď tu, and its support
is suppppq “ |extppq|. Its evaluation measure ϕppq depends on the quality measure chosen in the
EMM instance. The problem is to find the best itemsets w.r.t ϕ.

It follows that the search space is given by S “ p2I ,Ďq. The initial pattern is the empty set:
s0 “ H. The actions that lead to specializations, or supersets, are the items I. A simulation is
a random sequence of item additions. We are now able to specify the strategies of the four steps
of the UCT algorithm especially tuned for a SD/EMM problem. Figure 6d is the exploration
performed by the MCTS in the lattice of subgroups. Due to the exploration/exploitation trade-
off embedded by MCTS, it suggests both a high diversity and a high completeness in the result
set if given enough budget (i.e., enough iterations).

4.3.1 The Select method

The Select method consists of selecting the most promising node ssel in terms of exploration
vs. exploitation. For that, the well-known UCT and UCB1 (UCT with Cp “ 1{2) can be used
in our settings. However, more sophisticated UCBs have been designed for single player games.
The single-player MCTS (SP-MCTS [128]) adds a third term to the UCB to take into account
the variance σ2 of the rewards obtained by the child so far. SP-MCTS of a child s1 of a node s is:

SP-MCTSps, s1q “ Qps1q ` C

d

2 lnNpsq
Nps1q

`

d

σ2ps1q `
D

Nps1q
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where the constant C is used to weight the exploration term (it is fixed to 0.5 in its original defini-
tion [128]) and the term D

Nps1q inflates the standard deviation for infrequently visited children (D
is also a constant). In this way, the reward of a rarely visited node is considered as less certain: It
is still required to explore it to get a more precise estimate of its variance. If the variance is still
high, it means that the subspace from this node is not homogeneous w.r.t. the quality measure
and then further exploration is needed.

Also, UCB1-Tuned [13] is designed to reduce the impact of the exploration term of the original
UCB1 by weighting it with either an approximation of the variance of the rewards obtained so
far or the factor 1{4. UCB1-Tuned of a child s1 of s is:

UCB1-Tunedps, s1q “ Qps1q `

g

f

f

e

lnNpsq
Nps1q

min p14 , σ
2ps1q `

d

2 lnNpsq
Nps1q

q

If required, the pattern evaluation measure ϕ can be normalized (e.g., for UCT).

4.3.2 The Expand method

The Expand step consists in adding a new node in the search tree. In the following, we present
different refinement operators, and how to avoid duplicate nodes in the search tree.

The refinement operators

The simple way to expand the selected node ssel is to choose uniformly an available attribute
w.r.t. ssel, that is to specialize ssel into sexp such that sexp ă ssel: sexp is a refinement of ssel.

Definition 9 (Refinement operator). A refinement operator is a function ref : S Ñ 2S that
derives from a pattern s a set of more specific patterns ref psq such that:

• (i) @s1 P ref psq, s1 ă s

• (ii)@s1i, s
1
j P ref psq, i ‰ j, s1i ł s1j , s

1
j ł s1i

The extent of a refined pattern s1 P ref psq is included in the extent of the pattern s. Formally,
@si P ref psq, extps1q Ď extpsq. Then, suppps1q ď supppsq. This is a basic property known as
anti-monotonicity of the support.

In other words, a refinement operator gives to any pattern s a set of its specializations, that
are pairwise incomparable (an anti-chain). The refine operation can be implemented in various
ways given the kind of patterns we are dealing with. Most importantly, it can return all the direct
specializations only to ensure that the exploration will, if given enough budget, explore the whole
search space of patterns. Furthermore, it is unnecessary to generate infrequent patterns.

Definition 10 (Direct-refinement operator). A direct refinement operator is a refinement oper-
ator directRef : S Ñ 2S that derives from a pattern s the set of direct more specific patterns s1

such that:

• (i) @s1 P directRef psq, s1 ă s

• (ii) Es2 P S s.t. s1 ă s2 ă s

• (iii) For any s1 P directRef psq, s1 is frequent, that is suppps1q ě minSupp
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Example 14. First, let us consider EMM when descriptions are itemsets and a pattern s. The
direct-refinement operator is given by directRef psq “ ts Y i | i P pIzsqu. There are at most
|A| “ |I| children for a pattern s in the search tree. Second, when dealing with nominal attributes,
for each nominal attribute a P A, we can derive |Dompaq| different children: One for each
available value of the attribute a. For a pattern s, the direct-refinement operator is directRef psq “
ts Y rai “ vjs | ai P pAzAttrpsqq ^ vj P Dompaiqu, where Attrpsq is the set of attributes already
used in the effective restrictions of s. Finally, for numerical attributes, we can derive two direct-
refined subgroups for each numerical attribute: Applying the minimal left change (increasing the
lower bound of the interval to the next higher value taken in the data) and the minimal right
change (decreasing the upper bound of the interval to the next lower value taken in the data) [88].
Thus, there are at most 2ˆ |A| children for a pattern s in the search tree.

Definition 11 (The direct-expand strategy). We define the direct-expand strategy as follows:
From the selected node ssel, we randomly pick a – not yet expanded – node sexp from directRefpsselq
and we add it in the search tree.

Below, we propose two different strategies that address the usual problem in pattern mining:
A pattern ssel can be expanded into a node sexp with the same extent. Most quality measures
ϕ used in SD and EMM are solely based on the extent of the patterns [59, 90]. However, with
the direct-refinement operator, a large number of tree nodes may have the same extent (and
thus the same support) as their parent, hence the same quality measure value. This redundancy
may bias the exploration and more iterations will be required. For that, we propose to use the
notion of closed patterns and their generators. The following definition overrides Definition 2 and
Definition 3 considering the generic lattice structure pS,ăq:

Definition 12 (Closed descriptions and their generators). The equivalence class of an pattern
s is given by rss “ ts1 P S | extpsq “ extps1qu. Each equivalence class has a unique smallest
element w.r.t. ă that is called the closed pattern: s is said to be closed iff Es1 such that s1 ă s and
extpsq “ extps1q. The non-closed patterns are called generators.

Definition 13 (Generator-refinement operator). A generator refinement operator is a refinement
operator genRef : S Ñ 2S that derives from a pattern s the set of more specific patterns s1 such
that:

• (i) @s1 P genRef psq, s1 R rss

• (ii) Es2 P SzgenRef psq s.t.

– s2 R rss,

– s2 R rs1s, and

– s1 ă s2 ă s

• (iii) For any s1 P genRef psq, s1 is frequent, that is suppps1q ě minSupp

Example 15. For itemsets and nominal attributes, the generator-refinement operator of a pat-
tern s is given by: genRef psq “ ts1 P directRef psq | suppps1q ‰ supppsqu. In other words, with
the generator-refinement operator, the children of a pattern s are the direct-refined patterns that
are not in the same equivalence class than s. For numerical attributes, the generator-refinement
operator still derives two refined patterns for each attribute: Iteratively applying minimal left
(resp. right) changes until the support changes.
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Definition 14 (The gen-expand strategy). To avoid the exploration of patterns with the same
extent in a branch of the tree, we define the gen-expand strategy as follows: From the selected
node ssel, we randomly pick a – not yet expanded – refined pattern from genRef psselq, called sexp,
and add it to the search tree.

Besides, when facing a SD problem whose aim is to characterize a label l P C we can implement
an extension of the previous refinement operator based on generators on the extents of both the
subgroup and the label.

Definition 15 (Label-refinement operator). A label refinement operator w.r.t. l P C is a refine-
ment operator labRef : S Ñ 2S that derives from a pattern s the set of more specific patterns s1

such that:

• (i) @s1 P labRef psq, extlps1q ‰ extlpsq, with extlpsq “ to P extpsq | classpoq “ lu

• (ii) Es2 P SzlabRef psq s.t.

– extlps
2q ‰ extlpsq,

– extlps
2q ‰ extlps

1q, and

– s1 ă s2 ă s

• (iii) For any s1 P labRef psq, s1 is frequent, that is suppps1q ě minSupp

Example 16. For itemsets and nominal attributes, the label-refinement operator of a pattern
s w.r.t. the label l P C is given by: labRef psq “ ts1 P genRef psq | supplps1q ‰ supplpsqu.
For numerical attributes, the label-refinement operator still derives two refined patterns for each
attribute: Iteratively applying minimal left (resp. right) changes until the number of objects in
the extent associated to l is changed.

Definition 16 (The label-expand strategy). From the selected node ssel, when facing a SD prob-
lem, the label-expand strategy consists in randomly picking a – not yet expanded – refined pattern
from labRef psselq, called sexp, and adding it to the search tree.

Avoiding duplicates in the search tree

Previously, we defined several refinement operators to avoid the redundancy within a branch of
the tree, i.e., do not expand ssel with a pattern whose extent is the same because the quality mea-
sures ϕ will be equal. However, another redundancy issue remains at the tree scale. Indeed, since
the pattern search space is a lattice, a pattern can be generated in nodes in different branches of
the Monte Carlo tree, that is, with different sequences of actions. For example, with I “ ta, b, cu,
all permutations of the sequence xa, b, cy could be generated. As such, it will happen that a part
of the search space is sampled several times in different branches of the tree. However, the visit
count Npsq of a node s will not count visits of other nodes that depict exactly the same pattern:
The UCB is biased. To tackle this aspect, we implement two methods: (i) Using a lectic order
or (ii) detecting and unifying the duplicates within the tree. These two solutions can be used for
any refinement operator. Note that, enabling both these solutions is useless since each of them
ensures to avoid duplicates within the tree.

Lectic order (LO). A solution is to generate each pattern only once. The visit count should
be then adapted accordingly. First we detail the enumeration procedure. Then, we show how to
adapt the visit count in the computation of the UCB.
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Pattern enumeration without duplicate is at the core of constraint-based pattern-mining [33]:
The goal of exhaustive search is to output the correct, complete and non-redundant collection of
patterns. Most of the time, such a non-redundant exploration is based on a total order on the set
of attribute restrictions. This poset is written by pA,Ìq.

Example 17. For itemset patterns, A “ I and a lectic order is chosen on I. Usually, it is the
lexicographic order, e.g., a Ì b Ì c Ì d for A “ ta, b, c, du: Thus, for example, bc Ì ad. A
complete and non redundant enumeration of all patterns is then direct. Consider that a node s
has been generated with a restriction ai: We can expand the node only with restrictions aj such
that ai Ì aj. This total order also holds for numerical attributes by considering the minimal
changes (see the work of Kaytoue et al. for further details [88]).

We can use this technique to enumerate the lattice with a depth-first search (DFS), which
ensures that each element of the search-space is visited exactly once. An example is given in
Figure 13. However, it induces a strong bias: An MCTS algorithm would sample this tree instead
of sampling the pattern search space. In other words, a small restriction w.r.t. Ì has much less
chances to be picked than a largest one. Going back to the example in Figure 13 (middle), the
item a can be draw only once through a complete DFS; b twice; while c four times (in bold).
It follows that patterns on the left hand side of the tree have less chances to be generated, e.g.,
probpta, buq “ 1{6 while probptb, cuq “ 1{3. These two itemsets should however have the same
chances to be picked as they have the same size. This disequilibrium can be corrected by weighting
the visit counts in the UCT with the normalized exploration rate (see Figure 13 (right)).

Definition 17 (Normalized exploration rate). Let S be the set of all possible patterns. The
normalized exploration rate of a pattern s is:

ρnormpsq “
Vtotalpsq

Vlecticpsq
“

|ts1|s1 ă s P Su|
|ts1|s Ì s1 ^ s1 ă s P Su|

From this normalized exploration rate we can adapt the UCBs when enabling the lectic order.
For example, we can define the DFS-UCT of a child s1 of a pattern s derived from the UCT as
follows:

DFS-UCTps, s1q “ Qps1q ` 2Cp

d

2 ln pNpsq ¨ ρnormpsqq
Nps1q ¨ ρnormps1q

Proposition 1 (Normalized exploration rate for itemsets). For itemsets, let si be the child of s
obtained by playing action ai and i is the rank of ai in pA,Ìq: ρnormpsiq “ 2p|I|´|si|q

2p|I|´i´1q .

Proof. Let Vlecticpsiq be the size of the search space sampled under si using a lectic enumeration,
and Vtotalpsiq be the size of the search space without using a lectic enumeration. The exploration
rate is thus given by ρpsiq “

NpsiqˆVtotalpsiq

Vlecticpsiq
. Thus, ρnormpsiq “

Vtotalpsiq

Vlecticpsiq
where Vtotalpsiq “

2p|I|´|si|q and Vlecticpsiq “ 2p|I|´i´1q for itemsets.

Proposition 2 (Normalized exploration rate for a numerical attribute). For a single numerical
attribute a, ρnormp.q is defined as follows :

• Let s1 “ xαi ď a ď αjy obtained after a left change: ρnormps1q “ 1.

• Let s1 “ xαi ď a ď αjy obtained after a right change. Let n be the number of values from
Dompaq in rαi, αjs: ρnormps1q “ n`1

2 .
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Figure 13: Search space as a lattice (left), DFS of the search space (middle), and the principles of
the normalized exploration rate.

Proof. As explained in the proof of the DFS-UCT for itemsets (Proposition 1), ρnormpsq “
Vtotalpsq
Vlecticpsq

. For a numerical attribute, Vtotalpsq “ npn ` 1q{2, i.e. the number of all sub inter-
vals. If s was obtained after a left change, Vlecticpsq “ npn ` 1q{2 as both left and right changes
can be applied. If s was obtained after a right change, Vlecticpsq “ n, as only n right changes
can be applied. It follows that ρnormpsq “

npn`1q{2
npn`1q{2 “ 1 if s was obtained from a left change and

ρnormpsq “
npn`1q{2

n “ n`1
2 otherwise.

Permutation unification (PU). The permutation unification is a solution that allows to keep
a unique node for all duplicates of a pattern that can be expanded within several branches of the
tree. This is inspired from Permutation AMAF, a method used in traditional MCTS algorithm
to update all the nodes that can be concerned by a play-out [82]. A unified node no longer has a
single parent but a list of all duplicates’ parent. This list will be used when back-propagating a
reward.

This is made precise in Algorithm 3. Consider that the node sexp has been chosen as an
expansion of the selected node ssel. The tree generated so far is explored for finding sexp elsewhere
in the tree: If sexp is not found, we proceed as usual; otherwise sexp becomes a pointer to the
duplicate node in the tree. In our MCTS implementation, we will simply use a hash map to store
each pattern and the node in which is has been firstly encountered.

Algorithm 3 The permutation unification principle.
1: H Ð new Hashmap()
2: function Expand(ssel)
3: randomly choose sexp from non expanded children of ssel

4: if pnodeÐ H.getpsexpqq “ null then
5: node.parents.addpsselq

6: sexp Ð node
7: else
8: sexp.parentsÐ new List()
9: sexp.parents.addpsselq

10: H.putpsexp, sexpq Ź A pointer on the unique occurrence of sexp

11: end if
12: add new child sexp to ssel in the tree Ź Expand ssel with sexp

13: return sexp

14:end function
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4.3.3 The RollOut method

From the expanded node sexp a simulation is run (RollOut). With standard MCTS, a simula-
tion is a random sequence of actions that leads to a terminal node: A game state from which a
reward can be computed (win/loss). In our settings, it is not only the leaves that can be evalu-
ated, but any pattern s encountered during the simulation is given with its quality measure ϕpsq.
Thus, we propose to define the notion of path (the simulation) and reward computation (which
nodes are evaluated and how these different rewards are aggregated) separately.

