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Context: From Data to Knowledge by means of Patterns

• Supporting KDD processes in real-life settings

• Data Mining: pattern discovery from (more or less) big data

• Supporting the whole knowledge discovery process?
... not only designing efficient pattern discovery algorithms

• Humans in the loop: a querying vision on KDD processes

• Data Science projects

• Biology, Logistics, Solar Energy (Physics), Sociology

• Which kind of scientific cooperation? Is it possible to support
solution co-design?
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Our main directions of research

• Formalizing as many steps as possible of KDD processes within
the constraint-based data mining framework, i.e., designing pattern
domains and implementing solvers, is a needed step towards
inductive databases

{φ ∈ L | C1(φ,R) ∧ . . . ∧ Cn(φ,R)}

• Defining the data R, the pattern language L, the primitive
constraints Ci , and the way to combine them, . . .

• A declarative view (specifying a priori relevancy)

• A computational view (computing patterns)
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Examples of pattern domains and inductive queries

{φ ∈ L | C1(φ,R) ∧ . . . ∧ Cn(φ,R)}
• Examples

• Constrained clustering of objects given sets of features

• Detecting dense subgraphs or topological patterns in an
(attributed) graph

• Discovering patterns in Boolean data like formal concepts or
their generalizations

• Problems

• Ensuring pattern relevancy and subjective interestingness

• Tractable evaluation in practice for more or less generic solvers

• . . .
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An example for topological patterns
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The example of closed n-sets

Let (Di )i=1..n n finite sets and R ⊆ ×i=1..nDi an n-ary relation.

Definition
∀(X 1, . . . ,X n) ⊆ ×i=1..n, Di , (X 1, . . . ,X n) is a closed n-set if and
only if:

• Cconnected(X 1, . . . ,X n) ≡ ×i=1..nX
i ⊆ R

• Cclosed(X 1, . . . ,X n) ≡ ∀i = 1..n, ∀x ∈ Di \ X i ,
¬Cconnected(X 1, . . . ,X i ∪ {x}, . . . ,X n)

{φ ∈ ×i=1..n2D
i | Cconnected(φ,R) ∧ Cclosed(φ,R) ∧ . . .}

E.g., ({c1, c2}, {p1, p2}, {s1, s2})
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Illustration when encoding relational graphs
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a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4
d1 1 1 1 1 1 1 1 1 1

d2 1 1 1 1 1 1 1 1 1 1

d3 1 1 1 1 1 1 1 1 1 1

d4 1 1 1 1 1 1 1 1

t1 t2 t3 t4

• ({d1, d2}, {a1, a2}, {t1, t2})
• Is it relevant?

• It satisfies Cconnected ∧ Cclosed , enforcing other constraints?
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Relevance constraints for dynamic graph mining

Symmetry constraint

A 3-set (N1,N2,T ) is symmetric ⇔ N1 ⊆ N2 ∧ N2 ⊆ N1.

Maximal cross-graph cliques are extracted.

a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4
d1 1 1 1 1 1 1 1 1 1

d2 1 1 1 1 1 1 1 1 1 1

d3 1 1 1 1 1 1 1 1 1 1

d4 1 1 1 1 1 1 1 1

t1 t2 t3 t4

δ-contiguity constraint

Let δ ∈ R+, a user-defined parameter. A 3-set (N1,N2,T ) is
δ-contiguous ⇔ ∀t ∈ [min(T ),max(T )], ∃t ′ ∈ T s.t. |t − t ′| ≤ δ.

Cerf et al. Inductive databases and constraint-based data mining, 2010.
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Pattern domains to solve data science problems

• Selecting well-studied pattern domains and over-exploiting
experts for ad-hoc feature construction
E.g., Encoding selected spatio-temporal properties in terms of
boolean properties or in terms of an ad-hoc event alphabet
when using itemsets or sequential patterns.

• Designing new pattern domains (e.g., for mining collections of
trajectories)

Defining primitive constraints is the hard part of the job ;-)

Primitive constraints should enable to express (a) pattern
semantics, (b) objective interestingness, and (c) subjective
interestingness
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Example of a fairly sophisticated inductive query

• Cross-graph preserved and unexpected clique mining
• pattern semantics
• objective interestingness
• subjective interestingness

See also the tutorial by Cerf and Meira at ECML PKDD 2014

{φ ∈ ×i=1..n2D
i |

Cconnected(φ,R) ∧ Cclosed(φ,R) ∧
Cδ-contiguity(φ,R) ∧ Csymmetry(φ) ∧

Cunexpected(φ,R) ∧ . . . }
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Humans in the loop?