Definition 18 (Path Policy). Let s1 the node from which a simulation has to be run (i.e.,
s1 “ sexp). Let n ě 1 P N, we define a path pps1, snq “ ts1, . . . , snu as an ordered list of patterns
starting from s1 and ending with sn such that: @i P t1, . . . , n´ 1u, si`1 is a refined pattern of si.
We denote Pps1, snq the set of all possible paths from s1 to sn.

• naive-roll-out: A path length n is randomly picked in p1, ..., pathLengthq where pathLength
is given by the user (pathLength “ |I| by default) using the direct refinement operator.

• direct-freq-roll-out: The path is extended with a randomly chosen restriction until it meets
an infrequent pattern sn`1 using the direct refinement operator. sn is a leaf of the tree in
our settings.

• large-freq-roll-out overrides the direct-freq-roll-out by using specializations that are not nec-
essarily direct. Several actions are added instead of one to create a new element of the path.
The number of added actions is randomly picked in p1, ..., jumpLengthq where jumpLength
is given by the user (jumpLength “ 1 gives the previous policy). A jump of m direct re-
finements only requires to explore once the data, whereas m successive direct refinements
require to explore m times the data. Thus, this policy will drastically reduce the simulation
times yet still properly exploring parts of the search space.

Definition 19 (Reward Aggregation Policy). Let s1 the node from which a simulation has been
run and pps1, snq the associated random path. Let E Ď pps1, snq be the subset of nodes to be
evaluated. The aggregated reward of the simulation is given by: ∆ “ aggrptϕpqq@q P Euq P r0; 1s
where aggr is a aggregation function. We define several reward aggregation policies:

• terminal-reward: E “ tsnu and aggr is the identity function.

• random-reward: E “ tsiu with a random 1 ď i ď n and aggr the identity function.

• max-reward: E “ pps1, snq and aggr is the maxp.q function

• mean-reward: E “ pps1, snq and aggr is the meanp.q function.

• top-k-mean-reward: E “ top-kppps1, snqq, aggr is the meanp.q function and top-k(X) returns
the k elements with the highest ϕ.

A basic MCTS forgets any state encountered during a simulation. This is not optimal for
single player games [22]: A pattern with a high ϕ should not be forgotten as we might not expand
the tree enough to reach it. We propose several memory strategies for our concern.

Definition 20 (Roll-out Memory Policy). A roll-out memory policy specifies which of the nodes
of the path p “ ps1, snq shall be kept in an auxiliary data structure M .

• no-memory: Any pattern in E is forgotten.

• all-memory: All evaluated patterns in E are kept.

• top-k-memory: A list M stores the best k patterns in E w.r.t. ϕp.q.
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4.3.4 The Update method

The back-propagation method updates the tree according to a simulation. Let ssel be the selected
node and sexp its expansion from which the simulation is run: This step aims at updating the
estimation Qp.q and the number of visits Np.q of each parent of sexp recursively. Note that sexp
may have several parents when we enable the permutation unification. The number of visits Np.q
is always incremented by one. We consider three ways of updating Qp.q:

• mean-update: Qp.q is the average of the rewards ∆ back-propagated through the node so
far (basic MCTS).

• max-update: Qp.q is the maximum reward ∆ back-propagated through the node so far. This
strategy allows to identify a local optimum within a part of the search space that contains
most of uninteresting patterns. Thus, it gives more chance for this area to be exploited in
the next iterations.

• top-k-mean-update: Qp.q average of the k best rewards ∆ back-propagated through the node
so far. It gives a stronger impact for the parts of the search space containing several local
optima.

We introduced the max-update and top-k-mean-update policies as it may often happen that
high-quality subgroups are rare and scattered in the search space. The mean value of rewards
from simulations would converge towards 0 (there are too many low quality subgroups), whereas
the maximum value (and top-k average) of rewards enables to identify the promising parts of the
search space.

4.3.5 Search end and result output

Once the computational budget is reached, or when the tree is fully expanded, the search is
stopped. The number of tree nodes equals the number of iterations that have been performed. It
remains now to explore this tree and the data structure M built by the memory policy to output
the list of diverse and non-redundant subgroups.

Let P “ T YM be a pool of patterns, where T is the set of patterns stored in the nodes of the
tree. The set P is totally sorted w.r.t. ϕ in a list ι. Thus, we have to pick the k-best diverse and
non-redundant subgroups within this huge pool of nodes ι to return the result set of subgroups
R Ď P. For that, we develop a post-processing approach that filters out redundant subgroups
from the diverse pool of patterns ι based on the similarity measure sim and the maximum simi-
larity threshold Θ. Recursively, we poll (and remove) the best subgroup s˚ from ι, and we add s˚

to R if it is not redundant with any subgroup in R.
This post processing for removing redundancy is often used in the SD/EMM literature [139,

112]. It requires however that the pool of patterns has a reasonable cardinality which may be
problematic with MCTS. The allowed budget always enables such post-processing in our experi-
ments (up to one million iterations).

4.4 How to setup Mcts4Dm?

We first present datasets used for the evaluation of SD and EMM methods in the literature and
we propose an artificial data generator that allows to generate datasets with a controlled insertion
of interesting patterns. We then experiment with our approach and we report its effectiveness.
The experiments were carried out on an Intel Core i7 CPU 2.2 Ghz machine with 16 GB RAM
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Name # Objects # Attributes Type of attributes Target attribute
BreastCancer 699 9 Numeric Benign

Cal500 502 68 Numeric Angry-Agressive
Emotions 594 72 Numeric Amazed-suprised

Ionosphere 352 35 Numeric Good
Iris 150 4 Numeric Iris-setosa

Mushroom 8,124 22 Nominal Poisonous
Nursery 12,961 8 Nominal class=priority

TicTacToe 958 9 Nominal Positive
Yeast 2,417 103 Numeric Class1

Table 9: Benchmark datasets experimented on in the SD and EMM literature.

running under macOS Sierra. To ensure the reproducibility of our results, we made our code
and data publicly available7. Our MCTS implementation for pattern mining, called mcts4dm is
written in Java and is provided with a configuration file to choose any of the strategies introduced
in this chapter.

4.4.1 Artificial data generator and benchmark datasets

The main goal of this work is to propose a heuristic approach that is able to output a diverse set
of patterns. To evaluate our approach, a ground-truth is needed: All subgroups of a dataset shall
be known beforehand such that heuristic search result could be then evaluated. Such a ground-
truth is however available only if one is able to run and terminate an exhaustive search, which
limits the type of data to be experimented with. Accordingly, we propose (i) to take into account
benchmark data for which an exhaustive search is possible, and (ii) to generate artificial data in
which interesting subgroups are hidden in noise and other frequent patterns (i.e., a ground-truth
is known). In Section 4.5.3 we present a large real life dataset to assess the efficiency of mcts4dm

when an exhaustive search is not tractable.
Firstly, we gathered the benchmark datasets used in the recent literature of SD and EMM

[139, 57, 137, 138, 60]. Table 9 lists them, mainly taken from the UCI repository, and their
properties. Secondly, we adapted the artificial data generator given in [90] in which the authors
considered an EMM task where the target is a subgraph induced by a subgroup. We modify
their generator to produce a dataset with nominal attributes and a binary target (positive and
negative class labels).

More specifically, the generator takes the parameters given in Table 10 and works as follows.
A numerical object/attribute data table is generated with an additional binary attribute: The
target taking a positive or negative value. The number of objects, attributes and attributes
values are controlled with the parameters nb_obj, nb_attr and domain_size. Our goal is to hide
nb_patterns patterns in noise, so we generate random descriptions of random lengths Ground “
tdi | i P r1, nb_patternssu. For each pattern, we generate pattern_sup objects positively labeled
with a probability of 1´ noise_rate to be covered by the description di, and noise_rate for not
being covered. We also add pattern_sup ˆ out_factor negative examples for the pattern di: It
will allow patterns with different quality measures (here the WRAcc). Finally, we add random
objects until we reach a maximum number of transactions nb_obj.

4.4.2 Experimental framework

We perform a large pool of experiments to assess this new exploration method for pattern min-
ing. For that, we have designed an experimental framework that enables to test the different

7https://github.com/guillaume-bosc/MCTS4DM
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Name Description Psmall Pmedium Plarge

nb_obj Number of objects 2,000 20,000 50,000
nb_attr Number of attributes 5 5 25

domain_size Domain size per attribute 10 20 50
nb_patterns Number of hidden patterns 3 5 25
pattern_sup Support of each hidden pattern 100 100 100
out_factor Proba. of a pattern labeled ´ 0.1 0.1 0.1
noise_rate Proba. of a object to be noisy 0.1 0.1 0.1

Table 10: Parameters of the artificial data generator.

combinations of factors for all the strategies we introduced in previous sections. Each experiment
are run on the nine benchmark datasets. An experiment consists in varying a unique strategy
parameter while the others are fixed. Since mcts4dm uses random choices, each experiment is
run five times and only the mean of the results is discussed.

The default parameters. For each benchmark dataset, we provide a set of default param-
eters. Indeed, due to the specific characteristics of each dataset, a common set of default pa-
rameters is unsuitable. Table 10 displays the default parameters for each dataset. However, all
datasets share a subset of common parameters:

• The maximum size of the result set is set to maxOutput “ 50.

• The maximum similarity threshold is set to Θ “ 0.7.

• The maximum description length is set to maxLength “ 5.

• The quality measure used is ϕ “ WRAcc. Note that for each dataset, the experiments
consist in finding subgroups deviating on the first target label.

• The SP-MCTS is used as the default UCB.

• The permutation unification (PU) strategy is used by default.

• The refinement operator for the Expand method is set to tuned-min-gen-expand.

• The direct-freq-roll-out strategy is used for the RollOut method

• The reward aggregation policy is set to max-reward.

• The memory policy is set to top-1-memory.

• The update policy is set to max-udpate.

The list of experiments. Evaluating mcts4dm is performed by means of seven different
batches of experiments:

• Section 4.4.3 is about the choice of UCB.

• Section 4.4.4 deals with the several strategies for Expand .

• Section 4.4.5 presents the leverage of all the possibilities for RollOut.

• Section 4.4.6 shows out the impact of the Memory strategy.
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• Section 4.4.7 compares the behaviors of all the strategies for Update.

• Section 4.4.8 performs the experiments when varying the computational budget, namely
the number of iterations.

• Section 4.4.9 experiments with the completeness of mcts4dm on artificial data when vary-
ing the number of iterations.

For simplicity and convenience, for each experiment we display the same batch of figures. For each
dataset we show (i) the boxplots of the quality measure ϕ of the subgroups in the result set, (ii)
the histograms of the runtime and (iii) the boxplots of the description length of the subgroups in
the result set depending on the strategies that are used. In this way, the impacts of the strategies
are easy to understand.

4.4.3 The Select method

The choice of the UCB is decisive, because it handles the exploration / exploitation trade-off.
Indeed, the UCB chooses which part of the search tree will be expanded and explored. We
presented four existing UCBs and we introduced a new one based on the normalized exploration
rate to take into account a partial order on the subgroups. Experimenting with these different
UCBs has to be done when selecting the exploration method. In fact, we showed that there exists
different nodes within the search tree that are exactly the same ones (the search space is explored
as a tree but it is a lattice). Handling such a redundancy can be done with either permutation
unification (PU) or using a lectic order (LO). Thus, Figure 14(bottom) presents all the strategies
we experimented. Comparing the runtime for all the strategies leads to conclude that there is no
impact when computing the several UCBs (see Figure 14(a)). Indeed, the impact of the UCBs
lies in its computation. However, we can notice that when LO is used, the runtime is lower. This
result is expected because with LO, the search space is less large since there is no redundant
subgroups.

Figure 14(b) depicts the boxplots of the quality measure of the result set when varying the
UCB. The results suggest that the UCB1-Tuned and DFS-UCT lead to weaker quality results for
several datasets: On the Cal550, Emotions and Yeast datasets, the quality measures of the result
sets are worse than the results of other UCBs (see, e.g., Figure 14(b)). This is due to the fact
that the search space of these datasets is larger than the others with many local optima, and the
UCB1-Tuned is designed to explore less, thus less local optima are found. Besides, the SP-MCTS
seems to be more suitable for SD problems: The quality is slightly better than other UCBs for

Dataset minSupp # iterations Path Policy
BreastCancer 10 50k large-freq-roll-out (jumpLength “ 30)

Cal500 10 100k large-freq-roll-out (jumpLength “ 30)
Emotions 10 100k large-freq-roll-out (jumpLength “ 30)

Ionosphere 10 50k large-freq-roll-out (jumpLength “ 30)
Iris 10 50k large-freq-roll-out (jumpLength “ 30)

Mushroom 30 50k direct-freq-roll-out
Nursery 50 100k direct-freq-roll-out

TicTacToe 10 100k direct-freq-roll-out
Yeast 20 100k large-freq-roll-out (jumpLength “ 30)

Table 11: The default parameters for each dataset.
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Figure 14: Impact of the Select strategy.

the BreastCancer and Emotions datasets. LO leads to a worse quality in the result set, whereas
PU seems to be more efficient.

The use of these different UCBs has no impact on the description length of the subgroups
within the result set. For some datasets, the permutation unification leads to longer descriptions
(see for instance Figure 14(c)).

4.4.4 The Expand method

Considering the Expand method, we introduced three different refinement operators, namely
direct-expand, gen-expand and label-expand, and we presented two methods, namely LO and PU,
to take into account that several nodes in the search tree are exactly the same. The several
strategies are given in Figure 15(bottom). Let us consider the leverage on the runtime of these
strategies in Figure 15(a). Once again, using LO implies a decrease of the runtime. Conversely,
PU requires more time to run. There is very little difference in the runtime when varying the
refinement operator: direct-expand is the faster one, and label-expand is more time consuming.

Considering the quality of the result set varying the expand strategies, we can assume that
the impact differs w.r.t. the dataset (see Figure 15(b)). Surprisingly, LO improves the quality of
the result set for some datasets (e.g., the Iris dataset in Figure 15(b)). This contradicts what we
observe in the Emotions dataset in Section 4.4.3. More generally, the results using label-expand
are better than other ones in most of the datasets.

The description length of the extracted subgroups are quite constant when varying the Ex-

pand strategies (see Figure 15(c)). With LO, the description lengths are slightly smaller than
with other strategies.

4.4.5 The RollOut method

For the RollOut step, we derived several strategies that combine the path policy and the reward
aggregation policy in Table 12. Clearly, the experiments show that the runs using the direct re-
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finement operator (naive-roll-out and direct-freq-roll-out) are time consuming (see Figure 16(a)).
In the BreastCancer data, the runtime is twice longer with the direct refinement operator than
with the large-freq-roll-out path policy. In other datasets (e.g., Ionosphere or Yeast), the runtime
is even more than 3 minutes (if the run lasts more than 3 minutes to perform the number of
iterations, the run is ignored). Besides, it is clear that the random-reward aggregation policy is
less time consuming than other strategies. Indeed, with random-reward, the measure of only one
subgroup within the path is computed, thus it is faster.

Figure 16(b) is about the quality of the result set. The naive-roll-out and direct-freq-roll-out
path policies lead to the worst results. Besides, the quality of the result set decreases with the
random-reward reward aggregation policy in other datasets (e.g., Emotions). Basically, these
strategies evaluate only random nodes and thus they are not able to identify the promising parts
of the search space. Finally, there are not large differences between other strategies.

As it can be seen in Figure 16(c), the description length of the subgroups is not really impacted
by the strategies of the RollOut method. The results of the random-reward reward aggregation
policy are still different from other strategies: The description length is smaller for the Mushroom
dataset. Using large-freq-roll-out with jumpLength “ 100 leads to smaller descriptions for the
Mushroom dataset. Finally, the description length is however not really influenced by the Roll-

Out strategies.

4.4.6 The Memory method

We derived six strategies for the Memory step given in Figure 17(bottom). Obviously, the
all-memory policy is slower than other strategies because all the nodes within the path of the
simulation have to be stored (see Figure 17(a)). Conversely, the no-memory policy is the fastest
strategy. The runtimes of the top-k-memory policies are almost the same.

Figure 17(b) shows that the quality of the result set is impacted by the choice of the memory
policies. We can observe that the no-memory is clearly worse than other strategies. Indeed, in the
Emotion dataset, the best subgroups are located deeper in the search space, thus, if the solutions
encountered during the simulation are not stored it is difficult to find them just be considering
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Strategy Path Policy Reward Aggregation Policy
(1) naive-roll-out (pathLength “ 20) terminal-reward
(2) direct-freq-roll-out max-reward
(3) direct-freq-roll-out mean-reward
(4) direct-freq-roll-out top-2-mean-reward
(5) direct-freq-roll-out top-5-mean-reward
(6) direct-freq-roll-out top-10-mean-reward
(7) direct-freq-roll-out random-reward
(8) large-freq-roll-out (jumpLength “ 10q max-reward
(9) large-freq-roll-out (jumpLength “ 10q mean-reward
(10) large-freq-roll-out (jumpLength “ 10q top-2-mean-reward
(11) large-freq-roll-out (jumpLength “ 10q top-5-mean-reward
(12) large-freq-roll-out (jumpLength “ 10q top-10-mean-reward
(13) large-freq-roll-out (jumpLength “ 10q random-reward
(14) large-freq-roll-out (jumpLength “ 20q max-reward
(15) large-freq-roll-out (jumpLength “ 20q mean-reward
(16) large-freq-roll-out (jumpLength “ 20q top-2-mean-reward
(17) large-freq-roll-out (jumpLength “ 20q top-5-mean-reward
(18) large-freq-roll-out (jumpLength “ 20q top-10-mean-reward
(19) large-freq-roll-out (jumpLength “ 20q random-reward
(20) large-freq-roll-out (jumpLength “ 50q max-reward
(21) large-freq-roll-out (jumpLength “ 50q mean-reward
(22) large-freq-roll-out (jumpLength “ 50q top-2-mean-reward
(23) large-freq-roll-out (jumpLength “ 50q top-5-mean-reward
(24) large-freq-roll-out (jumpLength “ 50q top-10-mean-reward
(25) large-freq-roll-out (jumpLength “ 50q random-reward
(26) large-freq-roll-out (jumpLength “ 100q max-reward
(27) large-freq-roll-out (jumpLength “ 100q mean-reward
(28) large-freq-roll-out (jumpLength “ 100q top-2-mean-reward
(29) large-freq-roll-out (jumpLength “ 100q top-5-mean-reward
(30) large-freq-roll-out (jumpLength “ 100q top-10-mean-reward
(31) large-freq-roll-out (jumpLength “ 100q random-reward

Table 12: The list of strategies used to experiment with the RollOut method.
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Figure 16: Impact of the Roll-Out strategy.

the subgroups that are expanded in the search tree. Surprisingly, the all-memory policy does not
lead to better results. In fact the path generated during a simulation contains a lot of redundant
subgroups: Storing all these nodes is not required to improve the quality of the result set. Only
few subgroups within the path are related to different local optima.

As expected in Figure 17(c), the descriptions of the subgroups obtained with the no-memory
policy are smaller than those of other strategies. Indeed, with the no-memory policy, the result
sets contains only subgroups that are expanded in the search tree, in other words, the subgroups
obtained thanks to the Expand method.
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Figure 17: Impact of the Memory strategy.

4.4.7 The Update method

Figure 18(bottom) presents the different strategies we use to implement the Update method.
The goal of this step is to back-propagate the reward obtained by the simulation to the parent
nodes. The runtime of these strategies are comparable (see Figure 18(a)). However, we notice
that the top-k-mean-update policy is a little more time consuming. Indeed, we have to maintain
a list for each node within the built tree that stores the top-k best rewards obtained so far.

Figure 18(b) shows the quality of the result set when varying the Update policies. For most
of datasets, since the proportion of local optima is very low within the search space, the max-
update is more efficient than the mean-update. Indeed, using the max-update enables to keep in
mind that there is an interesting pattern that is reachable from a node. However, Figure 18(b)
presents the opposite phenomena: The mean-update policy leads to better result. In fact, there
are a lot of local optima in the Ionosphere dataset, thus the mean-update is designed to find
the areas with lots of interesting solutions. Moreover, using the top-k-mean-update leads to the
mean-update when k increases.

The description length of the subgroups in the result set are comparable when varying the
policies of the Update method (see Figure 18(c)). Indeed, the aim of the Update step is just
to back-propagate the reward obtained during the simulation to the nodes of the built tree to
guide the exploration for the following iterations. This does not have a significant influence on
the length of the description of the subgroups.

4.4.8 The number of iterations

We study the impact of different computational budgets allocated to mcts4dm, that is, the
maximum number of iterations the algorithm can perform. As depicted in Figure 19(a), the
runtime is linear with the number of iterations. Note that the x-axis is not linear w.r.t. the
number of iterations, please refer to the bottom of Figure 19 to know the different values of the
number of iterations.

Moreover, as expected, the more iterations, the better the quality of the result set. Fig-
ure 19(b) shows that a larger computational budget leads to a better quality of the result set, but,
obviously, it requires more time. Thus, with this instant mining exploration method, the user can
have some results anytime. Note that for the BreastCancer dataset, the quality decreases from 10
to 100 iterations: This is due to the fact that with 10 iterations there are less subgroups extracted
(12 subgroups) than with 100 iterations (40 subgroups), and the mean quality of the result set
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with 100 iterations contains also subgroups with lower quality measures.
When the number of iterations increases, it leads to a result set containing subgroups with

longer description lengths. Figure 19(c) depicts this behavior: The more the iterations, the longer
the description length. Indeed, usually, the better the subgroups, the longer the description
length. Note that in all the experiments, we limit the description length to at most 5 restrictions
to remain interpretable. It is a popular constraint in SD.

4.4.9 The completeness of the result set

In this section we are interested in assessing the completeness of the result set of mcts4dm. For
that, we experiment with artificial data to get the ground truth, i.e., to know the percentage of
local optima (hidden in the data) the algorithm is able to extract. We use the default parameter
for mcts4dm, and we select the gen-expand with the top-10 memory policy. These parameters
have been chosen empirically given the results obtained from benchmark datasets in the previous
experiments. We set by default a very low minimal support of 10, that is 0.02%. The ability to
retrieve patterns is measured with:

Definition 21 (Evaluation measure). Let H be the set of hidden patterns, and F the set of
patterns found by an MCTS mining algorithm, the quality of the found collection is given by:

qualpH,Fq “ avg@hPHpmax@fPF pJaccardpsuppphq, supppfqqqq
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that is, the average of the quality of each hidden pattern, which is the best Jaccard coefficient with
a found pattern. We thus measure the completeness. This measure is pessimistic in the sense that
it takes its maximum value 1 if and only if all patterns are completely retrieved.

The results of our experiments are given in Figure 20. The impact of the noise is the following:
It directly reduces the support of a hidden pattern and thus it requires low minimal supports to
find the hidden patterns with success. With minSupp “ 50 and no noise, pattern are discovered,
however, with noise, the support of a pattern is lower that 50 and thus cannot be found. With
minSupp “ 10, the search is more tolerant to noise. Note on the Figures 20(a)-(b) that when
two lines exactly overlaps, it means that the search space of frequent patterns was fully explored
(the tree is fully extended in these cases). To ensure experiment feasibility, we had to reduce the
number of hidden objects in the dataset.

With out_factor “ 1, each pattern appears equally often. Varying this parameter allows
to hide patterns with different WRacc measures. With 10K iterations, most of the patterns are
retrieved, with 100K iterations all of them are found.

Varying the number of hidden pattern highlights the same results: The UCB allows to drive
the search towards interesting parts (exploitation) but also rarely visited parts (exploration) of
the search space. Hiding more patterns and retrieving all of them may require more iterations in
the general case.

Patterns with a high relative support shall be easier to be retrieved as a simulation has more
chance to discover them, even partially. We observe that patterns with small support can be
retrieved in Figure 20(e) as the minimal support is set to 10 and the support of patterns is higher
than 20. No pattern can be found if the minSupp is higher than the support of the hidden
patterns.

The number of objects directly influences the computation of the support of each node: Each
node stores a projected database that lists which objects belong to the current pattern. The
memory required for our MCTS implementation let show a linear complexity w.r.t. the number
of iterations. This practical complexity can be higher depending on the chosen memory policy
(e.g., in these experiments, the top-10 memory policy was chosen). The time needed to compute
the support of a pattern is higher for larger datasets, but it does not change the number of
iterations required to find a good result. The memory usage is discussed in Section 4.5.

The number of attributes and the size of attribute domains directly determine the branching
factor of the exploration tree. It takes thus more iterations to fully expand a node and to discover
all local optima. Here again, all patterns are well discovered but larger datasets require more
iterations (figures not shown but similar).

4.5 Comparison with existing methods

Let us consider the following existing implementations: SD-MAP*, the most efficient exhaustive
search algorithm available to date [12] and its implementation in Vikamine [10] ; and CORTANA8

which incorporates different versions of beam-search (standard one, ROC-search, cover-based
search [112]). We did not compared to the beam search of DSSD [139], as a similar implementa-
tion is available in Cortana. We also did not compare to genetic algorithms and sampling method
yet as we were unable to get the implementations from the authors9.

In what follows, we compare these implementations with mcts4dm given a choice of policies
and a maximal budget in terms of iterations for (i) finding all hidden patterns in artificial data;

8http://datamining.liacs.nl/cortana.html
9However, as part of our revision in the journal Data Mining and Knowledge Discovery, it will be done soon.
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Figure 20: qualpH,Fq (Y-axis) for different datasets (X-axis)

(ii) finding the best pattern in benchmark data; and (iii) comparing the result set on a large real
life dataset.

4.5.1 Studying extraction completeness in artificial data

We compare mcts4dm and the default beam-search for their ability to retrieve hidden patterns
in artificial data. Note that it is not necessary to compare with SD-MAP* since it is a exhaustive
search: The completeness of the result set is maximal. For that matter, we reuse our artificial
data generator with the following default parameters: noise_rate “ 0.2, out_factor “ 0.15,
nb_patterns “ 25 pattern_sup “ 100, nb_obj “ 50000, nb_attr “ 25, domain_size “ 1000.
Again, we measure the quality of an extraction with Definition 21. Results are reported in Figure
21 when varying the out_factor, the number and the support of hidden patterns. It follows
that mcts4dm requires less than 5, 000 iterations to fully retrieve all patterns. Surprisingly, 100
iterations are enough to have similar results with those of beam-search. This is due to the fact
that we generated datasets with a large number of attributes and domain sizes (the branching
factor): The greedy choices of beam search fail at exploring well the search space. We obtained
similar results with the other beam search strategies.

4.5.2 Finding the best pattern in benchmark datasets.

This experiment aims at comparing the best solution found with mcts4dm after a given number
of iterations, with the several versions of beam search. We also want to compare with SD-Map.
As SD-Map performs an exhaustive search, it finds the best solution. Table 13(top) summarizes
the results (note that the result of mcts4dm are summed up from experiment reports introduced
in the previous section).

For SD-Map, we use the following parameters: The WRAcc measure is used; the description
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Figure 21: Comparing the diverstity after a beam search (Cortana) and mcts4dm

length is fixed to 5; the minimum support is fixed in the same way than presented in Table 11
and the maximum size of the result set is 50. Results are given in Table 13(bottom). Surprisingly,
the results extracted by SD-Map are not optimal for some datasets. Indeed, SD-Map uses a
discretization method to handle numerical attributes. Thus for numerical dataset, the result set
obtained with SD-Map may be not optimal and the runtime is biased since it is not exhaustive.
On the BreastCancer dataset, mcts4dm extracts a subgroup with a quality measure of 0.21 in
0.185 seconds, whereas the best quality measure with SD-Map is 0.184 and it took 0.7 seconds
to find it. Besides, for the TicTacToe dataset, both approaches are able to extract the same best
solution, but mcts4dm is faster than SD-Map (0.173s vs 0.85s). However, for some datasets,
e.g.Cal500, SD-Map is more efficient than mcts4dm: It finds the best subgroup with a quality
measure of 0.029 in 1.05 seconds whereas mcts4dm does not extract it even after 100k iterations
in 12.082 seconds (the best solution found so far is 0.027).

To compare with beam-search implementations, CORTANA can be configured with several
parameters, such as the the quality measure, the time budget or the minimum support thresh-
old. CORTANA embeds several beam search strategies: The traditional beam search, the ROC-
Search [112] and the cover-based beam search (it used the similarity of the supports to choose the
subgroups to add into the next beam). We use the following parameters:

• WRAcc measure is used.

• The refinement depth is fixed to 5. Note that the refinement depth is not exactly the
description length. Indeed, the refinement depth of rAttribute1 ă 5s ^ rAttribute1 ă 4s is
2 but its description length is 1.

• The minimum support is fixed in the same way than presented in Table 11.

• The maximum size of the result set is 50.

• The time budget is set to 3 minutes.

• The numeric strategy is set to best.

• 1 thread is used since mcts4dm is not a parallelized implementation yet.