• Writing (inductive) queries
i.e., selecting data, selecting some primitive constraints and
fixing their parameters, post-processing answers, often using
domain and expert knowledge to remove uninteresting
patterns

• Who? Computer scientists? Application domain experts?
One step towards the co-design of data mining solutions is to
exploit expert models

• A preliminary study for deriving constraints from expert
models

F : dom(x1)× dom(x2)× . . .× dom(xn)→ R

{φ ∈ L | C1(φ,R) ∧ . . . ∧ Cp(φ,R) ∧ Cp+1(φ,M,R) ∧ . . .}

Flouvat et al. ECAI 2014.
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A case study about soil erosion understanding

Environmental problems in New Caledonia

• An exceptional environment: a biodiversity hotspot and a
lagoon on the UNESCO World Heritage List

• Important mining projects (25% of the world’s known nickel
resources), a tropical climate with cyclones and bush fires

→ Strong soil erosion with an impact on ecosystems

• Experts often express part of their knowledge into models e.g.,
to assess an erosion risk according to a set of environmental
parameters

• Notice that only few parameters (among the collected data)
are exploited
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Related data science challenges

• Collecting Big Data

• Satellite images, nature of the ground, populations, climate,
vegetation, . . .

ANR FOSTER and CNRS MASTODONS Amadouer: computer
scientists, geographs and geologists ;
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Our itemset mining context

• Data

• Patterns

Itemsets under constraints, e.g., {Annual rainfall=[0,1000], Soil
type=laterite,Land cover=trail}
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Models about soil erosion (1)

• Empirical models (e.g., USLE and Atherton)

• Such models are often linear or polynomial ones

• They are defined based on expert empirical knowledge and
physical measures
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Models about soil erosion (2)

• Physical models (e.g., WEPP and RMMF)

• Often nonlinear and non-polynomial quantitative models
based on physical properties

Raindrop detachment model in RMMF

16 / 31



Deriving new primitive constraints

• Proposition

• Defining constraints that are derived from expert models

• Using them during pattern mining to improve both relevancy
and scalability thanks to formal properties

• Considered primitive constraint

qF≥(X ) ≡ F (X ) ≥ minf

X is an itemset and F is an expert model (a multivariate function)
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Minimal erosion constraint

• Minimal erosion in an area qF≥(X ) ≡ F (X ) ≥ minf

Focus on patterns X related to a high soil particle detachment or a
high erosion risk

• This constraint can be combined with others, e.g., a minimal
frequency

• It enables to prune patterns that are not related to soil erosion

• It highlights patterns validated by the data and the model

• It may support the detection of contradictions w.r.t. expert
model output
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Value F (X ) for an itemset X

Trivial case: itemset X involves all the variables of the model

• Model RMMF F (xK , xR , xA, xCC , xI , xPH)

xK soil detachment index xCC canopy cover percentage
xR annual rainfall xI rainfall intensity
xA proportion of rain stopped by vegetation xPH vegetation height

X={xK=laterite, xR=6000, xA=0.3, xCC=0.1, xI=25, xPH=1, . . . }

Compute F( 4, 6000, 0.3, 0.1, 25, 1) and ignore the other items
not considered by the model

What is the value associated to an itemset when some of the
variables of the model are not involved?
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Value f (X ) for an itemset X (2)

Bound consistency

Model RMMF F (xK , xR , xA, xCC , xI , xPH)

xK soil detachment index xCC canopy cover percentage
xR annual rainfall xI rainfall intensity
xA proportion of rain stopped by vegetation xPH vegetation height

Z={xK=laterite, xR=6000, xA=0.3, xCC=0.1, xI=25}

F( 4, 6000, 0.3, 0.1, 25, ? )

Solution: Computing upper and lower bounds for F (Z )

min(F (4, 6000, 0.3, 0.1, 25, i)) ≤ F (Z )
≤ max(F (4, 6000, 0.3, 0.1, 25, i))∀i ∈ dom(xPH)

i.e.,
F (Z ) = [F (4, 6000, 0.3, 0.1, 25, 0),F (4, 6000, 0.3, 0.1, 25, 130)]
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Properties of F (X ) ≥ minf (1)