Table 13(middle) gathers the results: The quality of the best subgroup is the same for most of
the datasets, but the runtime to find them is much faster with mcts4dm than with the strategies
implemented in CORTANA. For few datasets, mcts4dm has a lower quality measure because
it needs more iterations to find these best solutions. On the Yeast dataset, none of these three
strategies are able to find a solution without exceeding the time budget of 3 minutes, mcts4dm

does in less than 1 minute. mcts4dm extracts the best solution with few iterations for many

72



4.5. Comparison with existing methods

mcts4dm
1K iterations 50K iterations 100K iterations
t(s) maxpϕq t(s) maxpϕq t(s) maxpϕq

BreastCancer 0.185 0.210 3.254 0.210 6.562 0.210
Cal500 0.746 0.025 5.717 0.026 12.082 0.027

Emotions 0.770 0.054 7.090 0.068 14.024 0.069
Ionosphere 0.354 0.188 5.688 0.196 10.847 0.198

Iris 0.105 0.222 2.941 0.222 36.302 0.222
Mushroom 1.087 0.118 8.141 0.118 21.299 0.118

Nursery 1.334 0.076 5.653 0.076 5.701 0.076
TicTacToe 0.173 0.069 2.446 0.069 2.364 0.069

Yeast 4.776 0.027 26.976 0.032 49.785 0.032

Cortana Beam search ROC-Search Cover-based Search
t(s) maxpϕq t(s) maxpϕq t(s) maxpϕq

BreastCancer 1.334 0.208 4.318 0.207 4.330 0.208
Cal500 21.609 0.044 >180 - 35.576 0.044

Emotions 30.476 0.117 >180 - 67.534 0.117
Ionosphere 15.482 0.202 4.618 0.201 26.993 0.203

Iris 1.335 0.222 1.664 0.222 1.996 0.222
Mushroom 1.591 0.173 10;512 0.173 5.554 0.173

Nursery 10.667 0.145 4.219 0.145 69.146 0.145
TicTacToe 1.335 0.069 1.340 0.069 1.364 0.069

Yeast >180 - >180 - >180 -

SD-Map
t(s) maxpϕq

BreastCancer 0.7 0.184
Cal500 1.05 0.029

Emotions 11.45 0.075
Ionosphere 0.97 0.069

Iris 0.73 0.164
Mushroom 2.65 0.194

Nursery 30.4 0.145
TicTacToe 0.85 0.069

Yeast 47.37 0.055

Table 13: The runtime and the maximum of the quality measure with SD-Map.

datasets. When the local optima are deep in the search space, it needs more iterations to find
them. The result set of the beam search strategies contains only few local optima among a lot of
redundant patterns, whereas mcts4dm extracts more local optima (but still a lot of redundant
patterns stored in the tree). This is illustrated in Figure 22: After applying the redundancy
post-processing (that is, removing patterns that are too similar to other ones), it remains only
one pattern with beam search in BreastCancer and Iris while mcts4dm returns between 15 and
20 patterns.

MCTS may require a lot of iterations to find the best pattern (that maximize ϕ) and thus
it needs for consequent memory to store the search tree (this is however nowadays a subdued
problem as memory gets cheaper and cheaper). Due to its greedy nature, beam search may skip
good solutions. When an exhaustive search is not able to complete quickly (see Section 4.5.3,
since benchmark datasets are not too large), mcts4dm outputs a result anytime that improves
with time.

4.5.3 Studying the efficiency of mcts4dm on a large dataset

Using MCTS for pattern mining is even more efficient when dealing with a real life application.
Basically, the real life datasets are more complex and larger than benchmark datasets. We exper-
imented with the olfaction dataset to understand the structure-odors relationships. This dataset
contains 1,689 molecules described by 82 physico-chemical properties (e.g., the molecular weight,
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Figure 23: The runtime and the boxplots of the quality of the result set on the olfaction dataset
with mcts4dm when varying the number of iterations.

the number of carbon atoms, etc.) and associated to odors (e.g., strawberry, woody, etc.). Our
goal is to extract subgroups that are characteristic of an odor or a subset of odors. In this exper-
iment, we are only interested in the Musk odor, and we use the F1-score.

Comparison with the SD-Map algorithm. In the previous batch of experiments, all the dataset
have been handled by the exhaustive algorithm SD-Map. Basically, the benchmark datasets are
quite small, and the necessity of using heuristic searches is not perceptible. However, note that
SD-Map uses a discretization method to handle numerical attributes that distorts the results: The
run are faster but the result is not optimal. Experimenting SD-Map on the olfaction dataset is
not feasible in less than 3 minutes. The run lasts 477.8 seconds and it leads to the best quality
measure of F1-Score “ 0.45. Conversely, with mcts4dm, we are able to process up to 1 million of
iterations in 99, 7 seconds (average over 5 runs) with the best quality measure found is F1-Score “
0.47. Figures 23 presents the results obtained with mcts4dm on the olfaction dataset when
varying the number of iterations.

4.6 Conclusion

Heuristic search of supervised patterns becomes mandatory with large datasets. However, classi-
cal heuristics lead to a weak completeness in the result set: Only few local optima are found. We
advocate for the use of MCTS for pattern mining: An aheuristic exploration strategy leading to
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“any-time" pattern mining that can be adapted with different measures and policies. The exper-
iments show that MCTS provides a much better diversity in the result set than existing heuristic
approaches. Interesting subgroups are found thanks to a reasonable amount of iterations and the
quality of the result iteratively improves. MCTS is a powerful exploration strategy that can be
applied to several, if not all, pattern mining problems that need to optimize a quality measure
given a subset of objects.

In this chapter, we apply mcts4dm with the WRAcc measure. However, when facing the
SOR problem, it is required to employ a more complex model to capture the interestingness of
subgroups. For that, in the next chapter, we are interested in finding subgroups that are relevant
for a subset of class labels, called target subspaces. It leads to an increase of the branching factor
in the search space. We study how mcts4dm can compute, in this setting, a diverse set of patterns
that is also diverse w.r.t. the target subspaces.
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Chapter 5

Exceptional Model Mining in
multi-label data

5.1 Introduction

We are now interested in multi-label data where an object can take several class labels. For that
matter, SD has been extended to a richer framework that handles more complicated target con-
cepts, the so-called exceptional model mining approach (EMM) [104]. The idea is the following:
A model is built over the labels from the objects in the subgroup and it is compared to the model
of the whole dataset by means of a quality measure (Figure 3). The more different the model,
the more exceptional and interesting is the subgroup. For example, van Leeuwen and Knobbe
compare the label distribution with the Weighted Kullback Leibler divergence (WKL) [139] and
Duivesteijn et al. compare conditional dependency relations between the targets with Bayesian
networks [61]. There exists many other types of models (e.g., regression, classification, target
association) and associated quality measures (see [59]).

The proposed EMM instances for multi-label data consider either the whole set of labels (e.g.,
compared with the WKL) or each label independently (e.g., SD with the WRAcc), or finally a
unique and fixed label subset chosen a priori (e.g. SD with the WRAcc for a label subset only).
However, in presence of multi-label data, there are many applications for which one is interested
in subgroups that differ from the whole dataset only on subsets of labels, though the interesting
subsets of labels are not known beforehand. Typically, descriptive rules that conclude on small
label sets provide such sets. As an example, in our case study on SOR, we are interested in
rules between physico-chemical properties of odorant molecules (e.g. molecular weight, atom
count), the attributes, and perceived smells given by Humans (e.g., fruity, apple, wood) which
are the labels. There is a crucial need to discover such rules for a better understanding of the
olfactory percept. According to a recent study, some odors can be predicted [91], but there is a
few knowledge that would explain why a molecule smells an odor or another. On average, each
odorant molecule is depicted by 2.33 labels among the set of the 74 possible labels. Assessing a
subgroup with regard to either the whole set of labels or each label independently cannot allow to
characterize rules involving a subset of labels. For example, Figure 24 shows the label distribution
of the best subgroup according to the WKL in our olfaction dataset: It fails at characterizing a
small set of labels.

The only solution for applying SD/EMM to successfully extract subgroups characterized by
multi-labels is to transform the data. Indeed, when facing a multi-label dataset, either for a
supervised or an unsupervised task, the most popular approaches apply standard techniques
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after a data transformation: Binary Relevance (BR) creates a dataset for each different label
(objects are kept, target becomes binary) while Label Powerset (LP) creates a dataset for each
set of labels that exists in the data set [134]. In our settings, BR looses label dependencies
(e.g., fruity and apple), but applying LP before classical SD/EMM is totally relevant. It requires
however to consider as many datasets as label subsets in the data, that is 1, 800 combinations in
our olfaction dataset which could be restricted to 400 deemed as interesting by the neuroscientists
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who created the dataset. This comes with an explosion of computational needs and an explosion
of the number of rules returned to the expert. As explained hereafter, SD/EMM is nowadays
shifting towards the heuristic search of a diverse set of subgroups that is large enough to cover
interesting label sets, and small enough to be interpreted by an expert. As such, we properly
formalize a novel EMM instance to fully take into account multi-label data and all label subsets
called target subspaces (Figure 4). It leads to a more complex search space.

It has been now widely admitted that an exhaustive search is impossible in general, even with
efficient pruning techniques [139, 59]: The subgroup search space is large and it is difficult to
use the properties of the measures to prune the search space. Accordingly, heuristic approaches
are used, mainly based on beam searches [108]. It as been studied as the diverse subgroup set
discovery problem [139]: The extracted collection of k subgroups shall be of high quality and the
less redundant as possible. Indeed, it often happens –if not always– that the best patterns differ
slightly on the objects they cover (or their description in a dual way). The redundancy makes
that very few local optima are discovered and the subgroup set is not diversified. A solution
is to control each level of the beam search, which can be seen as a set of parallel hill-climbing
searches [139, 59]: The subgroup search space is explored level-wise and each level is restricted
to a set of diversified high quality patterns. The diversification is done as follows. Subgroups are
sorted according to their quality: The best one is picked and all the next patterns that are too
similar (according to similarity of their covers and a threshold) are removed. The first of the next
patterns that is not similar is kept, and the process is iterated.

Besides, the problem of completeness of the result set with heuristic approaches has been
studied in the previous chapter. The problem we tackle in this chapter concerns the diversity on
the target space. This has not been studied yet to the best of our knowledge. Recall that we
propose to enhance EMM by considering all target subspaces: It may happen that a subspace
contains many subgroups of high quality and diversified in that subspace (the subgroups are very
different). Therefore, we need to exploit promising subspaces while still exploring the others to
cover many label combinations: This is what we call the diversity in the target space. To ensure
the possibility of such a diversity, the search space of subgroups should include the label sets. We
show that ensuring the possibility of this diversity forces to reconsider the subgroup search space:
Bisets psubgroup, label_setq are explored and should be wisely expanded during the search. We
experiment this with the standard beam-search, but also with our pattern sampling technique
based on Monte Carlo Tree Search presented in the previous chapter.

Finally, as our goal is to find rules where the consequent is a label set, we also need to re-
consider the subgroup quality measure. Generally, one is interested in rules with a high support
and a few errors (maximizing the precision). The WRAcc is perfect for that as it expresses the
difference between the precision of the subgroup w.r.t. the objects in the rest of the dataset, and
it is weighted with the subgroup support. However, in many applications, the label distribution is
highly skewed. This is the case of our application in olfaction as it can be observed on Figure 25:
Some label subsets are over-represented, others are under-represented. The neuroscientists are
also interested in subgroups that involve such under-represented label subsets. Another solution
would be to consider both the precision and recall, thus the F1 measure. However again, this
would favor small groups for which it is easier to find descriptions that cover well the label sub-
set. In the best settings, one would favor precision for highly represented label subsets, and both
precision and recall for under-represented subsets. We thus propose the Fβ measure adapted for
highly skewed label distributions. Actually, the Fβ measure generalizes the F1 measure in a way
that β expresses a trade-off between the precision and the recall: We dynamically adjust it during
the search, given the target subspace (label subset) that is currently enumerated. This directly
impacts a better target diversity in the result set.
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To summarize, our main claims are manifold:

• We properly formalize a novel EMM instance to fully take into account multi-label data
and all target subspaces.

• This comes with a more complex search space and it enforces new constraints for tractable
heuristic searches: We show how to adapt the subgroup search space so that heuristic
search, including MCTS on, can be applied efficiently.

• We introduce several pattern quality measures that are able to take into account the skew-
ness of the label distribution and we dynamically consider the label distributions during
the search to favor diversity on targets.

• We experiment with these approaches on several benchmark multi-label datasets (the ex-
periments on the olfaction dataset are detailed in the next chapter). Our main result shows
that MCTS with a relative Fβ measure gives the best results in terms of computation time,
quality and diversity, both on the description and the target spaces.

The rest of this chapter is organized as follows. The next section recalls some basics of
SD/EMM. Section 5.3 formalizes EMM with different target spaces for multi-label rule discovery.
Section 5.4 introduces the subgroup search space and the several quality measures that favor tar-
get diversity. Section 5.5 develops the different algorithms. Section 5.6 presents our experiments
assessing the validity of our approach before a brief conclusion in Section 5.7.

5.2 Exceptional model mining and diverse subgroup set discov-
ery

We override the definition of the label dataset with the Definition 7 as follows:

Definition 7 (Multi-label dataset). Let O, A and C be respectively a set of objects, a set of
attributes (either nominal or numerical), and a set of class labels. Each object is associated to a
subset of class labels among C by the function class : O ÞÑ 2C that maps the target labels to each
object. We denote a multi-label dataset as DpO,A, C, classq.

In the EMM framework, with a multi-label dataset, the definition of a subgroup remains
unchanged. We recall this definition:

Definition 6 (Subgroup). The description of a subgroup is given by d “ xf1, . . . , f|A|y where
each fi is a restriction on the value domain of the attribute ai P A. The description of a subgroup
corresponds to the pattern in the pattern mining setting. A restriction is either a subset of a
nominal attribute domain, or an interval contained in the domain of a numerical attribute. The
description d covers a set of objects called the extent of the subgroup, denoted extpdq Ď O, and its
support is the number of objects in its extent and is defined by supppdq “ |extpdq|. Note that, in
this thesis, we denote |S| the cardinality of the set S. For simplicity, a subgroup is either given by
its intent, i.e., its description d, or by its extent extpdq.

The aim of EMM is to find subgroups whose model over the class labels is significantly differ-
ent from the model induced by the entire set of objects O. Several models have been proposed in
the state of the art (see Chapter 2 for more details) [59]. Quality measures have been introduced
to compare the similarity between the two models (i.e., those of the subgroup and those of the
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entire dataset), the better the quality measure, the less the similarity, the more interesting the
subgroup [102, 2].

Since the search space of subgroups is too large, it is now widely accepted that an exhaustive
search of subgroups, even with efficient pruning techniques, is not tractable for EMM. Heuristic
methods are employed, such as beam search. However, it comes with the issue of redundancy of
the subgroup set that is extracted. The question is: How to ensure a high diversity in the result set
of a heuristic exploration of the search space. This point has been studied as the Diverse Subgroup
Set Discovery [139]. The aim is to extract a diverse subgroup set that is as small as possible to
be easily interpretable by the experts. For that, a similarity measure (e.g., Jaccard coefficient
between the extent of two subgroups) is used to avoid the extraction of redundant subgroups
within the result set. Thus, the problem definition of EMM given Problem 3 is extended with the
problem of diverse subgroup set discovery as follows:

Problem 6 (Diverse Subgroup Set Discovery [139]). Given a multi-label dataset DpO,A, C, classq,
a quality measure ϕ , a minimum support threshold minSupp, an integer k, a similarity measure
sim, and a maximum similarity threshold Θ, DSSD aims at extracting the diverse set of top-k
best frequent subgroups w.r.t. the quality measure ϕ in which there is no similar subgroups, i.e.,
for all subgroups s1, s2 in the result set, simps1, s2q ď Θ.

5.3 Subgroup set discovery with diversity on target subspaces

By definition, within the EMM framework, the model induced by the subgroup (and those in-
duced by the entire set of objects) is always built over all the class labels. Thus, each subset of
objects (or subgroup) derives a unique model. However, a subgroup can be deemed interesting
only for the model induced over a subset of class labels because it derives a model completely
different from those of the entire set of objects just for this subset of class labels. However, this
subset of class labels is unknown a priori. Thus, it is required to explore the label set space,
called the target subspaces. This is one of our contribution: We design a new EMM instance to
strive subgroups whose model induced over an unknown subset of class labels L Ď C is different
from the model induced by the entire dataset over the same subset of class labels L. The process
of this new EMM instance is given in Figure 4. The change relies on the construction of the
model. There is no longer one but several models derived from the subgroup: One for each target
subspace. We need to refine Definition 6 about subgroups for this new EMM instance.

Definition 22 (Subgroup in a target subspace). Given a multi label dataset DpO,A, C, classq,
a subgroup, denoted s “ pd, Lq, is given by its description d and the subset of class labels L Ď C
over which the model is built.

We will use the term subgroup in the rest of this chapter though, as it will be always implied
that a subgroup is considered in a target subspace. Following the studies in Diverse Subgroup
Set Discovery, this new EMM instance that deals with multi-label data should also exhibit a
great diversity in the target subspace. Although it may happen that a subspace contains many
subgroups of high quality and diversified in that subspace (the subgroups are very different), we
need to exploit promising target subspaces while still exploring the others to cover many label
combinations: This is what we call the diversity in the target space.

Problem 7 (DSSD with diveristy on target subspaces). Given a multi-label dataset DpO,A, C,
classq, a quality measure ϕ, a minimum support threshold minSupp, an integer k, and a similar-
ity measure sim, DSSD aims at extracting the diverse set of top-k best frequent subgroups w.r.t.
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the quality measure ϕ in which there is no similar subgroups w.r.t. sim and that covers as many
target subspaces as possible.

We will still refer to this problem as DSSD, as it implies in the rest of this chapter that
diversity is considered both on the description and target subspace.

5.4 Quality measures considering the target subspaces

Evaluating a subgroup s “ pd, Lq is performed thanks to a quality measure ϕ that computes the
difference between the model induced by extpdq over the target subspace L and those induced by
O over L. Surveys help understanding how to choose the right measure [68]. One of the most
widely used quality measure for multi-label data is the Weighted Kullback Leibler divergence
(WKL) [139]. The WKL of a subgroup s “ pd, Lq is given by:

WKLpd, Lq “
supppdq

|O|
ÿ

lPL

ppld log2
pld
pl0
q

This measure aims at assessing the deviation between two distributions, i.e., it does not consider
only the presence of a label, but it also takes into account the under-representation of a label
for a subgroup. Moreover, WKL assumes that the labels are independent: It does not consider
the co-occurrences of the labels. This is a strong assumption that is not satisfied in most of the
data. Besides, note that WKL is maximized with L “ C since it is the sum over the labels in L
of positive terms. Thus, WKL can not be used in the settings of Problem 7. Let us now study
different measures that can be used for Problem 7.

5.4.1 WRAcc to evaluate the subgroups

The Weighted Relative Accuracy (WRAcc) is a well-known quality measure in EMM. Indeed, it
allows to compare the proportion of a subset of labels in a subgroup with the proportion of this
subset of labels in the entire dataset. For a subgroup s “ pd, Lq, it is given by:

WRAccpd, Lq “
supppdq

|O|
ˆ
`

pLd ´ p
L
0
˘

where pLd “
|toPextpdq|classpoqĎLu|

supppdq (resp. pL0 “
|toPO|classpoqĎLu|

|O| ) is the proportion of objects in
the subgroup s (resp. in the entire dataset) that are associated to all the labels in L. In other
words, WRAcc is the difference between the precision of the rule d Ñ L and those of rule xy Ñ
L: The model of a subgroup s is given by the precision of the subset of labels L in extpsq.
This difference is weighted by the relative size of the subgroup to avoid the extraction of small
subgroups. Note that, we can also consider the Relative Accuracy measure (RAcc) that does not
weight the difference:

RAccpd, Lq “ pLd ´ p
L
0

However, in our case study, we are interested in both the precision and the recall of the
subgroup. WRAcc or RAcc only foster on the precision of a given subgroup. We can notice
that the weighted factor allows to take into account partially the recall by fostering on larger
subgroups.
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Table 8: The extension of the label dataset from Table 7 to the multi-label dataset version.

ID a b c classp¨q

1 150 21 11 tl1, l3u
2 128 29 9 tl2u
3 136 24 10 tl2, l3u
4 152 23 11 tl3u
5 151 27 12 tl1, l2u
6 142 27 10 tl1, l2u

Example 18. Let us consider the multi-label dataset given in Table 8. For the description
d “ xr128 ď a ď 151s, r23 ď b ď 29sy we can induce 7 different models, one for each subset
of C, namely tl1u, tl2u, tl3u, tl1, l2u, tl1, l3u, tl2, l3u and tl1, l2, l3u. With the WRAcc
measure: ϕpd, tl1uq “ 4

6 ˆp
2
4 ´

3
6q “ 0, ϕpd, tl2uq “ 0.22, ϕpd, tl3uq “ ´0.17, ϕpd, tl1, l2uq “ 0.11,

ϕpd, tl1, l3uq “ ´0.11, ϕpd, tl2, l3uq “ 0.06 and ϕpd, tl1, l2, l3uq “ 0. Thus the best model induced
by the description d is obtained for the subset of labels tl2u.

5.4.2 F1 score to take into account both precision and recall

Given a subgroup s “ pd, Lq, the precision is defined by:

P pd, Lq “
|extpdq X extpLq|

supppdq

and the recall is given by:

Rpd, Lq “
|extpdq X extpLq|

supppLq

The F1 score considers both the precision and the recall of a subgroup s “ pd, Lq. The Relative
F1 (RF1) is given by:

RF1pd, Lq “ F1pd, Lq ´ F1pxy, Lq

where F1pd, Lq “ 2 ˆ P pd,LqˆRpd,Lq
P pd,Lq`Rpd,Lq . Indeed, objects are described by both attributes and class

labels, so the F1 score quantifies both the precision and the recall of the extent of the description
w.r.t. the extent of the class labels. Moreover, we can also consider the Weighted Relative F1
(WRF1), that uses the relative support size of the subgroup to weight RF1:

WRF1pd, Lq “
supppdq

|O|
ˆ RF1pd, Lq

However, in most of the datasets, the distribution of class label is imbalanced. Some labels are
associated to many objects in the dataset, and others are rarely used to label the data. Taking
into account this setting is essential in this new EMM instance because the quality measure of the
subgroups related to a frequent subset of class labels can be biased. F1 does not equally evaluate
subgroups related to over-represented subsets of labels and subgroups related to labels that are
not over-represented. Empirically, we demonstrate that RF1 is not effective to discover subgroups
related to over-represented labels.

Example 19. Again, let us consider the toy dataset in Table 8 and the subgroup with description
d “ xr128 ď a ď 151s, r23 ď b ď 29sy. With L “ tl2u, the model induced by d is F1pd, tl2uq “ 1.
The model induced by the entire dataset is F1pxy, tl2uq “ 0.8. Thus, ϕpd, tl2uq “ RF1pd, tl2uq “
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Figure 26: The curves of βpsupppLqq.

F1pd, tl2uq ´ F1pxy0, tl2uq “ 0.2. With L “ tl1, l2u, the models are F1pd, tl1, l2uq “ 0.66 and
F1pxy, tl1, l2uq “ 0.5, and thus RF1pd, tl1, l2uq “ 0.16. Using WRF1 as quality measure, the result
is WRF1pd, tl2uq “ 4{6ˆRF1pd, tl2uq “ 0.13 and WRF1pd, tl1, l2uq “ 4{6ˆRF1pd, tl1, l2uq “ 0.11

5.4.3 An adaptive Fβ-score for skewed label distributions

The WRAcc focuses, by definition, on the precision of labels and it promotes subgroups in pop-
ulated target subspaces. The F1 score makes a trade-off between precision and recall but we
demonstrate empirically that this measure promotes subgroups covering few objects with low
frequency label combinations. The trade-off lies with the so called Fβ score which adds a param-
eter β that allows to tune the importance of the recall.

We propose β to be a function of the support of the considered target subspace L, so that
the trade-off can be automatically adapted during the search, βpsupppLqq. The greater supppLq,
the closer to zero β is: The precision is fostered in Fβ for over-represented labels. Conversely, the
lower supppLq, the closer to one β is: Fβ is equivalent to the traditional F1 score (the harmonic
mean of precision and recall) for non over-represented labels. Formally, given two positive real
numbers xβ and lβ, we define the Relative Fβ score (RFβ) as follows (see also Figure 26):

RFβpd, Lq “ Fβpd, Lq ´ Fβpxy, Lq

where Fβpd, Lq is defined as follows:

Fβpd, Lq “ p1` βpsupppLqq2q ˆ
P pd, Lq ˆRpd, Lq

pβpsupppLqq2 ˆ P pd, Lqq `Rpd, Lq

where βpsupppLqq is:

βpsupppLqq “ 0.5ˆ
ˆ

1` tanh
ˆ

xβ ´ supppLq

lβ

˙ ˙

Intuitively, for over-represented labels in the data, since it is difficult to find rules with high
recall and precision, the experts prefer to foster the precision instead of the recall. They prefer
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Figure 7: Necessity of an adaptive measure.

extracting several small subgroups with a high precision than a huge subgroup pd, Lq with plenty
of non-L objects. In Figure 7 the red molecules are over-represented in the dataset, but it is
more interesting having the different subgroups 1, 2, 3 and 4 with high precision, rather than a
single huge local subgroup (5) which precision is much lower. For molecules that are not over-
represented, the measure considers both precision and recall: e.g., subgroup 6 is possible for the
green molecules.

Similarly to WRF1 we can define the Weighted Relative Fβ score as follows:

WRFβpd, Lq “
supppdq

|O|
ˆ RFβpd, Lq

Example 20. Let us take the example of the multi-label dataset in Table 8, with the description
d “ xr128 ď a ď 151s, r23 ď b ď 29sy again. We consider the Fβ measure to evaluate a model
and RFβ to evaluate the subgroup. Since supppl1q “ 3, supppl2q “ 4 and supppl3q “ 3, we set
xβ “ 3.3 and lβ “ 0.5. The β value for the subset of labels tl2u is 0.06 since in this setting, l2
is over-represented within the dataset. The model induced by d on L “ tl2u is Fβpd, tl2uq “ 1.
The model induced by the entire dataset is Fβpxy, tl2uq “ 0.67. Thus, ϕpd, tl2uq “ RFβpd, tl2uq “
Fβpd, tl2uq ´ Fβpxy, tl2uq “ 0.33. With WRFβ, we have WRFβpd, tl2uq “ 4

6 ˆ RFβpd, tl2uq “
0.22 For the subset of class labels tl1, l2u, β “ 0.99. The models are Fβpd, tl1, l2uq “ 0.66 and
Fβpxy, tl1, l2uq “ 0.5, and thus ϕpd, tl1, l2uq “ 0.16. Using WRFβ, the quality measure of s is
WRFβpd, tl1, l2uq “ 4

6 ˆ RFβpd, tl1, l2uq “ 0.11. Note that for L “ tl1, l2u, RFβ and WRFβ are
equivalent to RF1 and WRF1 since L is not over-represented in the data.

5.5 Search space explorations

We present the search space of subgroups that needs to be traversed in all target subspaces. We
briefly detail an algorithm for exhaustive search as a baseline for some of our experiments. We
then present the two heuristic search techniques that we employ in our experiments.
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5.5.1 Search space and exhaustive search

In standard SD and EMM, the search space of subgroups is given by the lattice of all possible de-
scriptions pD,Ďq where d1 Ď d2 means that subgroup d1 is more general than d2, or equivalently
extpd2q Ď extpd1q. This lattice can be explored either in a depth-first (DFS) or in a breadth-first
(BFS) search manner. During the traversal, the quality measure is computed for each subgroup.
Contrary to the extent, the monotonic property does not necessary hold for the quality measure.
In the end, a redundancy filter based on the similarity function sim and the maximum similarity
threshold Θ is applied to output the top-k diverse subgroups.

In our case, we wish to evaluate a description on each of the target subspaces. We need to con-
sider the following search space: Dˆ 2C , where C is the set of labels. Hence, a subgroup is always
considered in a target subspace in which the quality measure can be computed. Thus, only slight
modifications in existing algorithms are required. We override the specialization/generalization
relation Ď as follows: pd1, L1q Ď pd2, L2q ðñ extpd2q Ď extpd1q ^ L2 Ď L1

For that, we adapt the algorithm CloseByOne [100] from the Formal Concept Analysis [70]
that can handle easily both nominal and numerical attributes [88]. Without entering into the
details, it avoids to generate subgroups having exactly the same support and truly operates an
exhaustive search. Indeed, we could have adapted the most efficient subgroup discovery algo-
rithm, SDMap* [11], but it is not purely exhaustive as it operates greedy cutting of numerical
attributes. Moreover, we focus on heuristic search and already shown that MCTS performs better
than SDMap* for large search space in the previous chapter.

5.5.2 Heuristic search with Beam-search

Beam search [108] is the most popular heuristic technique in SD/EMM. It has been originally
adapted to consider the diverse subgroup set discovery problem by Leeuwen and Knobbe [139].
The subgroup search space is explored level-wise (BFS) and each level is restricted to a set of
diversified high quality patterns. The diversification is done as follows. Subgroups are sorted
according to their quality: The best is picked and all the next patterns that are too similar
(bounded Jaccard coefficient between their support) are removed. The first of the next patterns
that is not similar is kept, and the process is iterated.

Adapting beam search considering the search space D ˆ 2C with diversity on the target sub-
spaces is done as follows. It starts from the most general subgroup. Next levels are gener-
ated by specializing subgroups either by restricting an attribute or by extending the subset of
class labels with a new label as long as the quality measure is improved. There are at most
|C| `

ř

aiPA |ai|p|ai| ` 1q{2 possibilities to specialize each subgroup: We can proceed up to |C|
extensions of the subset of labels to characterize L and |A| extensions of the description for which
we can build up |ai|p|ai| ` 1q{2 possible intervals for numeric attributes. Note that in beam
search, an attribute is refined at most once: We do not restrict an effective restriction anymore.
We choose among those only a constant number of candidates to continue the exploration, i.e.,
the beam width: The beamWidth best subgroups w.r.t. the quality measure. Removing the
redundancy is done as in the traditional case, but each subspace is considered separately to avoid
to favor few excellent target subspaces: The subgroups are split into groups according to their
target subspace, and the diversity filter is operated on each of them.

5.5.3 Sampling patterns with Monte Carlo Tree Search

We propose to sample the subgroup search space D ˆ 2C relying on Monte Carlo Tree Search
[36]. Indeed, in the previous chapter, we showed that MCTS is able to handle very large search
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space and outperforms beam search in terms of quality and completeness of the result set when
considering basic subgroup discovery and WRAcc. We recall that MCTS is a budget based
approach: The more time and memory allocated, the better the result.

As a brief reminder, MCTS iteratively draws a random subgroup description sn from the
expanded node sexp, called s0 in this case, following a path s0 Ă s1 Ă s2 Ă ... Ă sn. The best
pattern quality measure found on the path is returned as a reward. s0 is stored in a memory (the
search tree) and the reward is back-propagated in the tree: Each node stores the number of times
it was visited and the average quality measure obtained so far. The tree will drive the search for
the next iterations (thanks to the upper confidence bound, a formula that expresses a trade-off
between exploration and exploitation of the search space [95]). In other terms, a new node (s0)
will be expanded into the tree according to this trade-off.

More specifically, MCTS operates a fixed number of iterations where: (i) It selects the most
urgent node, called the selected node and denoted s´1 in this case (ssel in the previous chapter),
in the tree according to the UCB; (ii) it expands this node by randomly selecting one of the
direct description specialization s´1 Ă d0 (the expanded node also called sexp), (iii) it simulates a
random path s0 Ă s1 Ă s2 Ă ... Ă sn, and (iv) the best reward ϕpsiq found on the path is used to
update the tree. Each of these four steps can be achieved with many strategies. We use the best
settings found for the WRAcc in basic subgroup discovery settings.