• Studying constraint properties to improve mining scalability

• Looking for safe pruning rules

• A classical approach in the pattern mining area: Using
monotonicity properties

• Focus on 2 types of properties

• Properties that can be used to prune supersets

• A property that can be used to prune ”neighborhood”
patterns within the search space
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Properties of F (X ) ≥ minf (2)

If qF≥(X ) is false, then all its supersets Y expressing the same
variables of the model can be pruned
If qF≥(X ) is false then qF≥(Y ) is false, because F (X ) = F (Y )

Given F (X ) in [infx , supx ]. If F (X ) < minf , i.e., supx < minf ,
then all the supersets Y of X can be pruned
If F (X ) < minf then F (Y ) < minf because F (X ) ≥ F (Y )
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Properties of F (X ) ≥ minf (3)

Assume Z and Y are ”direct neighbors”

• They share the same variables of the model

• For these variables, all the values are identical (i.e., items)
except for a variable xj

Assume Z .xj ,Y .xj ∈ [a, b], ∂F
∂xj

> 0 on [a, b].

If F (Z ) < minf and Z .xj > Y .xj then F (Y ) < minf

N.B.: idem if ∂f
∂xj

< 0 and Z .xj < Y .xj

23 / 31



Algorithms

Integrating constraint evaluation into itemset mining algorithms
These properties can be directly integrated in existing itemset
mining algorithms

• e.g., Apriori [Agrawal and Srikant 94] or Close-by-One
[Kuznetsov and Obiedkov 02]

• Integration is more or less easy depending on the enumeration
strategy
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Empirical validation

Data

• A SPOT satellite image with 8 millions of pixels
• 5 discretized radiometric variables (50 items)

+ data on nature of the soil, land cover and slope (24 items)

Experimental protocol

• Model from [Atherton et al. 05] that assesses an erosion risk

• Integration in the algorithm Close-By-One
• Constraint: Looking for frequent and closed itemsets

associated to a minimal erosion

• Tests with several frequency thresholds, with and without the
model-based constraint (with various model thresholds)
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Experimental results (1)
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Number of solutions and execution times decrease from 10 000
itemsets in 6000 sec. to 10 itemsets in 2000 sec. (minsup = 10%

+ no model-based constraint → minf = 3)
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Experimental results (2)

Qualitative feedback

• 1% of the studied area is associated to a strong soil erosion
risk

• High risk areas are characterized by serpentinite soils covered
by volcano-sedimentary substrat and have an important slope

• The results are confirmed by the radiometric values associated
with the pattern (low green band and NDVI)

See details in Ph. D thesis by Jérémy Sanhes (September 25, 2014, In

French)
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Conclusion & perspectives

• Problem: Integrating domain knowledge and expert knowledge
within constraint-based pattern mining techniques

• Proposition: Deriving new constraints based on available models
expressed as multivariate functions

• Preliminary results in the simple context of itemset mining
with an application to soil erosion understanding

• It improves pattern relevancy and data mining scalability, i.e.,
supporting knowledge discovery from data

• It promotes better interactions with experts of the application
domain: a needed step towards pattern domain co-design

• Pattern domain prototyping could be a key methodology for
data science and using Constraint Programming for that
purpose is obviously promising

{φ ∈ L | C1(φ,R) ∧ . . . ∧ Cp(φ,R) ∧ Cp+1(φ,M,R) ∧ . . .}
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Conclusion & perspectives

• Some perspectives

• Defining and studying other model-based primitive constraints
(s.t. enforcing unexpectedness)

• Studying other families of models for other applications (e.g.,
epidemiology models, sociological models of information
diffusion, logistic models)

• Using this approach with other data mining methods (e.g.,
dynamic graph mining methods)
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Trends in dynamic attributed graphs
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Desmier et al. ECML/PKDD 2013.
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Questions ?

Thanks to:

• Löıc Cerf (Belo Honrizonte, UGMG)

• Elise Desmier

• Frédéric Flouvat (PPME, Nouméa)

• Marc Plantevit (LIRIS, Lyon)

• Adriana Prado

• Céline Robardet (LIRIS, Lyon)

• Jérémy Sanhes (PPME, Nouméa)

• Nazha Selmaoui-Folcher (PPME, Nouméa)
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