5.6 Experimental study

The subgroups we consider are equivalent to the so called Multi-label and sparse label-independent
rules in [109]. In this article, the authors have defined a list of 8 types of rules in single and
multi-label data. However, they focus on rules where only a single label can appear in the head
of the rule and other label can appear in the body. They opt for a kind of binary relevance
transformation (each label is learned separately) that is not suitable in our settings and thus
is not included in our experimental evaluation. Experiments were carried out on an Intel(R)
Core(TM) i7-7700HQ CPU 2.80 GHz machine with 8 GB RAM. All materials are available on
https://github.com/guillaume-bosc/EMM_FBeta. After introducing the different datasets, we
will answer to the following questions:

• How to tune xβ and lβ parameters of the Fβ measure?

• Is the MCTS approach also able to cope with the (Weighted) Relative Fβ?

• What is the best measure to ensure the diversity on the target subspaces with MCTS?

• Is that measure also the best for beam search? It will thus advocate that the measure is not
dependent of the heuristic.

• Is the (weighted) relative Fβ ranking the subgroups differently? It will thus empirically
show that the other measures are not equivalent.

• How are precision and recall of the subgroup distributed w.r.t. target subspace frequency?
We should observe that the precision-recall trade-off is respected in the result sets: Foster-
ing on precision for over-represented label sets, and also on the recall for the others.
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Dataset |O| |A| Domain |C|
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m
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n

CAL500 502 68 numeric 174 26 0.15 502 75.14 39
emotions 593 72 numeric 6 1.8 0.31 27 184.67 170
enron 1702 1001 nominal 53 3.3 0.06 753 108.49 26
genbase 662 1186 nominal 27 1.2 0.04 32 30.70 17
yeast 2417 103 numeric 14 4.2 0.30 198 731.5 659
Olfaction 1689 82 numeric 74 2.882 0.04 1069 65.80 28

Table 14: Datasets used for the experiments.

5.0 224.5 444.0
CAL500

0 148 206 264
emotions

1 457 913
enron
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1 86 171
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34 925 1816
yeast

2 286 570
olfaction

Figure 27: Label distribution in the different datasets of Table 14.

5.6.1 Data

We experiment our approach with a set of multi-label datasets from the well-known Mulan

repository [135]. We also experiment with the olfactory dataset built by a neuroscientist (co-
author of the present work) which is explained in the next chapter where we assess the interest
of our approach in a real world scenario. Table 14 gives the properties of each dataset: The
number of instances |O|, the number of attributes |A|, the domain of the attributes (nominal or
numeric), the number of labels |C|, average number of labels associated to an object (cardinality),
its density (the cardinality divided by the number of labels) and the mean and median of the
number of objects per label. Figure 27 finally gives the label distribution for each dataset.

5.6.2 How to choose the xβ and lβ parameters for Fβ?

Using Fβ requires to set the two parameters xβ and lβ. To choose these two parameters, one
needs to answer to the following questions: At what support size a label subspace L is considered
as over-represented? What is the speed of transfer from the normal representation state to the
over-represented state? They are set thanks to the characteristics of the dataset. An automatic
approach is to set xβ to the 85th percentile value and lβ to the difference between the 85th and
80th percentiles. However, we advise to display the distribution of the frequency of the class
labels (as shown in Figure 27) to correctly set up these parameters. The user must keep in mind
that when |supppLq| “ xβ ` 2lβ, β « 0.02 (L is considered thus over-represented and precision is
fostered). Analogically, when |supppLq| “ xβ ´ 2lβ, β « 0.98 (L is considered normal and the Fβ
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Figure 28: Evolution of the quality of the result set of MCTS varying the number of iterations.

behaves almost as the F1 score).

5.6.3 Is MCTS able to consider WRFβ?

Since the search space related to our datasets are too large to employ an exhaustive search, we
design two heuristic methods to experiment with DSSD and we study the diversity on target
subspaces issue. We show that MCTS using RFβ allows to extract a diverse set of non redundant
patterns if given enough computational budget (e.g., a given number of iterations). Figure 28
displays the evolution of the quality of the result set with MCTS when varying the number of
iterations. We can note that, the more the iterations, the better the quality in the result set.
Moreover, we use an exhaustive search in Olfaction to show that MCTS quickly converges to the
quality of the result set obtained with the exhaustive search. However, since the search space
of this dataset is too large, we randomly picked 2 attributes among the 82 attributes to make
the exhaustive search tractable. Figure 28(a) shows that, given enough computational budget,
MCTS converges to the quality of the result set obtained by the exhaustive search. From that, it is
reasonable to employ MCTS with this new quality measure RFβ. Furthermore, on Figures 28(b),
we can notice that the quality of the result set still increases with the number of iterations.

5.6.4 Which measure ensures the most diverse result?

We compare the diversity on the target subspaces in the result set. For that, we use MCTS with
100k iterations. We output the top-1000 subgroups when using the different quality measures
RAcc, RF1, RFβ, WRAcc, WRF1 and WRFβ. Figures 29-30 display the results. We observe
that, in general, RAcc and WRAcc covers few label subspaces compared to RF1, WRF1, RFβ
and WRFβ. Indeed, in Olfaction, RAcc covers twice less label subspaces than the others (see
Figure 29(d)-(e)-(f)). However, on few datasets, the diversity on the target subspaces is almost
the same, e.g., see Figure 29(d)-(e)-(f) for Genbase.

Besides, contrary to RF1, the measures RAcc and RFβ are able to homogeneously evaluate
the subsets that are over-represented and non-over-represented. Thanks to the adaptive Fβ, RFβ
can either support the precision for the over-represented labels, or both precision and recall for
non-over-represented labels. For the non-over-represented labels RAcc does not also foster on the
recall of the subgroups. However, with RF1, the over-represented subgroups are rarely output in
the result set because their recall is low when the precision is high and vice versa.

Moreover, the experiments with the weighted version of these measures lead almost to the
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same result: WRFβ ensures a great diversity on the target subspaces and is able to characterize
both over-represented labels and non-over-represented labels. However, the weighted factor fos-
ters more on over-represented labels since the relative support size is greater. Note that when
the distribution of the labels is not imbalanced, such as in Emotions, the measures behave in the
same way, which is an expected behavior.

Finally, Figure 31 displays both the evolution of the diversity on the target space and the
value of the quality measure of the subgroups in the result set varying the number k of output
patterns. Figures 31(a)-(b)-(c) show that with RAcc or WRAcc there is a few diversity in the
target subspace whereas with RF1, WRF1, RFβ and WRFβ the diversity is high. Moreover,
Figures 31(d)-(e)-(f) display that with the weighted version of these measure, the quality in the
result set decreases faster than with the relative version. Indeed, the weighted factor makes the
quality measure foster on over-represented subgroups and thus avoid the extraction of non-over-
represented ones even if the precision and the recall is high.

5.6.5 Does RFβ also ensure the best diversity?

The previous subsection exhibits that RF1, WRF1, RFβ and WRFβ increase the diversity on
the target space in the result set. In some cases, we showed that this diversity is also high with
RAcc and WRAcc. However, in the previous chapter, we ensured that MCTS leads to a higher
completeness of the result set. Indeed, we now consider some results obtained with a beam
search. Figure 32 shows that for all the measures, except RFβ, there is a low diversity on the
target space. Besides, except with RFβ, the beam search can not extract more than 300 diverse
and non redundant subgroups. Clearly, RFβ provides the largest diversity in the result set.

5.6.6 Is the RFβ ranking the subgroups differently?

We experiment with the 6 different quality measures, to test if they are equivalent, i.e., they
provide the same ranking of subgroups. Since it is not possible to use an exhaustive search, we
cannot directly compare the ranking of the subgroups (most subgroups in a result set are not
included in another result set). For that, we define an optimistic similarity measure between two
result sets based on Jaccard coefficients: We compute the mean of the maximum of the Jaccard
coefficients between a couple of subgroups in the two different result sets. Formally we compute
meanSimpS1, S2q “

1
|S1|
ˆ
ř

s1PS1
maxs2PS2 Jpsuppps1q, suppps2qq and then the similarity between

two result sets S1 and S2 is:

maxSimpS1, S2q “ max pmeanSimpS1, S2q,meanSimpS2, S1qq

Figure 33 displays the matrix of maxSim between the result sets obtained with the different
quality measures in CAL500. Clearly, it shows that they do not share the same subgroups in
their result set. Thus, the measures are not equivalent. The results are identical for the other
datasets.

5.6.7 Does Fβ dynamically adapt to the label frequency?

We said that for the over-represented labels, we want to support the precision, and that, for
other frequencies of labels, we want to take into account both the precision and the recall of
the subgroup. To assess the behavior of the measures, we experiment with the measures we use
as models, namely Acc, F1 and Fβ. From that, we display the precision and the recall of the
subgroups. Figure 34 shows two different views of the precision and the recall of the subgroup
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Figure 29: The quality measure and the support of the target subspace of the subgroups within
result set obtained with MCTS using the Relative measures. The color of the points is the value
of the quality measure of the subgroup given by the heatmap.

depending on the frequency of the subset of labels L they are related within the olfactory dataset.
Figures 34(a)-(b)-(c) show the precision (triangles) and the recall (crosses) of the subgroup in the
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Figure 30: The quality measure and the support of the target subspace of the subgroups within
the result set obtained with MCTS using the Weighted Relatives measures. The color of the
points is the value of the quality measure of the subgroup given by the heatmap.

result set. They also display the value of βpsupppLqq. Clearly, for Fβ, if the frequency of L is too
high in the dataset, only the precision of the subgroup is fostered and the recall is low. But, if the
frequency of L is not too high, both recall and precision are fostered. However, with Acc, only
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Figure 31: Comparison between the measures on the extracted top-K. Evolution of the quality
measure in the top-K.

the precision is fostered, the recall is always low whatever the frequency of L. Concerning F1, we
support both the precision and the recall, but there are less subgroups in the result set that are
related to labels for which the frequency is high because the F1 score is low.

Figures 34(d)-(e)-(f) present another point of view to illustrate this behavior. The subgroups
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Figure 32: Comparison with a beam search on the Olfaction dataset. .
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Figure 33: The matrix of the similarity of the result set using different quality measures.

in the result set are plotted in the precision/recall space. Moreover a heatmap is used to show
the frequency of the subset of labels L to which the subgroups are related: The points in red
are subgroups related to over-represented labels, and the points in blue are subgroups related
to under-represented labels. Clearly, Acc does not foster on the recall. Besides, F1 extracts
few subgroups related to over-represented labels (many blue points). Finally, Fβ behaves as
expected: (i) Both over-represented and under-represented labels are covered, i.e., the diversity
in the target space is high ; and (ii)for over-represented labels the precision is fostered, and for
other labels both recall and precision are taken into account.

5.6.8 Synthesis of the experiments

The parameters xβ and lβ for the Fβ measure can be easily set thanks to the distribution of the
label frequency. In general, our results suggest that exhaustive search is not tractable because the
search space of the datasets is too large, and thus heuristic explorations are needed. MCTS is able
to quickly find interesting subgroups with RFβ and WRFβ. Moreover, the results support the
idea that RFβ provides a better diversity on the target subspace using either MCTS or a beam
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Figure 34: Precision and recall of the models of the extracted subgroups on Olfaction.

search. All these quality measures focus on different subgroups and thus there is no equivalence
between each other. Finally, as expected, the Fβ measure enables to foster the precision for
over-represented labels and to support both recall and precision for other label subsets.
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5.7 Conclusion

Motivated by a problem in neuroscience and olfaction, we proposed an original subgroup dis-
covery approach to mine descriptive rules characterizing specifically subsets of class labels. For
that matter, we revisited the diverse subgroup set discovery problem within the exceptional model
mining framework: Each subgroup can be evaluated in different target subspaces, and a quality
measure helps to take into account the distribution of the labels overs the dataset. This measure
is also effective in heuristic search, e.g., with an enumeration based on Monte Carlo Tree Search,
as the results are more diverse, both on the subgroup description and the target subspaces. We
showed the effectiveness of this method through a large set of experiments.

96



Chapter 6

Application in neuroscience for the
study of the olfactory percept

6.1 The Structure-Odor Relationship

Around the turn of the century, the idea that modern, civilized human beings might do without
being affected by odorant chemicals became outdated: The hidden, inarticulate sense associated
with their perception, hitherto considered superfluous to cognition, became a focus of study in
its own right and thus the subject of new knowledge. It was acknowledged as an object of science
by Nobel prizes (e.g., [37] awarded 2004 Nobel prize in Physiology or Medicine); but also society
as a whole was becoming more hedonistic, and hence more attentive to the emotional effects of
odors. Odors are present in our food, which is a source of both pleasure and social bonding;
they also influence our relations with others in general and with our children in particular. The
olfactory percept encoded in odorant chemicals contribute to our emotional balance and well-
being: Olfactory impairment jeopardizes this equilibrium.

Neuroscience studies revealed that odor perception results from a complex phenomenon rooted
in the chemical properties of a volatile molecule (described by multiple physicochemical descrip-
tors) further detected by our olfactory receptors in the nasal cavity. A neural signal is then trans-
mitted to central olfactory brain structures [113]. At this stage, a complete neural representation,
called “odor” is generated and can then be described semantically by various types of perceptual
quality (e.g., fruity, floral or woody). While it is generally agreed that the physicochemical char-
acteristics of odorants affect the olfactory percept, no simple and/or universal rule governing this
Structure Odor Relationship (SOR) has yet been identified. Why does this odorant smell of roses
and that one of lemon? Considering that the totality of the odorant message was encoded within
the chemical structure, chemists have tried to identify relationships between chemical properties
and odors. Topological descriptors, eventually associated with electronic properties or molecu-
lar flexibility were tentatively connected to odorants descriptors. However, it is now quite well
acknowledged that structure-odor relationships are not bijective. For example, very different
chemicals trigger a typical “camphor" smell, while a single molecule, the so-called “cat-ketone"
odorant, elicit two totally different smells as a function of its concentration [50]. At best, such
SOR rules are obtained for a very tiny fraction of the chemical space, emphasizing that they must
be decomposed into sub-rules associated with given molecular topologies [55]. As such, this lack
of bijective relationship must be handled. It suggests that a simple, universal and perfect rule
does probably not exist, but instead, a combination of several sub-rules should be put forward
to encompass the complexity of SOR. In this chapter, we describe our data science approach to
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advance the state of the art in understanding the mechanisms of olfaction and to support the
emergence of new hypothesis.

Therefore, we have been combining neuroscience, chemistry and data mining. Indeed, data-
mining methods can be used to answer the SOR discovery problem, either through the building
of predictive models or through rules discovery. One obstacle to this is that olfactory datasets are
complex (i.e., several thousand of dimensions, heterogeneous descriptors, multi-label, imbalanced
classes, and non robust labelling) and, we suffer from a lack of data-centric methods in neuro-
science that would be suitable for this level of complexity. The main aim of our study has been to
examine this issue by linking the multiple molecular characteristics of odorant molecule to olfac-
tory qualities (fruity, floral, woody, etc.) using a descriptive approach (pattern mining). Indeed,
a crowd-sourced challenge was recently proposed by IBM Research and Sage called DREAM Ol-
faction Prediction Challenge [65]. The challenge resulted in several models that were able to
predict especially pleasantness and intensity and 8 out of 19 olfactory qualities (“garlic”, “fish”,
“sweet”, “fruit”, “burnt”, “spices”, “flower” and “sour”) with an average correlation of predictions
across all models above 0.5 [91]. These findings are timely and interesting because they show
the existence of a predictive relationship between certain olfactory qualities and the physico-
chemical properties of odorant molecules. Nevertheless, to go further into the understanding of
the stimulus-percept issue in olfaction, it is important to explain and thus to isolate physico-
chemical rules allowing describing these olfactory qualities. Identifying such physico-chemical
rules characterizing odor quality opens a field that is still little explored in neuroscience research,
shedding new light on olfactory system functioning.

Neuroscientists are faced to a series of issues including (i) the lack of large databases contain-
ing sufficient number of stimuli described by both physicochemical properties and olfactory qual-
ities, (ii) the large number of dimensions – several thousands – needed to describe the molecules
and, above all, (iii) a lack of data-processing methods suitable for this level of complexity. The
present chapter proposes to solve these issues by - first - setting up a large database containing
more than 1500 odorant molecules described by both of physico-chemical properties and olfactory
qualities. Secondly, we make use of such complex heterogeneous data with the aim of deriving
new neuro-scientific knowledge or hypotheses such as descriptive models. This is where our new
EMM instance based on the MCTS exploration fully makes sense as molecules are associated to
several odors, with a highly skewed distribution and a very large search space.

6.2 An original olfaction dataset

One prominent methodological obstacle in the field of neuroscience concerns the absence of any
large available database (ą1000 molecules) combining odorant molecules described by two types
of descriptors: Perceptual ones such as olfactory qualities (scent experts defining a perceptual
space of odors), and chemical attributes (chemical space). The dataset provided by the IBM
challenge [91] is a clinical one, i.e., odorant molecules were not labeled by scent experts. To tackle
this issue, the neuroscientists have recently created a new dataset based on the olfactory percept
of scent experts. Basically, they gathered the data from two different sources: (i) The Dragon 6
software (available on talete.mi.it), and (ii) the well known atlas Arctander [9]. The first one
provides the values of almost 5, 000 physico-chemicals properties (e.g., the molecular weight or
the number of carbon atoms) for thousands of chemical molecules. The latter is an atlas created
by scent experts that maps 1, 689 molecules to subset of odors among 74 olfactory qualities such
as Fruity, Vanilin, or Camphor. From such raw data, the neuroscientists pre-processed the data
to keep only the molecules that are present in both datasets. Moreover, the chemists identified

98

talete.mi.it


6.3. h(odor): An interactive tool to elicit hypotheses on SOR

Olfaction labels
0

100

200

300

400

500

Su
pp

or
t

Figure 25: Olfaction data label distribution.

and pointed out a set of 82 physico-chemical properties that have been known or guessed to be
discriminant in SOR. Thus, the final data is made of 1, 689 molecules described by 82 physico-
chemical properties and associated to at average 2.88 odors among the 74 olfactory qualities. As
such, and to the best of our knowledge, the present database is one of the very few in the field
that enable quantification and qualification of more than 1, 500 molecules at both, perceptual
(neurosciences) and physicochemical (chemistry) levels. The distribution of the 74 olfactory
qualities is illustrated in Figure 25.

6.3 h(odor): An interactive tool to elicit hypotheses on SOR

We developed an interactive Web application that enables the experts of the domain (e.g., neu-
roscientists and chemists) to directly interact with the algorithm to guide the exploration of
the search space. In other terms, they can use their knowledge to exploit the subgroups that
seem to be interesting or to explore some parts of the search space that have been ignored so
far. To interact with the algorithm, the user can like or dislike some temporary rules. This
feed-back is used to propose new rules that can be more interesting for a given user. The ap-
plication, called h(odor), is available online with a video tutorial supporting the use case at
http://liris.cnrs.fr/dm2l/hodor/.

6.3.1 System architecture

A core module (server) is contacted by a client (Web interface) to initiate the mining algorithm
with the given parameters. This core module allows the user to interact/guide the exploration
based on the likes/dislikes of the user.

The Core Module

This is the back-end of the h(odor) application. Based on NodeJS, the Core Module is the gate-
way between the user and the ELMMut algorithm (see next subsection): It is in charge of the
interaction. For that, JSON data are sent to and received from the SD algorithm through sockets
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thanks to a dedicated communication process. Moreover, this module controls the UI to display
results extracted from the SD Algorithm and collects the user preferences (like/dislike).

The User Interface (UI)

The front-end of the application, based on Bootstrap and AngularJS, enables the user to select
the parameters of the SD Algorithm and to run it. Once the subgroups of the first level of the
beam search are extracted (the algorithm is paused waiting the user preferences), the UI displays
these subgroups and the user can like/dislike some of them: The liked subgroups are exploited
in the next iteration of the algorithm, whereas disliked subgroups are removed from the explored
search space. When the algorithm finishes, the UI displays the results.

6.3.2 Use case: Eliciting hypotheses on the Musk odor

We develop a use case of the application from an end user perspective, typically a neuroscientist or
a odor-chemist that seeks to extract descriptive rules to study the Structure-Odor Relationships.
In this scenario, we consider that the expert wishes to discover rules involving at least the musk
odor.

1- Algorithms, parameters and dataset selection

In the Algorithms section of the left hand side menu, the user can choose the exploration method
and its parameters. In this use case, we exploit the ELMMut algorithm. It implements a beam
search strategy to extract subgroups based on a quality measure. We plan to add the mcts4dm

algorithm: It requires to implement the interactive process within the MCTS exploration. Once
the exploration method is chosen, we have to select the olfactory dataset as introduced in the
previous section, and choose to focus on the musk odor. We decided to set the size of the beam
to 50 (the exploration is quite large enough) and the minimum support threshold to 15 (since
supppMuskq “ 52, at least the subgroups have to cover 30% of the musk odorants). Other
parameters are fixed to their default values.

2- Interactive running steps

When the datasets and the parameters have been fixed, the user can launch the mining task
clicking on the Start mining button. When the first step of the beam search is finished, the SD
Algorithm is paused and the subgroups obtained at this step are displayed to the user. The
interaction view in the front-end presents the olfactory qualities involved at this level of the ex-
ploration (see Figure 35). Each subgroup is displayed in a white box with the current descriptive
rule on the physicochemical descriptors and some quantitative measures. For each subgroup box,
the user can select in the top right corner if she likes/dislikes this subgroup. For example, at the
first step, the application displays the subgroups extracted at the first level for the Musk odor. As
it is a known fact in chemistry that the musk odor involves large molecules, we like the subgroup
which description is d “ r238.46 ď MW ď 270.41s. After that, we keep on exploring by clicking
the Next button. Another interactive step begins, but the expert has no particular opinion so she
can jump to the next level.

3- Analysis of the results

Once the algorithm finishes (the quality measures cannot be improved), we can study the table
of results. For example, the description of one of the best extracted subgroups s is: r238.46 ďMW ď
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Figure 35: The interaction view of the application. For each step of the beam search, the al-
gorithm waits for the user’s preferences (like/dislike). The subgroups are displayed into white
boxes. On the right part, complementary information is displayed: Part of value domain of a
chosen restriction on a descriptor, and parameters of the run.

270.41sr´0.931 ď Hy ď ´0.621sr2.714 ď MLOGP ď 4.817sr384.96 ď SAtot ď 447.506sr0 ď nR07 ď 0sr0 ď ARR ď

0.316sr1 ď nCsp2 ď 7s that involves large odorants. In this subgroup, the interval restriction on the
molecular weight MW corresponds to high values, and thus to large molecules. The goal of the
h(odor) application is to confirm knowledge and to elicit new hypotheses for the SOR problem. In
the case of s, the neuroscientists are interested in understanding why these descriptors (excepted
the molecular weight) are involved in the Musk odor. With the h(odor) tool, we can also proceed
to rule combination (see Figure 36). Indeed, our experts suggest that a simple, universal and
perfect rule does probably not exist, but instead, a combination of several sub-rules should be
put forward to encompass the complexity of SOR. The user can manually select several rules in
the result set to evaluate the quality of their combination on a graph. Also, h(odor) enables to
automatically computes the best combinations of rules w.r.t. the precision and the recall of the
combination over the odors10.

6.4 Eliciting new hypothesis on the SOR problem

We presented the interactive Web application h(odor) that enables the user (e.g., the neuroscien-
tist or the chemist) to guide the exploration of the search space. Our experts keep on experiment-
ing with this application. However, h(odor) does not embed the mcts4dm algorithm yet, though
it would provide better results than beam search based approaches. Thus, the experts are also
analyzing and interpreting the rules provided by mcts4dm to study these raw results before to

10Besides, note that the h(odor) application enables to save all the choices taken by the different users. Indeed, the
application stores all the user’s actions into log files. The goal here is to use these log files to learn user preferences,
not only for a single run of the algorithm [64] but for all experiments performed by the users. This kind data (choices
made by experts) is hard to collect by simply asking experts and will be explored in future work.
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Figure 36: The rule combination that covers the musk odor.

interact with the algorithm. In this section, we provide some feedback and interpretations given
by the experts on the results computed by mcts4dm.

6.4.1 Identification of relevant physicochemical attributes

We consider the experiment on the olfactory dataset (introduced in this chapter) when we use
the RFβ score, minSupp “ 30. A relevant information for neuroscientists and chemists con-
cerns the physicochemical attributes that appear in the descriptive rules. As showed in [92],
the sum of atomic van der Waals volumes, denoted as Sv, is discriminant with regard to the
hedonism of an odor, and the higher Sv, the more pleasant an odor. Moreover, the higher the
rate of nitrogen atoms (N%), the less pleasant an odor is, consistent with the idea that amine
groups (´NH2) are associated with bad odors (such as cadaverine or putrescine). Based on these
observations, we find subgroups related to either the Floral or Fruity quality that are character-
ized by a special range of values with regard to Sv and N%. For example, s1 “ xr3.0 ď N% ď 33.3s
r2.7 ď O% ď 33.3s r0.0 ď nR05 ď 1.0s rnRCN “ 0.0s, tFruity,Grapeuy and s2 “ xr6.57 ď Sv ď 43.17s r1.0 ď nN ď 3.0s
r1.0 ď nHDon ď 2.0s, tFloraluy are output subgroups. The quality measure of s1 is 0.23 with a pre-
cision of 0.16 and a low recall of 0.5. For s2, its quality measure is up to 0.37, its precision is
0.65 and its recall is 0.06. The first subgroup contains in its description the N% attribute as-
sociated to a very low percentage, and s2 includes the Sv attributes with a range of values that
corresponds to its higher values. In general, the quality Musk is associated with large and heavy
molecules: The molecular weight (MW ) of these molecules is thus high. In the output subgroups,
most of those associated to the musk quality include in their description the MW attribute
with high values, or any other attribute that is positively correlated with MW , such as SAtot.
For example, s3 “ xr27.03 ďMW ď 297.3s r1.0 ď nBM ď 18.0s rnR03 “ 0.0s r0.0 ď nCp ď 7.0s r5.0 ď nCrs ď 16.0s
rnHDon “ 0.0s, tMuskuy with a quality measure of 0.2 (precision: 0.27, recall: 0.25) is about molecules
with it molecular weight between 27.03 and 297.3. Moreover, when the quality Musk is combined
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Camphor

0.445 ⩽ SssssC ⩽ 0.703
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11.66 ⩽ SM09_EA(bo) ⩽ 12.44

2.29 ⩽ VE1_D/Dt ⩽ 3.472
0.0 ⩽ nRCHO ⩽ 0.0

164.795 ⩽ P_VSA_MR_1 ⩽ 282.506
1.225 ⩽ SpMaxA_EA(ed) ⩽ 2.25

0.0 ⩽ SdssC ⩽ 0.515
3.0 ⩽ C-001 ⩽ 6.0

0.693 ⩽ PDI ⩽ 0.875
0.0 ⩽ CATS2D_04_AL ⩽ 2.0

118 1 6

5

6

6

34

Figure 37: The support of three groups involving the camphor odor.

with the quality Animal, we still have a high molecular weight but there are other attributes
with specific range of values: s4 “ xr168.808 ď SAtot ď 464.918sr6.0 ď nCar ď 16.0sr3.261 ďMLOGP ď 4.593s
r0.0 ď nCsp2 ď 7.0s, tMusk, Animaluy. This latter topological attribute is consistent with the presence
of double bonds (or so-called sp2 carbon atoms) within most of the musky chemical structures,
to provide some hydrophilicity.

6.4.2 Providing relevant knowledge on the process of the olfactory percept

Another important information brought by such findings lies in the fact the SOR problem should
be viewed and studied thanks to a “multiple description” approach rather than a “one rule for
one quality” approach (i.e., bijection). Indeed, a number of odor qualities were described by
very specific rules. For example, 44% of the molecules described as camphor can be described
by 3 rules physicochemical rules, with a very low rate of false positives (0.06%; molecules being
described by the physicochemical rule, but not described perceptively as camphor). Similar
patterns were observed for other qualities: e.g., mint (3 descriptive rules; 32% of the molecules
described as mint; 0.06% of false positives), ethereal (3; 35%; 0%), gassy (3; 36%; 0.36%), citrus
(3; 42%; 0.24%), waxy (3; 43%; 0%), pineapple (3; 48%; 0%), medicinal (3; 49%; 0.30%), honey
(4; 54%; 0.06%), sour (3; 56%; 0.36%). Focusing on these qualities, this confirms that a universal
rule cannot be defined for a given odorant property, in line with the extreme subtlety of our
perception of smells. For example, looking in more details on the produced rules for Camphor
(see Figure 37), it appears that one rule is mostly using topological descriptors, while the second
rather uses chemical descriptors. The third rule has a combination of these two.

6.5 Perspectives in neurosciences and chemistry

The present findings provide two important contributions to the field of neurosciences and chemo-
sensation. First, although the SOR understanding seems to be illusory for some odor qualities,
our approach suggests that there exist descriptive rules for some qualities that also highlight
the relevance of some physicochemical descriptors (Sv, MW , etc.). Second, the present model
confirms the lack of bijective (one-to-one) relationship between the odorant and the odor spaces
and it emphasizes that several sub-rules should be taken into account when eliciting structure-
odor relationships. From these findings, experts in neurosciences and chemistry may generate the
following new and innovative hypotheses in the field: (i) explaining inter-individual variability
in terms of both behavioral and cognitive aspects of odor perception, (ii) explaining stability in
odor-evoked neural responses and (iii) correlating the multiple molecular properties of odors to
their perceptual qualities. Our collaborators are preparing a paper for the journal in neuroscience
PLOS One - Computational Biology.
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Chapter 7

Conclusion and perspectives

7.1 Summary

Motivated by a problem in neuroscience and olfaction, we designed a data science approach based
on the knowledge discovery in databases process (KDD) to elicit new hypotheses on the structure-
odor relationship. For that purpose, we studied subgroup discovery (SD) and its generalization
exceptional model mining (EMM) to support the discovery of supervised rules that distinguish
target labels.

In presence of large data, such as the olfactory dataset that contains lots of numerical descrip-
tors, an exhaustive exploration of the search space is unfeasible. Thus, some heuristic approaches
have been used, e.g., beam search, evolutionary algorithms and sampling methods. However,
they are not able to propose a high completeness in the result set, i.e., containing many different
enough local optima. We advocate for the use of MCTS for pattern mining: An aheuristic explo-
ration strategy leading to “any-time" pattern mining that can be adapted with different measures
and policies. The experiments show that MCTS and our mcts4dm algorithm provides a much
better completeness in the result set than existing heuristic approaches. Interesting subgroups
are found in a reasonable amount of iterations and the quality of the result iteratively improves.
In addition, we show that numerical attributes are handled without using greedy discretization
either within a pre-processing task or by means of an on-the-fly setting during the enumera-
tion. We enumerate all the possible intervals to ensure that mcts4dm converges to an exhaustive
search if given enough time and memory.

Moreover, we proposed an original subgroup discovery instance to mine descriptive rules char-
acterizing specifically subsets of class labels. For that matter, we revisited the diverse subgroup
set discovery problem within the exceptional model mining framework: Each subgroup can be
evaluated in different target subspaces. A subgroup does not derive one model but several mod-
els: One model is built on each subset of class labels. It induces a huge increase of the search
space size that can still be handled by the MCTS enumeration. As we face a high variance in
the frequency of the class labels in the olfactory dataset (some odors are much more frequent
than others), we define a new model Fβ. It employs a function β that dynamically either fosters
on the precision of the subgroups w.r.t. the target subspace if this latter is over-represented is
the data, or that converges to the F1 value score for other target subspaces. We derive several
quality measures to compare two instances of our model. This EMM instance is also tractable for
a MCTS-based search, as the results are more diverse, both on the subgroup description and the
target subspaces. We showed the effectiveness of this method through a large set of experiments.

Finally, the combination of both the enumeration based on MCTS and the new EMM instance
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is used to elicit new hypotheses on the structure-odor relationship in our olfactory application in
collaboration with neuroscientists and chemists. The results suggest new understandings about
the links between the physico-chemical properties of a molecule and its odor. The experts of
the domain are still working on the results provided by both our algorithm mcts4dm and our
interactive Web application h(odor)11.

7.2 Perspectives

The exploration based on Monte Carlo tree search is essentially used in the artificial intelligence
domain to solve games and planning problems. To the best of our knowledge, it is the first
attempt to revisit it for pattern mining issues. Thus, it remains many opportunities to improve
and to adapt it for other pattern mining tasks than subgroup discovery and exceptional model
mining. In this section, we highlight the main issues we plan to study either for the short-term or
a long-term perspective.

7.2.1 Improvements of our algorithm mcts4dm

We have showed that our algorithm mcts4dm is able to quickly find a diverse set of patterns
with a high quality measure. However, we notice that the memory linearly increases with the
number of objects in the data and the number of iterations. This is due to the enumeration of
the several projected databases when specializing a description. Indeed, each node of the search
tree stores a bitset for the extent of the subgroup related to this node: The more the iterations,
the more the nodes in the tree, and thus the more the bitsets. To reduce the impact of both the
number of objects and the storage of bitsets with the generation of a node, we are working on a
new implementation method that only stores one bitset for the extent for all the nodes. For each
iteration, it consists of re-processing the refinements of each selected node during the Select

method from the root to the final selected node ssel. This enables to reduce the memory usage
but it can be a bit more time consuming since we have to compute the extent and the description
of each selected node. However, the implementation of structures storing the data in an efficient
way (e.g., ordering the values of numerical attributes and using pointers to the objects that take
a specific value) enables to reduce the runtime. In addition to this algorithmic improvement, we
plan to implement an interactive version of mcts4dm to extend the interactive Web application
h(odor). We also think about using parallelisation for our algorithm to improve its efficiency.
Besides, we may also handle the high branching factor we faced in several dataset. We discuss
these three improvements in the following.

Interactive version

Our h(odor) application relies on an interactive algorithm allowing the experts to use their knowl-
edge to guide the exploration of the search space. Beam search algorithms are easy to turn in-
teractive by stopping after each level of the exploration to propose to the expert to select which
of the subgroups would be extended at the next iteration. However, making mcts4dm interac-
tive would require to study when the algorithm has to be paused to take the expert’s feedback,
which temporary patterns to output to the user and then how to incorporate the feedback into
the search tree. The first point can be solved by pausing the algorithm, say each 1, 000 iterations,
or to allow the user to manually interrupt the algorithm when he/she wants. Solving the second

11Our collaborators are preparing a submission to PLOS One Computational Biology
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issue appears more difficult. After N iterations, mcts4dm has computed at least N patterns and
eventually those that are stored during the memory policy. The question is thus, which patterns
have to be output to the user to allow him/her to like/dislike. We can randomly sample k sub-
groups among all the computed ones, or we can sample them based on their quality measure. The
third point concerns the use of the expert’s feedback in the search tree. A naive solution would be
to bias the aggregated value of rewards Qpsq of a liked/disliked subgroup s to improve/decrease
its UCB value. However, it also requires to bias all of its parents to reach it from the root if it
is liked and conversely avoid it to be selected if it is disliked. In addition, the choice of the node
to expand can also be biased to foster on user’s preferences. Similarly, during the simulation, the
refinements may no longer be randomly picked but biased by the expert’s feedback.

Parallelisation

The characteristics of the MCTS algorithm, where each iteration is independent w.r.t. the others,
make this approach tractable for parallelisation. Parallelisation can provide great advantages by
performing several iterations over the tree in the same time, and thus be able to quickly and
efficiently enumerate the search space. There exists three main approaches to employ paralleli-
sation for MCTS algorithm (see Chapter 3): The leaf parallelisation, the root parallelisation and
the tree parallelisation [43, 46]. In our settings, we think that the most usefull approach is leaf
parallelisation since several parallel simulations are run from the expanded node sexp. It enables
to get a more precise overview of the search space rooted by sexp. Besides, this approach does not
require to use a mutex on the search tree and the pool of simulations are run together. However,
its main drawback is that the iteration is over when all the simulations are completed: The run-
time depends on the longer simulation. Another approach would be to split the search space into
different parts. In each part a MCTS is run. This method would avoid to put a mutex on the tree
but it will not respect the global exploration/exploitation trade-off but instead a local trade-off
in each part of the search space: Some less interesting parts would be as exploited as interesting
parts. Finally, we are interested to launch several MCTS instances in the search space rooted
in different parts of the lattice. Basically, as a pre-processing task, we can project the pattern
language into a less complex one (e.g., from sequences to itemsets) in order to find interesting
patterns in this less expressive language that would be used as seeds to launch several MCTS
instances within the same search tree.

Handling the high branching factor

A well known problem in the MCTS method is that it tends to explore much more than it exploits.
Indeed, since MCTS expands all the children of a node before exploiting one of its children, it
requires lots of iteration to explore the search space in depth. This is due to the high branching
factor. For that the progressive widening method has been proposed [45, 49]. Basically, the
number of children that have to be expanded before selecting a child depends on the number of
visitsNp.q. The keypoint in this method is the choice of the child to expand. Indeed, it is better to
expand with the best children at the beginning since it requires more iterations to expand all the
children. The choice of the child to expand can be done with the Rapid Action Value Estimator
(RAVE) [73, 42]. Moreover, in addition to RAVE, we may take into account redundancy in this
step: The choice of the child to expand can be based on both RAVE and a measure that states if
the considered child is similar to an existing node in the search tree or if it is somehow different
from the computed subgroups. Thus, the child having the best RAVE and that is not similar to
other patterns has more chance to be chosen than other children.
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7.2.2 Handling complex pattern mining issues

As future work, we are also interested in solving some pattern mining problems with MCTS.
In this thesis, we studied supervised rules discovery with subgroup discovery and exceptional
model mining. We considered boolean, nominal and numerical attributes. The subgroups are
evaluated with one quality measure. However, in pattern mining, there exists different settings
and constraints which we plan to solve with our framework based on MCTS. The first one consists
in considering more expressiveness in the pattern language. The second is to take into account
several quality measures to evaluate a pattern.

Toward more expressiveness in the pattern language

In pattern mining, many pattern languages have been defined and studied: From itemsets to
graphs, sequences, or polygons. To handle different pattern languages, it is required to define for-
mally both the search space and the refinement operators. For instance, for the case of sequential
pattern mining, several algorithms have been proposed to explore the search space in different
ways [79]. The traditional way to deal with sequential patterns is to use sequence extensions
or itemset extensions with projected databases such as PrefixSpan algorithm [122]. This is the
enumeration method we employed in our previous works on sequential pattern mining to search
for imbalanced strategies in electronic sport data. However this enumeration principle is not suit-
able for a sampling method such as MCTS, since it would not sample the search space uniformly
(as for the lectic order itemset mining we discussed in this thesis). The naive way consisting in
extending a sequence with an item that can be appended in any existing itemsets or in new ones
is possible but the branching factor would burst. Besides, MCTS has already been applied to
enumerate convex polygons [16] and the results suggest that MCTS can handle efficiently more
complex pattern languages by defining correct strategies. In addition, we plan to investigate on
other pattern languages such as dynamic or attributed graphs, or even 3D graphs. Once again,
it requires to adapt the steps of mcts4dm, and especially the Expand and RollOut methods
that include the refinement operator.

Towards compressed search trees

As pointed out in the experiments, when local optima are located deeper in the search space, it
may require a lot of iterations to reach them. This is even more true when dealing with numerical
attributes with a large domain (recall that we consider that the domain of a numerical attribute
is made of the different values taken by the objects in the data). Many minimal changes are
required (and thus several refinements are performed) to reach a small interval. We proposed a
refinement operator based on the generators of the equivalence class that ensures that two nodes
in a branch do not have the same support. However, in some cases it is not sufficient. The
question is how to compress the search tree, i.e., how to reduce the number of generated nodes,
without loss of information? A possible solution would be to incorporate expert’s knowledge to
prune some parts of the search space that are known to be not interesting. However, we would like
to keep the method as generic as possible to be able to apply it to different application domains.
Taking into account the theory developed over the past twenty years in pattern mining (upper
bounds, condensed representations, ...) [74] seems to be the wisest solution to reduce the size of
the search tree in the MCTS algorithm. Indeed, several enhancements are defined to reduce the
number of generated patterns with or without loss of information.
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Multi-objective pattern mining

Up to now, we use one quality measure to evaluate a pattern. However, in some applications, a
measure is not enough to quantify the interestingness of a pattern. In pattern mining, the sky-
patterns have been defined when dealing with patterns evaluated with several measures [130]. In
this setting, no thresholds are used: The aim is to extract only the dominant patterns w.r.t. the
several measures using the Pareto frontier. This is a multi-objective optimization task. Using
several measures in a MCTS means that the reward of each simulation is no longer a value but
a set of values, corresponding to the several measures. Then, it is required to study the upper
confidence bound formula when selecting a child of a node. Indeed, how to take into account
several measures to compute UCB? The aggregated value of the rewards of a node Qp.q requires
to be defined with the several measures: The Pareto frontier may be used for that.
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Résumé

La découverte de motifs qui caractérisent fortement une classe vis à vis d’une autre reste encore
un problème difficile en fouille de données. La découverte de sous-groupes (Subgroup Discovery,
SD) est une approche formelle de fouille de motifs qui permet la construction de classifieurs in-
telligibles mais surtout d’émettre des hypothèses sur les données. Cependant, cette approche fait
encore face à deux problèmes majeurs : (i) comment définir des mesures de qualité appropriées
pour caractériser l’intérêt d’un motif et (ii) comment sélectionner une méthode heuristique adap-
tée lorsqu’une énumération exhaustive de l’espace de recherche n’est pas réalisable. Le premier
problème a été résolu par la fouille de modèles exceptionnels (Exceptional Model Mining, EMM)
qui permet l’extraction de motifs couvrant des objets de la base de données pour lesquels le mod-
èle induit sur les attributs de classe est significativement différent du modèle induit par l’ensemble
des objets du jeu de données. Le second problème a été étudié en SD et EMM principalement
avec la mise en place de méthodes heuristiques de type recherche en faisceau (beam-search) ou
avec des algorithmes génétiques qui permettent la découverte de motifs non redondants, diver-
sifiés et de bonne qualité. Dans cette thèse, nous soutenons que la nature gloutonne des méth-
odes d’énumération précédentes génère cependant des ensembles de motifs manquant de diver-
sité. Nous définissons formellement la fouille de données comme un jeu que nous résolvons par
l’utilisation de la recherche arborescente de Monte Carlo (Monte Carlo Tree Search, MCTS), une
technique récente principalement utilisée pour la résolution de jeux et de problèmes de planning
en intelligence artificielle. Contrairement aux méthodes traditionnelles d’échantillonnage, MCTS
donne la possibilité d’obtenir une solution à tout instant sans qu’aucune hypothèse ne soit faite
que ce soit sur la mesure de qualité ou sur les données. Cette méthode d’énumération converge
vers une approche exhaustive si les budgets temps et mémoire disponibles sont suffisants. Le com-
promis entre l’exploration et l’exploitation que propose cette approche permet une augmentation
significative de la diversité dans l’ensemble des motifs calculés. Nous montrons que la recherche
arborescente de Monte Carlo appliquée à la fouille de motifs permet de trouver rapidement un
ensemble de motifs diversifiés et de bonne qualité à l’aide d’expérimentations sur des jeux de don-
nées de référence et sur un jeu de données réel traitant de l’olfaction. Nous proposons et validons
également une nouvelle mesure de qualité spécialement conçue pour des jeux de donnée multi
labels présentant une grande variance de fréquences des labels.

Mots-clés: Découverte de connaissances, règles supervisées, sous-groupes, fouille de modèles
exceptionnels, recherche arborescente de Monte Carlo, diversité, olfaction

Abstract

The discovery of patterns that strongly distinguish one class label from another is still a
challenging data-mining task. Subgroup Discovery (SD) is a formal pattern mining framework
that enables the construction of intelligible classifiers, and, most importantly, to elicit interesting
hypotheses from the data. However, SD still faces two major issues: (i) how to define appropriate
quality measures to characterize the interestingness of a pattern; (ii) how to select an accurate
heuristic search technique when exhaustive enumeration of the pattern space is unfeasible. The
first issue has been tackled by Exceptional Model Mining (EMM) for discovering patterns that
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cover tuples that locally induce a model substantially different from the model of the whole
dataset. The second issue has been studied in SD and EMM mainly with the use of beam-
search strategies and genetic algorithms for discovering a pattern set that is non-redundant,
diverse and of high quality. In this thesis, we argue that the greedy nature of most such previous
approaches produces pattern sets that lack diversity. Consequently, we formally define pattern
mining as a game and solve it with Monte Carlo Tree Search (MCTS), a recent technique mainly
used for games and planning problems in artificial intelligence. Contrary to traditional sampling
methods, MCTS leads to an any-time pattern mining approach without assumptions on either
the quality measure or the data. It converges to an exhaustive search if given enough time
and memory. The exploration/exploitation trade-off allows the diversity of the result set to be
improved considerably compared to existing heuristics. We show that MCTS quickly finds a
diverse pattern set of high quality in our application in neurosciences. We also propose and
validate a new quality measure especially tuned for imbalanced multi-label data.

Keywords: Knowledge discovery in databases, supervised rules discovery, subgroup discovery,
exceptional model mining, monte carlo tree search, diversity, olfaction
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